

Status and prospects of measuring Electric Dipole Moment of tau lepton

Kenji Inami (Nagoya university/KEK) 2023/12 at international workshop on tau physics

Electric dipole moment of τ lepton

- Charge asymmetry along spin direction
- CP/T violating effect in the interaction with electric field

 $\mathcal{H}_{\mathrm{int}} =
ho_{\mathrm{m}} \boldsymbol{\sigma} \cdot \boldsymbol{H} +
ho_{\mathrm{e}} \boldsymbol{\sigma} \cdot \boldsymbol{E}$

- Non zero EDM indicates P and T violation
- CP violation parameter in $\gamma \tau \tau$ vertex
- Standard Model prediction: O(10⁻³⁷) ecm
 - Far below the current sensitivity
- A non-zero EDM may arise from new physics
 - e.g. new particles in a loop diagram

$$\mathcal{L}_{CP} = -\frac{i}{2}\bar{\tau}\sigma^{\mu\nu}\gamma_5\tau d_\tau(s)F_{\mu\nu}$$

Experimental results

PDG2023 Prog.Theor.Exp.Phys. 2022, 083C01 (2022) and 2023 update

τ ELECTRIC DIPOLE MOMENT (d_{τ})

A nonzero value is forbidden by both T invariance and P invariance.

The q^2 dependence is expected to be small providing no thresholds are nearby.

$\operatorname{Re}(d_{\tau})$							
VALUE (10 ⁻¹⁶ ecm)	CL%	DOCUMENT ID		TECN	COMMENT		
- 0.185 to 0.061	95	¹ INAMI	22	BELL	$E_{cm}^{ee} = 10.6 \text{ GeV}$		
 ● We do not use the following data for averages, fits, limits, etc. 							
< 2.3	90	² GROZIN	09A	RVUE	From e EDM limit		
< 3.7	95	³ ABDALLAH	04K	DLPH	$\mathrm{e^+e^-} \rightarrow \ \mathrm{e^+e^-}\tau^+\tau^-$		
< 11.4	95	⁴ ACHARD	04 G	L3	at LEP2 $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$ at LEP2		
- 0.22 to 0.45	95	⁵ INAMI	03	BELL	$E_{\rm cm}^{ee} = 10.6 {\rm GeV}$		
< 4.6	95	⁶ ALBRECHT	00	ARG	$E_{\rm cm}^{\rm ee} = 10.4 {\rm GeV}$		

- Production cross-section
 - LEP2: $e^+e^- \rightarrow e^+e^- \tau^+\tau^-$
 - LHC: qq $\rightarrow \tau^+ \tau^-$ (arXiv:2307.14133 [hep-ph])
- Spin correlation at low energy e⁺e⁻ collision
 - ARGUS, Belle ($\sqrt{s} = ~10$ GeV)
- Restriction from electron EDM

Physics Letters B 585 (2004) 53

LEP2/DELPHI and L3

• Evaluate from the cross-section of $e^+e^- \rightarrow e^+e^- \tau^+\tau^-$

Derived from LHC/ATLAS result

- From the result of measurement of $H \rightarrow \tau \tau$
 - [arXiv:2307.14133 [hep-ph]]

- Similar strength with the current limit
- 2.8 times better sensitivity by HL-LHC data (3ab⁻¹)

EDM effect at low energy e⁺e⁻ collider

• Effective Lagrangian with EDM term for $e^+e^- \rightarrow \tau^+\tau^-$

Squared spin density matrix (proportional to cross section)

$$\mathcal{M}_{\text{prod}}^2 = \mathcal{M}_{\text{SM}}^2 + Re(d_{\tau})\mathcal{M}_{Re}^2 + Im(d_{\tau})\mathcal{M}_{Im}^2 + |d_{\tau}|^2\mathcal{M}_{d^2}^2$$

 Interference term between lowest order and EDM term affects spindependent cross-section

Spin density matrix

• For
$$e^{+}(\mathbf{p}) + e^{-}(-\mathbf{p}) \rightarrow \tau^{+}(\mathbf{k}, \mathbf{S}_{+}) + \tau^{-}(-\mathbf{k}, \mathbf{S}_{-})$$

