Tau 2023, Louisville, KY

Uncovering Secret Neutrino Interactions at v_{τ} Experiments

Seodong Shin (신서동)

arXiv:2311.14945 with Pouya Bakhti, Meshkat Rajaee

Neutrino oscillation: clear evidence of BSM

→ v physics can provide guidelines for BSM

Neutrino oscillation: clear evidence of BSM

→ v physics can provide guidelines for BSM

New symmetry? New particles?

Neutrino oscillation: clear evidence of BSM

→ v physics can provide guidelines for BSM

New symmetry? New particles?

- Mass generation (not from Higgs mechanism)

See also the talk by Julia Gehrline

- L, B L, GUT, ... (along with EW breaking)
- New particles from the symmetry or its breaking: mediator

e.g., Majoron, SU(2) triplet, ...

Neutrino oscillation: clear evidence of BSM

→ v physics can provide guidelines for BSM

New symmetry? New particles?

- Mass generation (not from Higgs mechanism)

See also the talk by Julia Gehrline

- L, B L, GUT, ... (along with EW breaking)
- New particles from the symmetry or its breaking: mediator

e.g., Majoron, SU(2) triplet, ...

- Extended gauge symmetry, e.g., by gauging anomaly free global symmetry such as B - L, $L_{\alpha} - L_{\beta}$, ...

Focus: self interactions among active v or + sterile v

 \Rightarrow secret neutrino interaction (SNI)

Focus: self interactions among active v or + sterile v \Rightarrow secret neutrino interaction (SNI)

• Neutrino oscillation anomalies: LSND, MiniBooNE

Asadi et al., PRD 2018 Smirnov, Valera, JHEP 2021 Dentler, Esteban, Kopp, Machado, PRD 2019

Abdallash, Gandhi, Roy, JHEP 2022 Dutta et al., PRL 2022

Focus: self interactions among active v or + sterile v \Rightarrow secret neutrino interaction (SNI)

• Neutrino oscillation anomalies: LSND, MiniBooNE

Asadi et al., PRD 2018 Smirnov, Valera, JHEP 2021

Dentler, Esteban, Kopp, Machado, PRD 2019

Abdallash, Gandhi, Roy, JHEP 2022 Dutta et al., PRL 2022

• Dark matter interacting with active v: Majoron DM, sterile v DM

Rothstein, Babu, Seckel, NPB 1993

De Gouvea, Sen, Tangarife, Zhang, PRL 2020

Focus: self interactions among active v or + sterile v \Rightarrow secret neutrino interaction (SNI)

• Neutrino oscillation anomalies: LSND, MiniBooNE

Asadi et al., PRD 2018 Smirnov, Valera, JHEP 2021

Dentler, Esteban, Kopp, Machado, PRD 2019

Abdallash, Gandhi, Roy, JHEP 2022 Dutta et al., PRL 2022

• Dark matter interacting with active v: Majoron DM, sterile v DM

Rothstein, Babu, Seckel, NPB 1993

De Gouvea, Sen, Tangarife, Zhang, PRL 2020

Cosmological issues: small scale problems (strongly constrained)
 Aarssen, Bringman, Pfrommer, PRL 2012 Ahlgren, Ohlsson, Zhou, PRL 2013

H_0 tension

Escudero et al., JHEP 2019 Brinckmann, Chang, LoVerde, PRD 2021 Lyu, Stamou, Wang, PRD 2021

Focus: self interactions among active v or + sterile v \Rightarrow secret neutrino interaction (SNI) See also SNOWMASS WP 2022, Berryman et al., PDU 2023

