Heavy neutral leptons and beyond at the electron-ion collider

Keping Xie

University of Pittsburgh & Michigan State University

TAU 2023 @ University of Louisville December 4, 2023

In collaboration with B. Batell, T. Han (U. Pitt) and T. Ghosh (HRI, India) JHEP 03 (2023) 020, 2210.09287 EIC Snowmass Whitepapers: 2203.06705, 2203.13199

The Electron-Ion Collider

[1212.1701, 2103.05419]

Introduction and Motivation

- The Electron-Ion Collider (EIC) is approved by the U.S. DOE with an estimated cost of \$1.6 to \$2.6 billion, to be located at Brookhaven National Laboratory.
- The EIC features [1212.1701 and Yellow Report, 2103.05419].
 - Highly polarized (70%) electron and nucleon beams
 - lons: proton, deuteron to uranium or lead
 - C.o.M energies: 20-100 GeV, upgradable to 140 GeV
 - high luminosity: $10^{33-34} \text{ cm}^{-2}\text{s}^{-1}$ (10-1000 times HERA)
- The EIC goals: (designed as a QCD machine)
 - The proton spin
 - The motion of quarks and gluons in the proton
 - the tomographic images of the proton
 - QCD matter at the extreme gluon density
 - Quark hadronization
- Other physics opportunities: EW and BSM [Snowmass whitepaper, 2203.13199]. We take the Heavy Neutral Lepton as a case study [2210.09287].

Collider configuration

• We want to maximize the machine reachability

e(10/18 GeV) + p(100/275 GeV).

- We assume the integrated luminosity to be $\mathscr{L} = 100 \text{ fb}^{-1}$.
- Primary physics goals require a multi-purpose Hermitic detector with excellent tracking resolution and particle ID capabilities over a broad momentum range.
- Detector still under design; see EIC Detector Requirements R&D Handbook

η	Resolution			
Tracking (σ_p/p)				
$2.5 < \eta \le 3.5$	$0.1\% imes p \oplus 2\%$			
$1.0 < \eta \le 2.5$	$0.05\% imes p \oplus 1\%$			
$ \eta \le 1.0$	$0.05\% imes p \oplus 0.5\%$			
Electromagnetic calorimeter (σ_E/E)				
$-4.5 \le \eta < -2.0$	$2\%/\sqrt{E}$			
$-2.0 \leq \eta < -1.0$	$7\%/\sqrt{E}$			
$-1.0 \le \eta \le 4.5$	$12\%/\sqrt{E}$			
Hadronic calorimeter (σ_E/E)				
$1.0 < \eta \le 3.5$	$50\%/\sqrt{E}$			
$ oldsymbol{\eta} \leq 1.0$	$100\%/\sqrt{E}$			

Precision and new physics studies at the EIC [2203.13199]

The Heavy Neutral Leptons (HNLs) at the EIC

- The HNLs are motivated by the potential connection to the neutrino mass generation, through the Type-I Seesaw Mechanism [Minkowski PLB '77, Gell-Mann et. al. '79, etc.]
- The Lagrangian

$$\mathscr{L} \supset y_{\mathsf{V}}^{iI} L_i H N_I + \text{h.c.}$$

The interactions can be written as

$$\mathscr{L} \supset \frac{g}{\sqrt{2}} U_{iI} W^{-}_{\mu} \ell^{\dagger}_{i} \overline{\sigma}^{\mu} N_{I} + \frac{g}{2 c_{W}} U_{iI} Z_{\mu} v^{\dagger}_{i} \overline{\sigma}^{\mu} N_{I} + \text{h.c.}$$

• The HNL production and decays (lifetime)

The Prompt HNL Searches

- The HNLs decay promptly for larger masses and mixing angle
- Three channels are considered
 - Majorana: e^+3j

 10^{-3}

 10^{-5}

 10^{-6}

10⁶

10⁴

 $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

- Majorana: $e^+\mu^-j + \not\!\!\! E_T$

Majorana signature: e^+3j (lepton number violating)

- The hadronic mode gives largest rate, and allows for full final state reconstruction.
- the main SM background comes from charge mis-identification: e^- fakes as e^+ .
- the $e^+ j j$ invariant mass window cut very efficiently [2210.09287]