 $\mathcal{M}^{2}_{\text{prod}} = \mathcal{M}^{2}_{\text{SM}} + Re(d_{\tau})\mathcal{M}^{2}_{Re} + Im(d_{\tau})\mathcal{M}^{2}_{Im} + |d_{\tau}|^{2}\mathcal{M}^{2}_{d^{2}},$
 $\mathcal{M}^{2}_{\text{SM}} = \frac{e^{4}}{k_{0}^{2}}[k_{0}^{2} + m_{\tau}^{2} + |\mathbf{k}^{2}|(\hat{\mathbf{k}}\cdot\hat{\mathbf{p}})^{2} - \mathbf{S}_{+}\cdot\mathbf{S}_{-}|\mathbf{k}|^{2}(1 - (\hat{\mathbf{k}}\cdot\hat{\mathbf{p}})^{2}) + 2k_{0}^{2}(\hat{\mathbf{p}}\cdot\mathbf{S}_{+})(\hat{\mathbf{p}}\cdot\mathbf{S}_{-}) + 2(\hat{\mathbf{k}}\cdot\mathbf{S}_{+})(\hat{\mathbf{k}}\cdot\mathbf{S}_{-})(|\mathbf{k}|^{2} + (k_{0} - m_{\tau})^{2}(\hat{\mathbf{k}}\cdot\hat{\mathbf{p}})^{2}) + 2k_{0}^{2}(\hat{\mathbf{p}}\cdot\mathbf{S}_{+})(\hat{\mathbf{p}}\cdot\mathbf{S}_{-}) - 2k_{0}(k_{0} - m_{\tau})(\hat{\mathbf{k}}\cdot\hat{\mathbf{p}})((\hat{\mathbf{k}}\cdot\mathbf{S}_{+})(\hat{\mathbf{p}}\cdot\mathbf{S}_{-}) + (\hat{\mathbf{k}}\cdot\mathbf{S}_{-})(\hat{\mathbf{p}}\cdot\mathbf{S}_{+}))],$
 $\mathcal{M}^{2}_{Re} = 4\frac{e^{3}}{k_{0}}|\mathbf{k}|[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{\mathbf{k}}\cdot\hat{\mathbf{p}})^{2})(\mathbf{S}_{+} \times \mathbf{S}_{-})\cdot\hat{\mathbf{k}} + k_{0}(\hat{\mathbf{k}}\cdot\hat{\mathbf{p}})(\mathbf{S}_{+} \times \mathbf{S}_{-})\cdot\hat{\mathbf{p}}],$
 $\mathcal{M}^{2}_{Im} = 4\frac{e^{3}}{k_{0}}|\mathbf{k}|[-(m_{\tau} + (k_{0} - m_{\tau})(\hat{\mathbf{k}}\cdot\hat{\mathbf{p}})^{2})(\mathbf{S}_{+} - \mathbf{S}_{-})\cdot\hat{\mathbf{k}} + k_{0}(\hat{\mathbf{k}}\cdot\hat{\mathbf{p}})(\mathbf{S}_{+} - \mathbf{S}_{-})\cdot\hat{\mathbf{p}}],$
 $\mathcal{M}^{2}_{d^{2}} = 4e^{2}|\mathbf{k}|^{2}\cdot (1 - (\hat{\mathbf{k}}\cdot\hat{\mathbf{p}})^{2})(1 - \mathbf{S}_{+}\cdot\mathbf{S}_{-}),$

• Spin direction can be obtained from the information of tau decay products and tau direction

$$\begin{aligned} \tau \to l\nu_l\nu_\tau \\ S_{\pm} &= \frac{4c_{\pm} - m_{\tau}^2 - 3m_l^2}{3m_{\tau}^2 c_{\pm} - 4c_{\pm}^2 - 2m_l^2 m_{\tau}^2 + 3c_{\pm}m_l^2} \left(\pm m_{\tau} p_{l\pm} - \frac{c_{\pm} + E_{l\pm} m_{\tau}}{k_0 + m_{\tau}} k\right) \\ c_{\pm} &= k_0 E_{l\pm} \mp k \cdot p_{l\pm} \end{aligned}$$

$$S_{\pm} = \frac{2}{m_{\tau}^2 - m_{\pi}^2} \left(\mp m_{\tau} p_{\pi^{\pm}} + \frac{m_{\tau}^2 + m_{\pi}^2 + 2m_{\tau} E_{\pi^{\pm}}}{2(E_{\tau} + m_{\tau})} k \right)$$