• Neutrino oscillation anomalies: LSND, MiniBooNE

Asadi et al., PRD 2018 Smirnov, Valera, JHEP 2021

Dentler, Esteban, Kopp, Machado, PRD 2019

Abdallash, Gandhi, Roy, JHEP 2022 Dutta et al., PRL 2022

• Dark matter interacting with active v: Majoron DM, sterile v DM

Rothstein, Babu, Seckel, NPB 1993

De Gouvea, Sen, Tangarife, Zhang, PRL 2020

Cosmological issues: small scale problems (strongly constrained)
 Aarssen, Bringman, Pfrommer, PRL 2012 Ahlgren, Ohlsson, Zhou, PRL 2013

H_0 tension

Escudero et al., JHEP 2019 Brinckmann, Chang, LoVerde, PRD 2021 Lyu, Stamou, Wang, PRD 2021

 Flavor-universal SNIs are strongly constrained by cosmological/ astrophysical observations.

Brinckmann, Chang, LoVerde, PRD 2021 Das, Ghosh, JCAP 2021

• Laboratory experiments provide strong constraints on SNI with v_e , v_μ

Burgess, Cline, PLB 1993Lessa, Peres, PRD 2007Bauer, Foldenauer, Jäckel, JHEP 2018Deppisch, Graf, Rodejohann, Xu, PRD 2020Berryman et al., PDU 2023

 Flavor-universal SNIs are strongly constrained by cosmological/ astrophysical observations.

Brinckmann, Chang, LoVerde, PRD 2021 Das, Ghosh, JCAP 2021

• Laboratory experiments provide strong constraints on SNI with v_e , v_{μ}

Burgess, Cline, PLB 1993Lessa, Peres, PRD 2007Bauer, Foldenauer, Jäckel, JHEP 2018Deppisch, Graf, Rodejohann, Xu, PRD 2020Berryman et al., PDU 2023

Probe flavor non-universal & general SNI with $u_{ au}$, $g_{ au lpha}$?

 Flavor-universal SNIs are strongly constrained by cosmological/ astrophysical observations.

Brinckmann, Chang, LoVerde, PRD 2021 Das, Ghosh, JCAP 2021

• Laboratory experiments provide strong constraints on SNI with v_e , v_μ

Burgess, Cline, PLB 1993Lessa, Peres, PRD 2007Bauer, Foldenauer, Jäckel, JHEP 2018Deppisch, Graf, Rodejohann, Xu, PRD 2020Berryman et al., PDU 2023

Probe flavor non-universal & general SNI with v_{τ} , $g_{\tau \alpha}$?

Tau neutrino experiments (coming soon)

Reference scenario (for concreteness): a sub-GeV Z' scenario

$$\mathcal{L} \supset \sum_{\alpha,\beta} g_{\alpha\beta} Z'_{\mu} \bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta}$$

- A theoretical cook-up suppressing the ℓ^{\pm} interactions possible.
 - SM singlet but U(1)' charged fermion Ψ :
 - \rightarrow mixing with active neutrinos (through a sterile heavy singlet N)

Farzan, Heeck, PRD 2016 Farzan, Tortolla, Front. Physics 2018

Reference scenario (for concreteness): a sub-GeV Z' scenario

$$\mathcal{L} \supset \sum_{\alpha,\beta} g_{\alpha\beta} Z'_{\mu} \bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta}$$

• A theoretical cook-up suppressing the ℓ^{\pm} interactions possible.

- SM singlet but U(1)' charged fermion Ψ :

 \rightarrow mixing with active neutrinos (through a sterile heavy singlet N)

Farzan, Heeck, PRD 2016 Farzan, Tortolla, Front. Physics 2018

- Active neutrinos couple to Z' through the mixing with Ψ

$$\nu_{\alpha} = \sum_{i=1}^{4} U_{\alpha i} \nu_i \longrightarrow g_{\alpha \beta} = g_{\Psi} U_{\alpha 4}^* U_{\beta 4}$$

Reference scenario (for concreteness): a sub-GeV Z' scenario

$$\mathcal{L} \supset \sum_{\alpha,\beta} g_{\alpha\beta} Z'_{\mu} \bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta}$$

• A theoretical cook-up suppressing the ℓ^{\pm} interactions possible.

