Measurement of a_{τ} in ultraperipheral collisions with ALICE at the LHC

Paul Bühler

Stefan Meyer Institute (SMI), Austrian Academy of Sciences, Vienna

On behalf of the ALICE collaboration

•
$$\underline{\mu_l} = -g_l \cdot \frac{e}{2m_l} \cdot \underline{s}$$

lepton $I = e, \mu, \tau$

 μ_l ; magnetic moment g_l : g-factor m_l : lepton mass \underline{s} : spin angular momentum

• Dirac (1928): *g*_l = 2

• Anomalous magnetic moment of /

$$a_l = \frac{g_l-2}{2}$$

• Schwinger (1948): $a_l = \frac{\alpha}{2} \approx 0.00116$

- Dirac (1928): *g*_l = 2
- Anomalous magnetic moment of I

$$a_l = \frac{g_l-2}{2}$$

- Schwinger (1948): $a_l = \frac{\alpha}{2} \approx 0.00116$
- Further corrections due to QED, Electro-Weak, and Hadron loops

- Dirac (1928): *g*_l = 2
- Anomalous magnetic moment of I

$$a_l = \frac{g_l-2}{2}$$

- Schwinger (1948): $a_l = \frac{\alpha}{2} \approx 0.00116$
- Further corrections due to QED, Electro-Weak, and Hadron loops + New Physics contributions

+ BSM physics

$$\alpha_{\tau}^{BSM} = ?$$

Ι	a _{l,exp}	a _{l,thr}		
е	0.001'159'652'180'59(13)	0.001'159'652'182'031(720)		T: PRD 96 (2017) 019901 E: PRL 130 (2023) 071801
μ	0.001'165'920'59(22)	0.001'165'918'10(43)	:	T: PR 887 (2020) 1 E: PRL 131 (2023) 161802
au	[-0.052, 0.013]	0.001'172'1(5)	(i)	T: MPLA 22 (2007) 159. E: EPJC 35 (2004) 159.

- Deviation of $a_{l,exp}$ from $a_{l,thr}$ indicates:
 - compositeness of I
 - New Physics (NP)
- NP contributions are expected to scale with $\left(\frac{m_i}{m_{\Lambda}}\right)^2$ m_{Λ} mass scale of NP

Sensitivity of a_l to BSM scales with m_l^2

 $\mu: \boldsymbol{e} \propto 42750: 1$ $\tau: \mu \propto 280: 1$

 $\longrightarrow a_{ au}$ highly sensitive to BSM physics

Measurement of a_{τ}

a_τ:

- Can not be stored
- Mean life time $t_{ au} \approx 2.903 imes 10^{-13} \ s$
- Exploit the fact that the cross section $\sigma_{\gamma\gamma\to\tau\tau}$ depends on a_{τ}
 - * SM: $\sigma_{\gamma\gamma \rightarrow \tau\tau}$ can be calculated to high accuracy
 - * BSM: contributions alter the cross section
- photon-lepton vertex function element of the τ production cross section

$$i\Gamma^{\gamma au au}_{\mu}(q)=-ie\left[\gamma_{\mu}F_{1}(q^{2})+rac{i}{2m_{ au}}\sigma_{\mu
u}q^{
u}F_{2}(q^{2})+rac{i}{2m_{ au}}\gamma^{5}\sigma_{\mu
u}q^{
u}F_{3}(q^{2})
ight]$$

at $q^2 \approx 0$ F1: Dirac form factorF1(0) = 1F2: Pauli form factor $F2(0) = a_l$ F3: electric dipole form factor $F3(0) \propto d_l$

Measurement of a_{τ}

Dyndal et al., PLB, 809 (2020) 135682

Ultra-peripheral Collisions (UPCs) - source of colliding photons

P. Bühler (SMI)

Measurement of *PbPb* \rightarrow *PbPb* $\tau^+\tau^-$

Dyndal et al., PLB, 809 (2020) 135682

Measurement of $\textit{PbPb} \rightarrow \textit{PbPb} \ \tau^+ \tau^-$

General HI collision

• Up to several hundered tracks

Measurement of *PbPb* \rightarrow *PbPb* $\tau^+\tau^-$

General HI collision

• Up to several hundered tracks

Example UPC

- Few tracks (clean environment)
- Allows selection with little background

Measurement of $PbPb \rightarrow PbPb \ \tau^+ \tau^-$

$$\begin{array}{rcl} {\rm BR}(\tau^{\pm} \to {\rm e}^{\pm} + \nu_{\rm e} + \nu_{\tau}) &=& 17.8\% \\ {\rm BR}(\tau^{\pm} \to \mu^{\pm} + \nu_{\mu} + \nu_{\tau}) &=& 17.4\% \\ {\rm BR}(\tau^{\pm} \to \pi^{\pm} + {\rm n}\pi^{0} + \nu_{\tau}) &=& 45.6\% \\ {\rm BR}(\tau^{\pm} \to 3 {\rm \ prong}) &\approx& 20\% \end{array}$$

Analysis strategy

- 1 lepton + 1 charged particles
- 1 lepton + 3 charged particles combination of central and forward trackers

ALICE detector in Run 3

- Inner barrel
 ITS + TPC + TOF
- PID down to $p_{\rm T} > 0.1$ GeV/c

- Fast Interaction Trigger (FIT)
- Veto on activity at $\eta > 1.5$

- Online/Offline (O2) data processing system
- Continuous readout
- Event selection applied offline

Perspectives with Run 3 data - ALICE

- Pb-Pb collisions at $\sqrt{s_{\rm NN}} = 5.5 \, {\rm TeV}$
- Integrated luminosity of 2.7 nb⁻¹ (= Run 3 2022)
- 36000 reconstructed events with one electron in the barrel
- 2000 reconstructed events with one muon in the muon arm

ALICE Run 3

- select 2-prong events
- central: e and π/μ in central barrel
- semiforward: forward μ and barrel track

Luminosity of > 2.7 nb⁻¹ will

be reached in 2024

Perspectives with Run 3 data - ALICE

- Strategies to eliminate background described e.g. in Beresford & Liu, PRD 102 (2020) 113008
- In addition to total cross-section use *p*_T-differential information
- slope of $p_{T,e_{lead}}$ depends on a_{τ}

Generated with upcgen (Burmasov et al., CPC 277 (2022) 108388)

Perspectives with Run 3 data - ALICE

• Significant improvement of a_{τ} limits expected with Run 3 data!

Generated with upcgen (Burmasov et al., CPC 277 (2022) 108388)

Summary

- At LHC UPCs are suited to study the magnetic moment of the *τ*-lepton and set new limits on *a_τ*
- The PID capabilities down to low momenta enhance the sensitivity of ALICE
- The precision of the a_{τ} measurement is limited by systematic uncertainties
- The limits on a_{τ} we can expect from Run 3 data is at least 2 × better compared to the limits listed in PDG and measured by DELPHI in 2004