LHCb Measurements on Semileptonic Decays of b-hadrons

LHCD

Istituto Nazionale di Fisica Nucleare Sezione di Padova

Anna Lupato

on behalf of the LHCb Collaboration

TAU2023 The 17th international Workshop on Tau Lepton Physics University of Louisville, Kentucky, USA 4-8 December 2023

Charged current transitions

- Tree level quark transition with W emission
- Advantages:
 - The contributes to decay rate can be factorized in weak and strong part

$$\frac{d\Gamma(B \rightarrow X l\nu)}{dq^2} \propto G_F^2 |V_{bq}|^2 |f(q^2)^2$$

- The theoretical calculation can be simplified
 - Factorize long (form factors) and short (Wilson Coefficients) distance effects

Challenges:

- Missing neutrinos \rightarrow lower resolutions
- Large partially reconstructed backgrounds
- Large and perfectly calibrated simulation samples needed for modeling signal and backgrounds

LHCb

- LHCb was originally designed for CP violation and rare beauty & charm decays
- But now it is a general purpose detector: *exotic spectroscopy, EW precision physics, heavy ions, fixed target program...*

- LHCb is a spectrometer in the forward direction (2< η <5)
- Excellent vertexing, tracking and particle identification
- Low trigger threshold on hadrons, muons and photons
- Production of all types of b and c hadrons

ACHEP

- Measurement of the ratios of branching fractions R(D*) and R(D0) [Phys.Rev.Lett. 131 (2023) 111802]
- Test of Lepton flavour universality using $B^0 \rightarrow D^* \tau^+ \nu$ decay with hadronic τ channels [Phys. Rev. D108 (2023) 012018]
- Observation of the decay $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \tau \overline{\nu}$ [Phys. Rev. Lett. 128 (2022) 191803]
- Measurement of D^{*} longitudinal polarization in B⁰ \rightarrow D^{*-} $\tau^+\nu$ decays [arXiv:2311.05224 Submitted to PRD]
- First observation of the decay $B_s^{\ 0} \to K^-\mu^+\nu$ and a measurement of $|V_{ub}|/|V_{cb}|$ [Phys. Rev. Lett. 126 081804]
- Measurement of $|V_{cb}|$ with $B_s{}^0 \to D_s{}^{*}\mu^+\nu$ decays [Phys. Rev. D 101 072004]

- Measurement of the ratios of branching fractions R(D^{*}) and R(D⁰) [Phys.Rev.Lett. 131 (2023) 111802]
- Test of Lepton flavour universality using $B^0 \rightarrow D^* \tau^+ \nu$ decay with hadronic τ channels [Phys. Rev. D108 (2023) 012018]
- Observation of the decay $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \tau \overline{\nu}$ [Phys. Rev. Lett. 128 (2022) 191803]
- Measurement of D* longitudinal polarization in B⁰ \rightarrow D*- $\tau^+\nu$ decays [arXiv:2311.05224 Submitted to PRD]
- First observation of the decay $B_s^{\ 0} \to K^-\mu^+\nu$ and a measurement of $|V_{ub}|/|V_{cb}|$ [Phys. Rev. Lett. 126 081804]
- Measurement of $|V_{\rm cb}|$ with $B_{\rm s}{}^{0} \to D_{\rm s}{}^{*}\mu^{+}\nu$ decays [Phys. Rev. D 101 072004]

- Measurement of the ratios of branching fractions R(D^{*}) and R(D⁰) [Phys.Rev.Lett. 131 (2023) 111802]
- Test of Lepton flavour universality using $B^0 \rightarrow D^* \tau^+ \nu$ decay with hadronic τ channels [Phys. Rev. D108 (2023) 012018] Arnau's talk
- Observation of the decay $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \tau \overline{\nu}$ [Phys. Rev. Lett. 128 (2022) 191803]
- Measurement of D* longitudinal polarization in B⁰ \rightarrow D*- $\tau^+\nu$ decays [arXiv:2311.05224 Submitted to PRD]
- First observation of the decay $B_{_{S}}{}^{_{0}} \to K^{_{}}\mu^{_{}}\nu$ and a measurement of $|V_{_{ub}}|/|V_{_{cb}}|$ [Phys. Rev. Lett. 126 081804]
- Measurement of $|V_{cb}|$ with $B_s{}^0 \to D_s{}^{*-}\mu^+\nu$ decays [Phys. Rev. D 101 072004]

Longitudinal \mathbf{D}^* polarization: beyond the LFU

[arXiv:2311.05224]