- SM singlet but U(1)' charged fermion Ψ :

 \rightarrow mixing with active neutrinos (through a sterile heavy singlet N)

Farzan, Heeck, PRD 2016 Farzan, Tortolla, Front. Physics 2018

- Active neutrinos couple to Z' through the mixing with Ψ

$$\nu_{\alpha} = \sum_{i=1}^{4} U_{\alpha i} \nu_i \longrightarrow g_{\alpha \beta} = g_{\Psi} U_{\alpha 4}^* U_{\beta 4}$$

- Assume that the kinetic mixing is very small:

no tree level & loops through very heavy fields

Kinematic process on our focus: 3-body meson decay

- Conventional 2-body decay of a pseudoscalar meson such as $\pi^{\pm} \rightarrow \mu^{\pm} v$: chiral suppression. m_{ℓ}^2/m_M^2
- 3-body decay: enhanced by the longitudinal mode of $Z' = m_M^2/m_{Z'}^2$

Barger, Chiang, Keung, Marfatia, PRL 2012Carson, Rislow, PRD 2012Laha, Dasgupta, Beacom, PRD 2014Bakhti, Farzan, PRD 2017

Kinematic process on our focus: 3-body meson decay

• Conventional 2-body decay of a pseudoscalar meson such as $\pi^{\pm} \rightarrow \mu^{\pm}v$: chiral suppression. m_{ℓ}^2/m_M^2

See also the talk by Bhaskar Dutta

• 3-body decay: enhanced by the longitudinal mode of $Z' = m_M^2/m_{Z'}^2$

Barger, Chiang, Keung, Marfatia, PRL 2012Carson, Rislow, PRD 2012Laha, Dasgupta, Beacom, PRD 2014Bakhti, Farzan, PRD 2017

Kinematic process on our focus: 3-body meson decay

- Branching ratio of the 3-body decay can be dominant for light Z' despite the phase space suppression.
- Accordingly, very strong exp. bounds on g_{ee} : below $\leq 10^{-4}$.

- Observations of v_{τ} challenging due to prompt and semi-visible decays of τ (identification and reconstruction) as well as high $E_{\rm th} > 3$ GeV beyond the oscillation maxima & small σ .
- v oscillations so far: either v_{μ}/v_e disappearance or v_e appearance

- Observations of v_{τ} challenging due to prompt and semi-visible decays of τ (identification and reconstruction) as well as high $E_{\rm th} > 3$ GeV beyond the oscillation maxima & small σ .
- v oscillations so far: either v_{μ}/v_e disappearance or v_e appearance

Now we are ready to directly detect enormous v_{τ} events!!!

 Experiments in the future: FLArE100, FASERv2, AdvSND, SHiP also SND@LHC for comparison

- Observations of v_{τ} challenging due to prompt and semi-visible decays of τ (identification and reconstruction) as well as high $E_{\rm th} > 3$ GeV beyond the oscillation maxima & small σ .
- v oscillations so far: either v_{μ}/v_e disappearance or v_e appearance

Now we are ready to directly detect enormous v_{τ} events!!!

- Experiments in the future: FLArE100, FASERv2, AdvSND, SHiP also SND@LHC for comparison
- DUNE far detector: atmospheric data

unexpected downward-going v_{τ} appearance (no oscillation $v_{\mu} \rightarrow v_{\tau}$ & small flux)

- Observations of v_{τ} challenging due to prompt and semi-visible decays of τ (identification and reconstruction) as well as high $E_{\rm th} > 3$ GeV beyond the oscillation maxima & small σ .
- v oscillations so far: either v_{μ}/v_e disappearance or v_e appearance

Now we are ready to directly detect enormous v_{τ} events!!!