$$\tau \to \rho \nu_{\tau} \to \pi \pi^0 \nu_{\tau}$$

$$S_{\pm} = \mp \frac{1}{(k_{\pm} H_{\pm}) - m_{\tau}^2 (p_{\pi^{\pm}} - p_{\pi^0})^2} \left(\mp H_0^{\pm} k + m_{\tau} H^{\pm} + \frac{k(k \cdot H^{\pm})}{(E_{\tau} + m_{\tau})} \right)$$

$$(H^{\pm})^{\nu} = 2(p_{\pi^{\pm}} - p_{\pi^0})^{\nu} (p_{\pi^{\pm}} - p_{\pi^0})^{\mu} (k_{\pm})_{\mu} + (p_{\pi^{\pm}} + p_{\pi^0})^{\nu} (p_{\pi^{\pm}} - p_{\pi^0})^2$$

Spin vector

 $\tau \rightarrow \pi \nu_{\tau}$

Asymmetry in event shape

- Re(d_τ): phi asymmetry
- Im(d_τ): forward/backward asymmetry

Belle experiment

- Electron-positron collider experiment at KEK Tsukuba Japan
 - Collected ~10⁹ τ pairs (1ab⁻¹) at Vs = 10.58 GeV
- Select 8 final modes from 833 fb⁻¹ data (~7.6x10⁸ τ pairs)

 $\begin{aligned} \tau\tau &\to (e\nu\bar{\nu})(\mu\nu\bar{\nu}), \ (e\nu\bar{\nu})(\pi\nu), \ (\mu\nu\bar{\nu})(\pi\nu), \ (e\nu\bar{\nu})(\rho\nu), \\ (\mu\nu\bar{\nu})(\rho\nu), \ (\pi\nu)(\rho\nu), \ (\rho\nu)(\rho\bar{\nu}), \ \text{and} \ (\pi\nu)(\pi\bar{\nu}) \end{aligned}$

- Total yield : 3.1×10^7 events, Averaged purity : 88.5%
- Background
 - Main : from tau decay : Multi- π^0 and mis-PID
 - Non-τ process: negligibly small

Mode	Yield	Purity(%)	Background (%)
$e\mu$	6434268	95.8	two-photon process $(ee\mu\mu)$ [2.5], $\tau\tau \to (e\nu\nu)(\pi\nu)$ [1.3]
$e\pi$	2644971	85.7	$\tau \tau \to (e\nu\nu)(\rho\nu)$ [6.5], $(e\nu\nu)(\mu\nu\nu)$ [5.1], $(e\nu\nu)(K^*\nu)$ [1.3]
$\mu\pi$	2503936	80.5	$\tau \tau \to (\mu \nu \nu)(\rho \nu)$ [6.4], $(\mu \nu \nu)(\mu \nu \nu)$ [4.9], $(\mu \nu \nu)(K^* \nu)$ [1.3], two-photon process $(ee\mu\mu)$ [3.1]
e ho	7218823	91.7	$\tau \tau \to (e\nu\nu)(\pi\pi^0\pi^0\nu)$ [4.6], $(e\nu\nu)(K^*\nu)$ [1.7]
μho	6203489	91.0	$\tau \tau \to (\mu \nu \nu) (\pi \pi^0 \pi^0 \nu)$ [4.3], $(\mu \nu \nu) (K^* \nu)$ [1.6], $(\pi \nu) (\rho \nu)$ [1.1]
πho	2655696	77.0	$\tau\tau \to (\rho\nu)(\rho\nu) \ [6.7], \ (\pi\nu)(\pi\pi^0\pi^0\nu) \ [3.9], \ (\mu\nu\nu)(\rho\nu) \ [5.1], \ (\rho\nu)(K^*\nu) \ [1.4], \ (\pi\nu)(K^*\nu) \ [$
ho ho	3277001	82.4	$\tau \tau \to (\rho \nu) (\pi \pi^0 \pi^0 \nu) \ [9.4], \ (\rho \nu) (K^* \nu) \ [3.1]$
$\pi\pi$	460288	71.9	$\tau \tau \to (\pi \nu)(\rho \nu) \ [11.3], \ (\pi \nu)(\mu \nu \nu) \ [8.8], \ (\pi \nu)(K^* \nu) \ [2.5]$