Cut selection	Signal $[e^-p \rightarrow ($	e−jjj [pb]	
	$m_N = 10 \text{ GeV}$	$m_N = 50 \text{ GeV}$	
Production	5.53	0.95	449
Exactly 1 ℓ : $p_{T_{\ell}} > 2$ GeV, $0 < \eta_{\ell} < 3.5$	2.43	0.74	36.7
Exactly $3j$: $p_{T_{j_1}} > 20 \text{ GeV}, \ p_{T_{j_{2,3}}} > 5 \text{ GeV}, \ \eta_{j_{1,2,3}} < 3.5$	0.81	0.43	1.35
Isolation: $\Delta R(\ell/j_{\alpha}, j_{\beta}) > 0.4 \ (\alpha, \beta = 1, 2, 3)$	0.22	0.39	1.35
$\Delta M^{\min} = \min\left(M(\ell j_{\alpha} j_{\beta}) - m_N \right) < 5 \text{ GeV}$	0.22	×	0.03
	×	0.30	0.64
Require one e^+ [$f^{\text{MID}} = 0.1\%$]	0.22	×	3.23×10^{-5}
	×	0.30	6.40×10^{-4}
Require one e^+ [$f^{MID} = 0.01\%$]	0.22	×	3.23×10^{-6}
	×	0.30	6.40×10^{-5}
Polarization $P_e = -70\%$	×1.7	×1.7	×1

Majorana signature: $e^+\mu^-j + E_T^{miss}$

• Main background comes from $(au^+ o e^+ 2 u) (au^- o \mu^- 2 u) j$

• Isolation and invariant mass cuts reduce backgrounds.

Majorana signature: $e^+\mu^-j + E_T^{miss}$

	Signal $[e^-p \rightarrow$	$\tau^- \tau^+ j \rightarrow$	
Cut selection	$m_N = 10 \text{ GeV}$	$m_N = 50 \text{ GeV}$	$\ell^-\ell^+j+4\nu$
	[pb]	[pb]	[pb]
Production	3.16	0.55	0.05
Exactly 2ℓ :	2.10	0.52	0.01
$p_{T_{\ell_{1,2}}} > 2 { m GeV}, \eta_{\ell_{1,2}} < 3.5$	2.10	0.00	
Exactly 1 <i>j</i> :	1.80	0.44	$3.19 imes 10^{-3}$
$p_{T_j} > 10 { m GeV}, \eta_j < 3.5$	1.02	0.44	
Isolation:	1.61	0.42	3.13×10^{-3}
$\Delta R(\ell_1, \ell_2) > 0.3, \ \Delta R(\ell_{1,2}, j) > 0.4$	1.01	0.45	
Require one μ^- and one e^+	0.51	0.13	7.83×10^{-4}
$p_{T_{\ell\ell}} > 12 \mathrm{GeV}$	0.37	0.10	$3.90 imes 10^{-5}$
$ \Delta \phi(\ell_1, \ell_2) < 1 \ [m_N < 20 \ \text{GeV}]$	0.35	×	$1.72 imes 10^{-5}$
$ M(\ell^+, \ell^-, E_T^{\text{miss}}) - m_N < 10 \text{ GeV} [m_N \ge 20 \text{ GeV}]$	×	0.08	2.07×10^{-7}
Polarization $P_e = -70\%$	×1.7	$\times 1.7$	×1

• Main background comes from $(au^+
ightarrow e^+ 2 {m v}) (au^-
ightarrow \mu^- 2 {m v}) j$

• Isolation and invariant mass cuts reduce backgrounds.

Dirac signature: $\ell^+\ell^-j + E_T^{\text{miss}}$

• Main background comes from $(\tau^+ \rightarrow \ell^+ 2\nu)(\tau^- \rightarrow \ell^- 2\nu)j$ and $\ell^+ \ell^- \nu_\ell j$.

• Isolation and invariant mass cuts reduce backgrounds.