- Lepton Flavour Universality tests using charged current decays of D and D* show a tension from the Standard Model of 3.2σ
- New physics can strongly affect the D^* longitudinal polarization $F_{\rm L}{}^{\rm D*}$ also if LFU ratios align with the SM prediction [arXiv:1907.02257]
- Measured by Belle: $0.60 \pm 0.08 \pm 0.04$ [arXiv:1903.03102]
- The differential decays rate of $D^* \to \, D^0 \, \pi$ can be expressed as

 $\frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_D} = a_{\theta_D}(q^2) + c_{\theta_D}(q^2)\cos^2\theta_D$

• $F_{L^{D^*}}$ can be calculated as

$$F_L^{D^*} = \frac{a_{\theta_D}(q^2) + c_{\theta_D}(q^2)}{3a_{\theta_D}(q^2) + c_{\theta_D}(q^2)}$$

 \vec{p}_{B^0} θ_D π^+ q^2 is the squared invariant mass of $\tau \nu$

D* rest frame

where

• a_{θ} and c_{θ} are linear combinations of the angular coefficients

$$a_{ heta_D}(q^2) = N^{unpol} \cdot \mathcal{PDF}_{unpol}|_{\cos heta_D = 0},$$

$$c_{ heta_D}(q^2) = rac{3}{2} N^{
m pol} \Delta_{
m bin}$$

Longitudinal D^* polarization: signal selection

• Dataset: Run1(3 fb⁻¹) and Run2 (2 fb⁻¹)

[arXiv:2311.05224]

- $B^0 \rightarrow D^* \tau^+ \nu$, $\tau^+ \rightarrow 3\pi^{\pm}(\pi^0)\nu$
 - + good tau vertex reconstruction
 - large hadronic background

- Most dominant: $B \rightarrow D^* 3\pi X$ (BF ~ 100x signal)
 - Suppressed by requiring the τ vertex to be downstream wrt B vertex along beam direction with a 4σ significance
 - additional BDT in Run2 to reach Run1 (rejection >99.9%)
- $B \rightarrow D^* D^{+,0}(s) X$ (BF ~10x signal)
 - Similar topology to that of signal but detached vertex due to non-negligible lifetime
 - Suppressed by rejecting candidates with extra charged tracks from B/τ vertex

 \rightarrow rejected through isolation algorithm and BDT classifier, whose output used in template fit

Longitudinal \mathbf{D}^* polarization: template fit

- $F_L^{D^*}$ determined in two q^2 regions: $q^2 > 7GeV^2/c^4$, $q^2 < 7GeV^2/c^4$
- $F_{\rm L}{}^{\rm D*}$ is extracted from a_{θ} and c_{θ} determined by splitting the simulated signal sample in
 - $N_{unpolarized} \propto a_{\theta}$
 - $N_{polarized} \propto C_{\theta}$
- 4D template fit:
 - τ lifetime
 - **q**²
 - $\cos \theta_{\rm D}$
 - Anti-D_s BDT output
- Simulated $cos \theta_{\rm D} \, signal \, distribution corrected for reconstruction effect$
- $\cos\theta_D$ distribution corrected through fully reconstructed control samples: • $D_s \rightarrow 3\pi^{\pm}$, $D^+ \rightarrow K^- 2\pi^+$, $D^0 \rightarrow K^- 3\pi^{\pm}$
- simultaneous fit to Run1 and Run2
- Dominant sources of systematic uncertainties:
 - limited size of simulations samples
 - form factors parametrization

[arXiv:2311.05224]

TAU2023

Longitudinal D^* polarization: template fit

[arXiv:2311.05224]

- Two different control samples are used to validate the D⁺_s backgrounds due to the poor knowledge of the BF and the relative fractions:
 - $D^+_s \rightarrow 3\pi X$ to correct the BF relevant to D^+_s meson production
 - $B \rightarrow D^{*} D_{s}^{+} (X)$ decays to constrain the relative components in the final fit \rightarrow

Results integrated over run1 and run2

 $\begin{array}{ll} q^2 < 7 \, {\rm GeV}^2/c^4 & : & 0.51 \pm 0.07 \, ({\rm stat}) \pm 0.03 \, ({\rm syst}), \\ q^2 > 7 \, {\rm GeV}^2/c^4 & : & 0.35 \pm 0.08 \, ({\rm stat}) \pm 0.02 \, ({\rm syst}), \\ q^2 \, {\rm whole \ range} & : & 0.43 \pm 0.06 \, ({\rm stat}) \pm 0.03 \, ({\rm syst}). \end{array}$

- All results are found compatible with the SM within 1σ
- Plan is to update the $F_L^{D^*}$ value in parallel with the $R(D^*)$ measurement in hadronic τ channel.

