

Latest Results from the MicroBooNE Experiment

Tanaz Angelina Mohayai, Indiana University For the MicroBooNE Collaboration TAU2023, Dec. 7, 2023

Big Picture

•Exploiting the long- to short-baseline oscillation experiments to unravel the remaining puzzles in v physics

*Do neutrinos oscillate differently than antineutrinos? Which neutrino is the lightest?

*Do we understand everything about neutrino interactions?

*Are there more than 3 types of neutrinos?

*What Beyond Standard Model physics can we search for in v experiments?

Big Picture

•Exploiting the long- to <u>short-baseline</u> oscillation experiments to unravel the remaining puzzles in v physics

*Do neutrinos oscillate differently than antineutrinos? Which neutrino is the lightest?

*<u>Do we understand everything about neutrino</u> interactions?

*Are there more than 3 types of neutrinos?

*What Beyond Standard Model physics can we search for in v experiments?

Neutrino Oscillations

Neutrino oscillations considered one of the strongest pieces of evidence of BSM physics
 ★ Modeled with various parameters, mixing angle, θ_{ij}, mass splitting squared term, Δm²_{ij}, CP violating term, δ_{CP}, baseline, L, and neutrino energy, E_v

simplified 2 flavor probability, e.g. ve appearance probability, $P(v_{\mu} \rightarrow v_{e})$

 $\sin^2(2\theta) \, \sin^2(1.27 \Delta m_{21}^2 L/E)$

Neutrino Oscillation Parameters

	Normal Ordering (best fit)	
NuFIT 5.2 (2022)	bfp $\pm 1\sigma$	3σ range
$\sin^2 heta_{12}$	$0.303\substack{+0.012\\-0.011}$	0.270 ightarrow 0.341
$ heta_{12}/^{\circ}$	$33.41\substack{+0.75 \\ -0.72}$	$31.31 \rightarrow 35.74$
$\sin^2 heta_{23}$	$0.572\substack{+0.018\\-0.023}$	0.406 ightarrow 0.620
$ heta_{23}/^{\circ}$	$49.1^{+1.0}_{-1.3}$	$39.6 \rightarrow 51.9$
$\sin^2 heta_{13}$	$0.02203\substack{+0.00056\\-0.00059}$	$0.02029 \rightarrow 0.02391$
$ heta_{13}/^{\circ}$	$8.54\substack{+0.11 \\ -0.12}$	8.19 ightarrow 8.89
$\delta_{ m CP}/^{\circ}$	197^{+42}_{-25}	$108 \rightarrow 404$
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.41\substack{+0.21 \\ -0.20}$	6.82 ightarrow 8.03
$\left \begin{array}{c} \Delta m^2_{3\ell} \ 10^{-3} \ { m eV}^2 \end{array} ight $	$+2.511\substack{+0.028\\-0.027}$	$+2.428 \rightarrow +2.597$

T. A. Mohayai

Oscillation Probability

Based on current oscillation parameters:

- ★No oscillations expected for 1 GeV neutrinos, at baselines < 100 km, i.e. the survival probability ≈ 1 & appearance probability ≈ 0
- ★Oscillations at baseline < 100 km could suggest larger splitting due to an additional 4th neutrino

example of oscillation probability of ~1 GeV neutrinos

MiniBooNE at Short-baseline

• A Cherenkov detector that operated for 17 years

• Observed a large excess of events at low energies:

* If due to **electrons**, then could constitute a possible evidence for v_e appearance at short-baselines

*****Could also be due to **background photons**

MiniBooNE at Short-baseline

• A Cherenkov detector that operated for 17 years

• Observed a large excess of events at low energies:

*If due to **electrons**, then could constitute a possible evidence for v_e appearance at short-baselines

*Could also be due to **background photons**

specifically, distinguishing between photons and **electrons** is a challenge in a Cherenkov detector like MiniBooNE

Need for a New Detector Technology

 MicroBooNE employs a liquid-argon time projection chamber, LArTPC which can more efficiently make the distinction between electrons and photons, using topological and dE/dx information

arXiv:2110.14065v3

LArTPCs in a Future Precision Experiment

for the first time, a <u>long-baseline</u> (<u>1300 km</u>) <u>oscillation</u> experiment will use argon as its nuclear target for precision studies of V oscillations