 Experiments in the future: FLArE100, FASERv2, AdvSND, SHiP also SND@LHC for comparison

> Kevin's talk & Bhaskar's talk for short-baseline experiments

• DUNE far detector: atmospheric data **unexpected downward-going** v_{τ} **appearance** (no oscillation $v_{\mu} \rightarrow v_{\tau}$ & small flux)

Detector		number of events		
Detector name	mass	$\nu_e + \bar{\nu}_e$	$ u_{\mu} + \bar{ u}_{\mu} $	$ u_{ au} + ar{ u}_{ au} $
SND@LHC	800 kg	250	1000	11
$FASER \nu 2$	20 tonnes	$7.5 imes 10^4$	4×10^{5}	$1.7 imes 10^3$
FLArE100	100 tonnes	$2.5 imes 10^4$	$1.38 imes 10^5$	$1.3 imes 10^4$
SHiP	10 tonnes	$3.4 imes 10^4$	$2.35 imes 10^5$	$1.2 imes 10^4$
DUNE	40 kilo-tonnes	$1.6 imes 10^4$	2.4×10^4	150

TABLE I. Estimated numbers of standard model neutrino events assuming a final integrated luminosity of 150 fb⁻¹ for SND@LHC, while 3000 fb⁻¹ for FASER ν 2 and FLArE100. For SHiP, we assume 2×10^{20} POT in five years. We assume a data-taking period of 10 years for DUNE atmospheric neutrinos.

Experimental details: Kling, Nevay, PRD 2021 & FPF SNOWMASS 2203.05090

- FPF experiments: huge flux of v_{τ} compared to SND@LHC (current)
- SHiP: larger ratio of v_{τ} due to a hadron absorber (light mesons)
- DUNE: 150 upward-going v_{τ} from the oscillation $v_{\mu} \rightarrow v_{\tau}$

• BBN bound: $\Delta N_{\text{eff}} \lesssim 1$ when in thermal equilibrium at $T \sim 1 \text{MeV}$,

primordial abundances of light elements (similar)

Huang, Ohlsson, Zhou, PRD 2018

 $\nu\bar{\nu} \to Z' \qquad \quad \nu\bar{\nu} \to Z'Z' \qquad \quad \nu Z' \to \nu Z'$

• Cosmological bounds are stronger than the scalar mediator due to d.o.f.

• BBN bound: $\Delta N_{\text{eff}} \lesssim 1$ when in thermal equilibrium at $T \sim 1 \text{MeV}$,

primordial abundances of light elements (similar) $u \bar{\nu} \rightarrow Z' \qquad
u \bar{\nu} \rightarrow Z' Z' \qquad
u Z' \rightarrow \nu Z'$ Huang, Ohlsson, Zhou, PRD 2018

• Cosmological bounds are stronger than the scalar mediator due to d.o.f.

• BBN bound: $\Delta N_{\text{eff}} \lesssim 1$ when in thermal equilibrium at $T \sim 1 \text{MeV}$,

primordial abundances of light elements (similar) $u\bar{\nu} \rightarrow Z' \qquad
u\bar{\nu} \rightarrow Z'Z' \qquad
uZ' \rightarrow \nuZ'$ Huang, Ohlsson, Zhou, PRD 2018

• Cosmological bounds are stronger than the scalar mediator due to d.o.f.

• Phase shift of the power spectrum by late v free streaming

• $\Delta N_{\text{eff}} \leq 0.3$ applies when $Z' \rightarrow v_e v_\tau$ in prior to the recombination epoch.