- Measurement of the ratios of branching fractions R(D^{*}) and R(D⁰) [Phys.Rev.Lett. 131 (2023) 111802]
- Test of Lepton flavour universality using $B^0 \rightarrow D^* \tau^+ \nu$ decay with hadronic τ channels [Phys. Rev. D108 (2023) 012018]
- Observation of the decay $\Lambda^{0}_{b} \rightarrow \Lambda_{c}^{+} \tau^{-} \overline{\nu}$ [Phys. Rev. Lett. 128 (2022) 191803]
- Measurement of D* longitudinal polarization in $B^0 \to D^{*}\tau^+\nu$ decays [arXiv:2311.05224 Submitted to PRD]
- First observation of the decay $B_s^{\ 0} \to K^-\mu^+\nu$ and a measurement of $|V_{ub}|/|V_{cb}|$ [Phys. Rev. Lett. 126 081804]
- Measurement of $|V_{_{Cb}}|$ with $B_{_{S}}{}^{_{0}} \to D_{_{S}}{}^{*-}\mu^{+}\nu$ decays [Phys. Rev. D 101 072004]

Measurement of $|V_{xb}|$

- The parameters of the CKM matrix must be constrained in order to
 - test the unitarity of the CKM matrix
 - precisely measure the amount of CP violation in the quark sector
 - \rightarrow measurement of observables sensitive to the magnitudes of CKM matrix elements

- Measurements of $|V_{_{xb}}|$ provide a crucial input for indirect searches of New Physics
- Discrepancy between exclusive and inclusive measurements: ≈ 3σ tension
 → new complementary measurements

Measurement of $|V_{xb}|$

- Two main ways to measure $|V_{_{ub}}|$ and $|V_{_{cb}}|\text{:}$
 - Inclusive decays:
 - $B^+ \rightarrow X_c l\nu, B^0 \rightarrow X_u l\nu$
 - Focus on all final states
 - Need to know QCD correction to parton level decay rate
 - Exclusive decays:
 - Focus on a single final state
 - Exclusive determinations rely on form factors (FF) to parameterize hadronic current as function of $q^2 (\mu \nu \text{ invariant mass})$: LQCDor QCD sum rules
 - Extracted in experimental measurement from data
- **Ground state hadrons** in the final are the golden modes for lattice QCD predictions and have the lowest theoretical uncertainties.
- B_s decays are advantageous compared to $B^{0/+}$
 - Easier to calculate in LQCD due to heavier spectator quark \rightarrow more precise predictions

Measurement of |V_{ub}/V_{cb}|

[Phys. Rev. Lett. 126 081804]

- The strategy:
 - Dataset: 2012, 2 fb⁻¹ @ 8TeV
 - Signal: $B_s^0 \rightarrow K^-\mu^+\nu$
 - Normalization: $B_s^0 \rightarrow D_s^- \mu^+ \nu$ where $D_s^- \rightarrow K^+ K^- \pi^-$
 - CKM extraction strategy:

$$\underbrace{\frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_{\mu})}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_{\mu})}}_{\text{Experiment}} = \frac{|V_{ub}|^2}{|V_{cb}|^2} \times \underbrace{\frac{\text{FF}_K}{\text{FF}_{D_s}}}_{\text{Theory}}$$

- The $|V_{ub}|/|V_{cb}|$ ratio is derived in two regions of $q^2 (\mu \nu \text{ invariant mass})$ to exploit different FF_K calculation method:
 - Light cone sum rules (LCSR) @ low q^2 ($q^2 < 7 \text{ GeV}^2/c^4$)
 - LQCD @ high q^2 ($q^2 > 7 \text{ GeV}^2/c^4$)

Normalization mode FF_{Ds} fully described by LQCD [Phys Rev D. 101 074513]

[Phys. Rev. Lett. 126 081804]

- Calculations from QCD light-cone sum rules are most precise at large recoil (low q²) [JHEP 08 (2017) 112]
- Lattice QCD predictions provide a precise determination of the form factors at low recoil transfer (high q^2)

[Phys. Rev. D 90, 054506] [Phys. Rev. D 91, 074510] [Phys. Rev. D 100, 034501]

The backgrounds

Muon

ECAL HCAL

chambers

[Phys. Rev. Lett. 126 081804]