Challenges of Future Precision Experiments

- Future precision experiments, e.g. DUNE, require few percent uncertainties
 Includes uncertainties on <u>neutrino interactions</u>, <u>detector systematics</u>, & flux
 - *Ultimate sensitivity in DUNE achieved only via a robust constraint on these, particularly **dominant uncertainties from neutrino interactions**
 - *Leverage **existing LArTPC experiments** to address the current scarcity of data on argon

Fermilab Short-baseline Program

- MicroBooNE is the pioneer LArTPC in this program, operated from 2015 to 2021 in the same ν beam as MiniBooNE
- Combined with SBND and ICARUS, its goals are to investigate short-baseline oscillations both in appearance and survival modes, neutrino-argon interaction cross-sections, advancements in LArTPC detector physics, and BSM signature searches

MicroBooNE Detector

• 170 tonne LArTPC

• World's largest dataset of neutrino interactions on argon

T. A. Mohayai

Working Principle of the Detector

The Beam

€----₩

NuMI v beam

NOvA, MINERVA, MINOS+

Booster v beam MicroBooNE, SBN program MicroBooNE, SBN program MicroBooNE proton energy: 8 GeV

> Main Injector proton energy: 120 GeV

DUNE v beam

MicroBooNE Physics Program

Low-energy Excess/sterile neutrino searches

> neutrino-argon interactions

advancing LArTPC Detector Technology

> BSM Searches in a LArTPC

LEE Search in MicroBooNE – NC $\Delta \rightarrow N\gamma$

- Two channels were investigated:
 - \star 1γ1p and 1γ0p
- Achieved the most stringent constraint on neutrino-induced NC $\Delta \rightarrow N\gamma$ on any nuclear target
- Rules out photons from NC $\Delta \rightarrow N\gamma$ as the cause of the LEE, 94.8% C.L.

LEE Search in MicroBooNE – NC $\Delta \rightarrow N\gamma$

LEE Search in MicroBooNE – Electrons

- Is there an excess in v_e that can point to oscillations at short baselines?
- Various channels with electrons in the final state investigated Phys. Rev. D 105, 112003 (2022), Phys. Rev. D 105, 112004 (2022), Phys. Rev. D 105, 112005 (2022)
- Rejects electrons as the sole explanation of the LEE at > 97% CL

Future Prospects of the LEE Searches

BNB POT Delivered

- Only runs 1-3 have been explored for LEE searches so far, more results underway with the remaining data!
- A combined analysis using NuMI and BNB is underway, better sensitivity to other experimental results (mainly due to degeneracy mitigation) expected

T. A. Mohayai

MICROBOONE-NOTE-1116-PUB

MicroBooNE Physics Program

low-energy Excess/sterile neutrino searches

> neutrino-argon interactions

advancing LArTPC Detector Technology

> BSM Searches in a LArTPC

CC inclusive

- 1D v_μ CC inclusive @ BNB
 <u>Phys. Rev. Lett. 123, 131801 (2019)</u>
- 1D v_µ CC E_v @ BNB
 <u>Phys. Rev. Lett. 128, 151801 (2022)</u>
- 3D CC E_v @ BNB arXiv:2307.06413, submitted to PRL
- 1D v_e CC inclusive @ NuMI
 <u>Phys. Rev. D105, L051102 (2022)</u>
 <u>Phys. Rev. D104, 052002 (2021)</u>

Pion production

ν_µ NCπ⁰ @ BNB
 <u>Phys. Rev. D 107, 012004 (2023)</u>

СС0π

- 1D v_e CCNp0π @ BNB
 <u>Phys. Rev. D 106, L051102 (2022)</u>
- 1D & 2D v_µ CC1p0π Transverse Imbalance @ BNB <u>Phys. Rev. Lett. 131, 101802 (2023)</u> <u>Phys. Rev. D 108, 053002 (2023)</u>
- 1D & 2D v_{μ} CC1p0 π Generalized Imbalance @ BNB arXiv:2310.06082, submitted to PRD
- 1D v_µ CC1p0π @ BNB
 Phys. Rev. Lett. 125, 201803 (2020)
- 1D v_µ CC2p @ BNB <u>arXiv:2211.03734</u>
- 1D v_µ CCNp0π @ BNB
 Phys. Rev. D102, 112013 (2020)