Obtained results at Belle

EDM results	Mode	${\rm Re}(d_{\tau})(10^{-17} \ e{\rm cm})$	$Im(d_{\tau})(10^{-17} ecm)$
	$e\mu$	$-3.2 \pm 2.5 \pm 3.6$	$0.6 \pm 0.4 \pm 1.8$
	$e\pi$	$0.7\pm2.3\pm4.8$	$2.4\pm0.5\pm2.2$
	$\mu\pi$	$1.0\pm2.2\pm4.3$	$2.4\pm0.5\pm2.6$
	e ho	$-1.2\pm0.8\pm1.0$	$-1.1 \pm 0.3 \pm 0.6$
	μho	$0.7\pm1.0\pm2.2$	$-0.5 \pm 0.3 \pm 0.8$
	πho	$-0.6 \pm 0.7 \pm 1.0$	$0.4\pm0.3\pm1.2$
	$\rho\rho$	$-0.4 \pm 0.5 \pm 0.9$	$-0.3 \pm 0.3 \pm 0.4$
	$\pi\pi$	$-2.2 \pm 4.3 \pm 5.2$	$-0.9 \pm 0.9 \pm 1.2$

• Can obtain the weighted average of EDM and its error

 $\operatorname{Re}(d_{\tau}) = (-0.62 \pm 0.63) \times 10^{-17} \text{ ecm},$ $\operatorname{Im}(d_{\tau}) = (-0.40 \pm 0.32) \times 10^{-17} \text{ ecm}.$

- Consistent with zero EDM
- Systematic errors are comparable with the statistical errors.

Observable

• Optimal observable [PRD 45(1992)2405]

$$\mathcal{O}_{Re} = \frac{\mathcal{M}_{Re}^2}{\mathcal{M}_{SM}^2}, \quad \mathcal{O}_{Im} = \frac{\mathcal{M}_{Im}^2}{\mathcal{M}_{SM}^2},$$

- Maximize sensitivity (S/N)
- Calculate event-by-event
 - Using tau flight direction and spin direction (from decay products)

$$\begin{split} \mathcal{M}_{\rm prod}^2 &= \mathcal{M}_{\rm SM}^2 + Re(d_{\tau})\mathcal{M}_{Re}^2 + Im(d_{\tau})\mathcal{M}_{Im}^2 + |d_{\tau}|^2\mathcal{M}_{d^2}^2 \\ \mathcal{M}_{\rm SM}^2 &= \frac{e^4}{k_0^2} [k_0^2 + m_{\tau}^2 + |\mathbf{k}^2| (\hat{\mathbf{k}} \cdot \hat{\mathbf{p}})^2 - \mathbf{S}_+ \cdot \mathbf{S}_- |\mathbf{k}|^2 (1 - (\hat{\mathbf{k}} \cdot \hat{\mathbf{p}})^2) \\ &\quad + 2(\hat{\mathbf{k}} \cdot \mathbf{S}_+) (\hat{\mathbf{k}} \cdot \mathbf{S}_-) (|\mathbf{k}|^2 + (k_0 - m_{\tau})^2 (\hat{\mathbf{k}} \cdot \hat{\mathbf{p}})^2) + 2k_0^2 (\hat{\mathbf{p}} \cdot \mathbf{S}_+) (\hat{\mathbf{p}} \cdot \mathbf{S}_-) \\ &\quad - 2k_0 (k_0 - m_{\tau}) (\hat{\mathbf{k}} \cdot \hat{\mathbf{p}}) ((\hat{\mathbf{k}} \cdot \mathbf{S}_+) (\hat{\mathbf{p}} \cdot \mathbf{S}_-) + (\hat{\mathbf{k}} \cdot \mathbf{S}_-) (\hat{\mathbf{p}} \cdot \mathbf{S}_+))], \end{split} \\ \mathcal{M}_{Re}^2 &= 4 \frac{e^3}{k_0} |\mathbf{k}| [-(m_{\tau} + (k_0 - m_{\tau}) (\hat{\mathbf{k}} \cdot \hat{\mathbf{p}})^2) (\mathbf{S}_+ \times \mathbf{S}_-) \cdot \hat{\mathbf{k}} \\ &\quad + k_0 (\hat{\mathbf{k}} \cdot \hat{\mathbf{p}}) (\mathbf{S}_+ \times \mathbf{S}_-) \cdot \hat{\mathbf{p}}], \end{cases} \\ \mathcal{M}_{Im}^2 &= 4 \frac{e^3}{k_0} |\mathbf{k}| [-(m_{\tau} + (k_0 - m_{\tau}) (\hat{\mathbf{k}} \cdot \hat{\mathbf{p}})^2) (\mathbf{S}_+ - \mathbf{S}_-) \cdot \hat{\mathbf{k}} \\ &\quad + k_0 (\hat{\mathbf{k}} \cdot \hat{\mathbf{p}}) (\mathbf{S}_+ - \mathbf{S}_-) \cdot \hat{\mathbf{p}}], \end{split}$$