PID2

- $B_s^0 \rightarrow K^- \mu^+ \nu$
 - main background originates from $H_{b} \rightarrow H_{c}(\rightarrow K^{-}X)\mu^{+}X'$ (unreconstructed particles)
 - $B_s^0 \rightarrow K^{*-} (\rightarrow K^- \pi^0) \mu^+ \nu$
 - $B_s^0 \rightarrow [cc]^- (\rightarrow \mu^+ \mu^-) K^- X$
- $B_s^0 \rightarrow D_s^- \mu^+ \nu$
 - $B_s^0 \rightarrow D_s^{*} (\rightarrow D_s \gamma) \mu^+ \nu$
 - $B_s^{\ 0} \rightarrow D_s^{\ **-}\mu^+\nu$, $B_{u,s,d} \rightarrow D_sDX$ and $B_s^{\ 0} \rightarrow D_s^{\ *-}\tau^+\nu$
- and $B_s^0 \to D_s^{*} \tau^+ \nu$

B_a → Kµ v

Magne

- To suppress background
 - the candidates are required to be isolated from the other tracks in the event
 - BDT classifiers exploit the kinematics of the decays
- The $B_s^{\ 0}$ momentum can be calculated with a two fold ambiguity \rightarrow regression model that exploit the B_s flight information [JHEP 02 (2017) 021]
 - Ambiguity solved by selection the solution most consistent with the regression value
 - ε ≈ 70%

[Phys. Rev. Lett. 126 081804]

• The measured ratio is

- A binned maximum likelihood fit to the $\mathrm{B}_{\mathrm{s}}\,\mathrm{corrected}$ mass

$$m_{
m corr} = \sqrt{m^2(Y\mu) + p_{\perp}^2(Y\mu)} + p_{\perp}(Y\mu), \ Y = K^-, D_s^ B_s$$
 μ
 $X = K/D_s$
 p_{\perp}
 p_{\perp}
 p_{\perp}

- If only missing particle is a neutrino the corrected mass distribution will peak at the $\rm B_{s}\,mass$
- Resolution improved by rejecting events with a large corrected mass uncertainty (>100 $MeV/c^2)$

Signal and normalization fits

[[]Phys. Rev. Lett. 126 081804]

- The largest systematic uncertainty is from the fit templates
- First observation of the decay $B_s^0 \rightarrow K^-\mu^+\nu$

Extraction of $|V_{ub}|/|V_{cb}|$

[Phys. Rev. Lett. 126 081804]

• The obtained values are

$$\underbrace{rac{\mathcal{B}\left(B_{s}^{0}
ightarrow K^{-}\mu^{+}
u_{\mu}
ight)}{\mathcal{B}\left(B_{s}^{0}
ightarrow D_{s}^{-}\mu^{+}
u_{\mu}
ight)}}_{ ext{Experiment}}=rac{\left|V_{ub}
ight|^{2}}{\left|V_{cb}
ight|^{2}} imesrac{ ext{FF}_{K}}{ ext{FF}_{D_{s}}}$$

•
$$q^2 > 7 \text{ GeV}^2/c^4$$
: $\frac{\mathcal{B}(B^0_s \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B^0_s \to D^-_s \mu^+ \nu_\mu)} = 1.66 \pm 0.08(\text{stat}) \pm 0.07(\text{syst}) \pm 0.05(D_s) \times 10^{-3}$

•
$$q^2 < 7 \text{ GeV}^2/c^4$$
: $\frac{\mathcal{B}(B^0_s \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B^0_s \to D^-_s \mu^+ \nu_\mu)} = 3.25 \pm 0.21(\textit{stat})^{+0.16}_{-0.17}(\textit{syst}) \pm 0.09(D_s) \times 10^{-3}$

 $|V_{ub}|/|V_{cb}|_{(\mathrm{low})} = \ 0.0607 \pm 0.0015(\mathrm{stat}) \pm 0.0013(\mathrm{syst}) \ \pm 0.0008(D_s) \pm 0.0030(\mathrm{FF})$

 $|V_{ub}|/|V_{cb}|_{(ext{high})} = \ 0.0946 \pm 0.0030(ext{stat})^{+0.0024}_{-0.0025}(ext{syst}) \pm 0.0013(D_s) \pm 0.0068(ext{FF})$