Cut estation	Signal $[e^- p \rightarrow (N \rightarrow \ell^+ \ell^- v)j]$		$\ell^+ \ell^- v_\ell j$	$\ell^+\ell^-j$	$\tau^- \tau^+ j \rightarrow$	
Cut selection	5 GeV	10 GeV	50 GeV	-		$\ell^-\ell^+j + 4\nu$
Production	3.98	3.38	0.55	2.20×10^{-3}	5.06	0.05
Exactly 2 ℓ : $p_{T_{\ell_{1,2}}} > 2$ GeV, $ \eta_{\ell_{1,2}} < 3.5$	2.05	1.95	0.53	9.68×10^{-4}	2.65	0.01
Exactly 1 <i>j</i> : $p_{T_j} > 10 \text{ GeV}, \eta_j < 3.5$	1.86	1.71	0.44	7.48×10^{-4}	0.35	$3.20\!\times\!10^{-3}$
Isolation: $\Delta R(\ell_1,\ell_2) > 0.3, \ \Delta R(\ell_{1,2},j) > 0.4$	1.25	1.58	0.43	$5.45 imes 10^{-4}$	0.33	$3.14\!\times\!10^{-3}$
$E_T^{miss} > 5 \text{ GeV}$	0.80	1.07	0.40	5.32×10^{-4}	0.02	2.46×10^{-3}
$p_{T_{\ell\ell}} > 12 \text{ GeV}$	0.43	0.64	0.29	1.50×10^{-4}	5.47×10^{-3}	8.90×10^{-5}
	0.27	×	×	2.39×10^{-6}	5.97×10^{-4}	1.56×10^{-5}
$ M(\ell^+, \ell^-, E_T^{miss}) - m_N < 5 \text{ GeV}$	×	0.42	×	7.12×10^{-6}	1.37×10^{-3}	3.15×10^{-5}
_	×	×	0.17	2.34×10^{-5}	1.42×10^{-4}	4.15×10^{-7}
$M(\ell^+\ell^-j) > 45 \text{ GeV } [m_N < 10 \text{ GeV}]$	0.18	×	×	1.34×10^{-6}	1.82×10^{-4}	6.43×10^{-6}
$0.2 \le A\phi(z, E^{miss}) \le 2$ [max > 10 C A)]	×	0.24	×	5.00×10^{-6}	-	9.75×10^{-6}
$0.2 < \Delta \psi(J, E_T^{-1}) < 3 [m_N \ge 10 \text{ GeV}]$	×	×	0.16	2.06×10^{-5}	-	2.07×10^{-7}
Polarization $P_e = -70\%$	$\times 1.7$	$\times 1.7$	$\times 1.7$	×1.6	$\times 1$	$\times 1$

Prompt search sensitivity

- With the designed energy and integrated luminosity, EIC can probe HNL prompt decay in the mass range 1–100 GeV and the mixing able of the order $10^{-4} 10^{-3}$.
- We can win a slightly better sensitivity than the existing CMS $3\ell + E_T^{\text{miss}}$ limit [1802.02965] around $70 < m_N < 90 \text{ GeV}$ with an optimistic MID rate of 0.01%.

Long-Lived signature

- At a small mass/mixing angle, the HNLs are long lived
- The signature of displaced lepton with large transverse impact parameter.
- The SM background arises from the heavy-flavor decay $ep \rightarrow v(c \rightarrow D)$ and $eg \rightarrow e(c/b \rightarrow D/B)(\bar{c}/\bar{b} \rightarrow \bar{D}/\bar{B}).$
 - At large impact parameter $d_T = 20$ mm, no SM background.
 - At small impact parameter $d_T=2$ mm, we can perform cuts, such as $\Delta R_{j\ell}>0.4$, to largely suppress the SM backgrounds [see backup slides].

Displaced vertex searches

Event selection

$$p_T^j > 5 \text{ GeV}, \ p_T^\ell > 2 \text{ GeV}, \ |\eta_{j,\ell}| < 3.5.$$

- Transverse impact factor $d_T = 2(20) \text{ mm}$
- Cylinder detector configuration r = 0.4 m, l = 1.2 m.
- We show the EIC sensitivity to 5 displaced events

The EIC sensitivity

- the EIC can explore new parameter beyond the current bounds
- At low mass around 5 GeV, we can improve the current bound down to a lower mass
- Other experimental limits [1901.09966,2203.08039].

Invisible decay: $N \rightarrow DMs$

- Signal: $ep \rightarrow j + \not\!\!\!\! E_T$
- The mono-jet event

Sensitivity

Conclusions and Outlooks

- The EIC will open up a new QCD frontier. It is also interesting to ask the opportunity to search the BSM physics.
- We find the EIC has the potential to search HNLs, especially in the few GeV mass range, through the displaced vertex.
- EIC is able to probe HNL prompt decay in the mass range 1–100 GeV and mixing angle of the order $10^{-4}-10^{-3}.$
- Such studies can inform the EIC detector design, (e.g. tracking system for displaced particle searches)
- The mono-jet events can probe the invisible decay of the HNL.
- Other BSM physics exploration [Snowmass whitepaper, 2203.13199]
 - new light particle in mass range 1–100 GeV: Axion [2112.02477,2310.08827], leptoquark [1006.5063], dark photon [2203.01510]
 - precision EW physics [Kumar et al. 1612.06927]
 - SMEFT interactions [Boughezal, Petriello, Wiegand, 2004.00748]
 - lepton flavor violation [2102.06176]
- It is very early days for the EIC. There is much more room for exploration.

A Chinese version: EicC e(5 GeV)p(20 GeV)

High Intensity heavy-ion Accelerator Facility (Under Construction in Huizhou) [Jinlong Zhang, DIS2022]

The SM backgrounds for the displaced searches