MicroBooNE CCQE-like Topology: 1μ1p0π

First transverse kinematic imbalance measurement on argon target
Data favors including FSI (Final State Interaction) models in generators

T. A. Mohayai

MicroBooNE Multi-Proton Measurement: 1μ2p0π

Event selections mostly selects MEC (Meson Exchange Current) events
Model tension when angle between the two protons is small

MicroBooNE Physics Program

Low-energy Excess/sterile neutrino searches

> neutrino-argon interactions

advancing LArTPC Detector Technology

> BSM Searches in a LArTPC

Advancing LArTPCs

Latest papers include achieving ns timing resolution (Phys. Rev. D 108, 052010) and investigating the presence of Rn daughters in a sizable LArTPC
 Demonstrating particle calorimetry and identification at the lowest energies recorded in a single-phase neutrino LArTPC, as important input to MeV-scale astrophysics searches in future DUNE

MicroBooNE Physics Program

low-energy Excess/sterile neutrino searches

> neutrino-argon interactions

advancing LArTPC Detector Technology

> BSM Searches in a LArTPC

BSM Searches

- Many published and on-going BSM studies in MicroBooNE from HNL (Heavy Neutral Leptons), HPS (Higgs Portal Scalar) to Dark Trident, and Millicharged searches: Phys. Rev. D 101, 052001 (2020), Phys. Rev. Lett. 127, 151803 (2021), Phys. Rev. Lett. 129, 111803, Phys. Rev. Lett. 121, 241801
- Many of these scenarios predict overlapping e+e- final states which can be used for the LEE searches

Summary

- Leveraging the most extensive ν-Ar dataset available, MicroBooNE is providing vital input to upcoming precision oscillation experiment, DUNE, in the context of ν-Ar interaction cross sections, LArTPC detector advancements, and rare/exotic physics searches
- The flagship MicroBooNE analyses aimed at resolving the MiniBooNE LEE anomaly so far rules out NC Δ→Nγ backgrounds and dismisses the notion that electron events from ve entirely account for the MiniBooNE LEE
 ★ We have only used ~half of the BNB data set so far; stay tuned for results from all BNB data sets as well as combined BNB+NuMI beam!

Level of Neutrino Interaction Uncertainty Today

<u>T2K https://doi.org/10.1038/s41586-020-2177-0</u>

Type of Uncertainty	$\nu_e/\bar{\nu}_e$ Candidate Relative Uncertainty (%)
Super-K Detector Model	1.5
Pion Final State Interaction and Rescattering Model	1.6
Neutrino Production and Interaction Model Constrained by ND280 Data	2.7
Electron Neutrino and Antineutrino Interaction Model	3.0
Nucleon Removal Energy in Interaction Model	3.7
Modeling of Neutral Current Interactions with Single γ Production	1.5
Modeling of Other Neutral Current Interactions	0.2
Total Systematic Uncertainty	6.0

NOvAhttps://doi.org/10.1103/PhysRevLett.123.151803 ν_e Signal ν_e Bkg. $\bar{\nu}_e$ Signal $\bar{\nu}_e$ Bkg.Source(%)(%)(%)Cross-sections+4.7/-5.8+3.6/-3.4+3.2/-4.2+3.0/-2.9Detector model+3.7/-3.9+1.3/-0.8+0.6/-0.6+3.7/-2.6ND/FD diffs.+3.4/-3.4+2.6/-2.9+4.3/-4.3+2.8/-2.8Calibration+2.1/-3.2+3.5/-3.9+1.5/-1.7+2.9/-0.5Others+1.6/-1.6+1.5/-1.5+1.4/-1.2+1.0/-1.0Total+7.4/-8.5+5.6/-6.2+5.8/-6.4+6.3/-4.9

• From existing experiments, T2K and NOvA, the dominant sources of uncertainties are cross sections/neutrino interactions

Advancing LArTPCs – O(1 ns) Timing Resolution

Pioneering achievement in demonstrating O(1 ns) timing resolution
 Introduces a novel cosmic-rejection technique for distinguishing neutrino interactions arriving in approximately 2 ns pulses in the BNB

Neutrino Interactions

We expect a specific range of energies in neutrino experiments:
 *Each experiment will be sensitive to a specific interaction type and a specific set of nuclear effects, affecting what we see in the detectors charged current interaction channels

T. A. Mohayai