- Measurement of the ratios of branching fractions R(D^{*}) and R(D⁰) [Phys.Rev.Lett. 131 (2023) 111802]
- Test of Lepton flavour universality using $B^0 \rightarrow D^* \tau^+ \nu$ decay with hadronic τ channels [Phys. Rev. D108 (2023) 012018] Arnau's talk
- Observation of the decay $\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \tau \overline{\nu}$ [Phys. Rev. Lett. 128 (2022) 191803]
- Measurement of D* longitudinal polarization in B⁰ \rightarrow D*- $\tau^+\nu$ decays [arXiv:2311.05224 Submitted to PRD]
- First observation of the decay $B_s^{\ 0} \to K^-\mu^+\nu$ and a measurement of $|V_{ub}|/|V_{cb}|$ [Phys. Rev. Lett. 126 081804]
- Measurement of $|V_{cb}|$ with $B_s^{\ 0} \rightarrow D_s^{\ *-}\mu^+\nu$ decays [Phys. Rev. D 101 072004]

$|V_{cb}|$: with $B_s^0 \rightarrow D_s^{*-}\mu^+\nu$ decays

[Phys. Rev. D 101 072004]

- Signal: $B_s^{\ 0} \rightarrow D_s^{\ (*)} \mu^+ \nu$ where $D_s \rightarrow \phi(\rightarrow K^+K^-)\pi$, γ or π^0 not reconstructed
- Normalization: $B^0 \rightarrow D^{(*)} \mu^+ \nu$
- Both channels reconstructed in the same final states
- Extract $|V_{cb}|$ from

$$\mathcal{R}^* \equiv \frac{\mathcal{B}(B^0_s \to D^{*-}_s \mu^+ \nu_\mu)}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_\mu)} \qquad \mathcal{R} \equiv \frac{\mathcal{B}(B^0_s \to D^-_s \mu^+ \nu_\mu)}{\mathcal{B}(B^0 \to D^- \mu^+ \nu_\mu)}$$

- external input:
 - hadronization fractions f_s/f_d [PRD(2019)031102]
 - branching fractions [PDG]

$|V_{cb}|$: with $B_s^0 \rightarrow D_s^{*-}\mu^+\nu$ decays

[Phys. Rev. D 101 072004]

- Due to the undetected neutrino we cannot determine precisely the $q^2 \rightarrow$ use variable $p_{\perp}(D_s)$ with respect to B flight distance:
 - high correlated with hadron recoil w
 - fully recostructible

$$\frac{\mathrm{d}^4\Gamma(B\to D^*\mu\nu)}{\mathrm{l}w\,\mathrm{d}\cos\theta_\mu\,\mathrm{d}\cos\theta_D\,\mathrm{d}\chi} = \frac{3m_B^3m_{D^*}^2G_{\mathrm{F}}^2}{16(4\pi)^4}\eta_{\mathrm{EW}}^2|V_{cb}|^2|\mathcal{A}(w,\theta_\mu,\theta_D,\chi)|^2 \overset{3}{=}$$

$$w = v_B \cdot v_{D^*} = (m_B^2 + m_{D^*}^2 - q^2)/(2m_B m_{D^*})$$

- 2-D template fit to $M_{_{corr}}$ and $p_{\perp}(D_{_{s}})$ identify the signal yields and provides a simultaneous measurement of the ratios $R^{(\ast)}$ and the form factors

TAU2023

$|V_{ch}|$: with $B_{c0} \rightarrow D_{c}^{*}\mu^{+}\nu$ decays

2.5

[Phys. Rev. D 101 072004]

FF Parametrizations used: • CLN and BGL

• The results are

 $|V_{cb}|_{CLN} = (41.1 \pm 0.6(stat) \pm 0.9(syst) \pm 1.2(ext)) \times 10^{-3}$ $|V_{cb}|_{BGL} = (42.3 \pm 0.8(stat) \pm 0.9(syst) \pm 1.2(ext)) \times 10^{-3}$

- First measurement of $|V_{cb}|$ using B_s and in a hadronic environment
- Compatible with world average for both inclusive and exclusive determinations
- Confirms trend that parametrisation is not responsible for inclusive vs exclusive disagreements
- New $f_s/f_d \rightarrow V_{cb}$ [arXiv:2103.06810]

 $|V_{cb}|_{CLN} = (40.8 \pm 0.6(stat) \pm 0.9(syst) \pm 1.1(ext)) imes 10^{-3}$ $|V_{cb}|_{BGL} = (41.7 \pm 0.8(stat) \pm 0.9(syst) \pm 1.1(ext)) \times 10^{-3}$

- Broad SL physics program at LHCb
- Successful Run1 and Run2: 3+6 fb⁻¹, still many analysis ongoing
- Upgrade Phase I:
 - 10 times more data (20 times more hadronic events)
 - Complementarity with Belle
 - Synergy between LHCb, ATLAS and CMS on some important channels
- Strong program beyond flavour exploiting unique acceptance