[→] much weaker than NA62 for the flavor-universal scenario $g_{ee}=g_{\mu\mu}=g_{\tau\tau}$ Das, Gosh, JCAP 2021 Archidiacono, Hannestad, JCAP 2014

- Phase shift of the power spectrum by late v free streaming
 - → much weaker than NA62 for the flavor-universal scenario $g_{ee}=g_{\mu\mu}=g_{\tau\tau}$ Das, Gosh, JCAP 2021 Archidiacono, Hannestad, JCAP 2014
- $\Delta N_{\text{eff}} \leq 0.3$ applies when $Z' \rightarrow v_e v_\tau$ in prior to the recombination epoch.
 - Dedicated study with flavor non-universal and off-diagonal SNI

- Phase shift of the power spectrum by late v free streaming
 - → much weaker than NA62 for the flavor-universal scenario $g_{ee}=g_{\mu\mu}=g_{\tau\tau}$ Das, Gosh, JCAP 2021 Archidiacono, Hannestad, JCAP 2014
- $\Delta N_{\text{eff}} \leq 0.3$ applies when $Z' \rightarrow v_e v_\tau$ in prior to the recombination epoch.
 - Dedicated study with flavor non-universal and off-diagonal SNI

- DUNE far detector (400 kt·yr) is most sensitive for $m_{Z'} \ge 1$ MeV, $m_{Z'} \le 60$ keV by observing the **downward-going** v_{τ} **appearance**. (better than cosmo)
- Red solid: no background, red dotted: NC background (70 for 10 years). Aurisano, NuTau2021 talk
- Assume 100% efficiency for the v_{τ} reconstruction: dedicated study needed. Machado, Schulz, Turner, PRD 2020

- DUNE far detector (400 kt·yr) is most sensitive for $m_{Z'} \ge 1$ MeV, $m_{Z'} \le 60$ keV by observing the **downward-going** v_{τ} **appearance**. (better than cosmo)
- Red solid: no background, red dotted: NC background (70 for 10 years). Aurisano, NuTau2021 talk
- Assume 100% efficiency for the v_{τ} reconstruction: dedicated study needed. Machado, Schulz, Turner, PRD 2020

- FLArE100 (cyan, 100 ton) and FASERv2 (purple, 20 ton) can be most sensitive among the accelerator based experiments. Our results depend on the flux uncertainties.
- SHiP becomes better as Z' gets heavier since its hadron absorber increases the relative flux of D_s meson providing large phase space.

- DUNE far detector (400 kt·yr) is still most sensitive for $m_{Z'} \approx 1$ MeV, $m_{Z'} \approx 60$ keV.
- We now apply the rare Kaon decay constraint at E949 (yellow).

$$BR(K^+ \to \mu^+ \nu \nu \nu) < 2.4 \times 10^{-6}$$

- DUNE far detector (400 kt·yr) is still most sensitive for $m_{Z'} \gtrsim 1$ MeV, $m_{Z'} \lesssim 60$ keV.
- We now apply the rare Kaon decay constraint at E949 (yellow).

$$BR(K^+ \to \mu^+ \nu \nu \nu) < 2.4 \times 10^{-6}$$

• DUNE far detector (400 kt·yr) is still most sensitive for $m_{Z'} \ge 1$ MeV,

 $m_{Z'} \lesssim 10$ keV but at least about an order of magnitude weaker than $g_{e\tau}$, $g_{\mu\tau}$.

- $2\nu\beta\beta$ applies but weaker than the others.
- Shape of the (atmospheric) flux uncertainty can wash out the sensitivities.

Universal coupling case

Universal coupling case

Conclusions

- Identification of secret (and non-standard) interactions of neutrino is very important step forward BSM.
- Tau neutrino experiments play important roles in probing flavor nonuniversal (v_{τ} -philic) SNI preferred by cosmo/astro/lab.: we use SND@LHC, AdvSND, SHiP, FLArE100, FASERv2, and DUNE
- Atmospheric data at DUNE far detector shows the best sensitivities due to the unexpected downward-going v_τ appearance with small backgrounds: stronger than cosmo for m_{Z'} ≥ 1 MeV, m_{Z'} ≤ 60 keV.
- <u>Tau identification and reconstruction efficiency</u> are important.
- Future: dedicated study of flavor non-universal & off-diagonal SNI in cosmo/astro, mediators with other spins, cLFV rare decays.

Backup