Average value is proportional to EDM

$$\begin{aligned} \langle \mathcal{O}_{\text{Re}} \rangle &\propto \int \mathcal{O}_{\text{Re}} \mathcal{M}_{\text{prod}}^2 d\phi \\ &= \int \mathcal{M}_{\text{Re}}^2 d\phi + \underline{\text{Re}}(d_{\tau}) \int \frac{(\mathcal{M}_{\text{Re}}^2)^2}{\mathcal{M}_{\text{SM}}^2} d\phi \end{aligned}$$

Observable calculation from data

- Need tau flight direction : $\mathcal{M}^2_{Re} \sim (S_+ \times S_-) \hat{k}$, $(S_+ \times S_-) \hat{p}$
 - Due to missing neutrinos from tau decays, there is uncertainty in the reconstructed tau direction
 - Two-fold ambiguity in case that both tau leptons decay hadronically

$$\cos \theta_i = \frac{2E_\tau E_i - m_i^2 - m_\tau^2}{2|\mathbf{k}||\mathbf{p}_i|}$$

- Additional ambiguity for leptonic decay
- Take an average over the possible tau directions
- Coefficient depends on the acceptance
 - Understanding of detection efficiency is important.

$$\langle \mathcal{O}_{\text{Re}} \rangle \propto \int \mathcal{O}_{\text{Re}} \mathcal{M}_{\text{prod}}^2 d\phi$$

= $\int \mathcal{M}_{\text{Re}}^2 d\phi$ + $\text{Re}(d_\tau) \int \frac{(\mathcal{M}_{\text{Re}}^2)^2}{\mathcal{M}_{\text{SM}}^2} d\phi$

 e^+ $e^ r^+$ e^-

Improvement for next analysis

- Statistical improvements
 - Belle II experiment is collecting more data, which will reach 50ab⁻¹.
 - ~60 times more data
 - Detection efficiency can be improved by machine-learning technique.
 - Adding other final state modes also improves the statistics.
- Observable improvement by vertexing
 - Averaging over the possible tau direction reduces the sensitivity.
 - Measuring the position of decay products solves the ambiguity.
 - Improve the sensitivity by a factor of ~2 for hadronic modes.
 - Improved vertex detector in Belle II make it possible.
- [Phys. Lett. B 313, 458 (1993)]

- Expected statistical sensitivity
 - ΔRe(d_τ) ~ 2 x 10⁻¹⁹ ecm
 (or better by improvement of efficiency)

Fig. 1. Kinematic configuration indicating the relative orientation of the hadronic tracks, the τ directions and the vector d_{\min} .

Systematic uncertainties

- Current statistical sensitivity is $\Delta \text{Re}(d_{\tau}) = 3.3 \times 10^{-18} \text{ ecm}$
- The systematic uncertainty from the detector modeling limits the result.
 - <u>Understanding of detector response</u> is the key for next analysis.
 - Tighter selection may improve, but trade off to detection efficiency.

Summary

- Tau EDM has been tested in several ways.
 - Total cross-section, spin correlation and from electron EDM
- Current best result obtained by spin correlation at Belle experiment

 $\operatorname{Re}(d_{\tau}) = (-0.62 \pm 0.63) \times 10^{-17} \ ecm,$

Im $(d_{\tau}) = (-0.40 \pm 0.32) \times 10^{-17} ecm.$

- Utilizing information of decay products in optimal observable
- Systematic error from detector modeling limits the sensitivity.
- More data will come from the current experiments.
 - Belle II experiment plans to collect 50 times larger amount of tau-pair events.
- Further improvements can be expected.
 - Detection efficiency, additional final states
 - Good vertex resolution can resolve tau direction, which will improve the observable sensitivity.
 - Reduction of systematic uncertainty from detector understanding, by large data.
- The sensitivity of (1-2) x 10⁻¹⁹ ecm can be achievable in near future.
 - Upgrade with beam polarization will improve the sensitivity further.