The 17th International Workshop on Tau Lepton Physics University of Louisville Louisville, Kentucky, USA December 4-8 2023

Matter Effects in $P_{\mu\tau}$ at long baselines

Srubabati Goswami

Physical Research Laboratory Fulbright-Nehru fellow, Northwestern University

Neutrino oscillations

Neutrino oscillations

Atmospheric ν_{τ} in Super-Kamiokande

From : Y. Nakano, ICNFP 2018 SK collaboration, PRD 2018

Three neutrino paradigm

* Measurement of non-zero θ_{13} in reactor experiments **see by three neutrino picture**

Three generation oscillation parameters

NuFIT 5.2 (2022) Inverted Ordering ($\Delta \chi^2 = 6.4$) Normal Ordering (best fit) bfp $\pm 1\sigma$ bfp $\pm 1\sigma$ 3σ range 3σ range $\sin^2 \theta_{12}$ $0.303^{+0.012}_{-0.012}$ $0.303^{+0.012}_{-0.011}$ $0.270 \rightarrow 0.341$ $0.270 \rightarrow 0.341$ $33.41_{-0.72}^{+0.75}$ $33.41_{-0.72}^{+0.75}$ $\theta_{12}/^{\circ}$ $31.31 \rightarrow 35.74$ $31.31 \rightarrow 35.74$ $\sin^2 \theta_{23}$ $0.451^{+0.019}_{-0.016}$ $0.569^{+0.016}_{-0.021}$ $0.408 \rightarrow 0.603$ $0.412 \rightarrow 0.613$ $49.0^{+1.0}_{-1.2}$ $42.2^{+1.1}_{-0.9}$ $\theta_{23}/^{\circ}$ $39.7 \rightarrow 51.0$ $39.9 \rightarrow 51.5$ $0.02225_{-0.00059}^{+0.00056}$ $0.02223^{+0.00058}_{-0.00058}$ $\sin^2 \theta_{13}$ $0.02052 \rightarrow 0.02398$ $0.02048 \rightarrow 0.02416$ $8.58^{+0.11}_{-0.11}$ $8.57^{+0.11}_{-0.11}$ $\theta_{13}/^{\circ}$ $8.23 \rightarrow 8.91$ $8.23 \rightarrow 8.94$ 232^{+36}_{-26} 276^{+22}_{-29} $\delta_{\rm CP}/^{\circ}$ $194 \rightarrow 344$ $144 \rightarrow 350$ Δm_{21}^2 $7.41^{+0.21}_{-0.20}$ $7.41^{+0.21}_{-0.20}$ $6.82 \rightarrow 8.03$ $6.82 \rightarrow 8.03$ 10^{-5} eV^2 $\Delta m_{3\ell}^2$ $+2.507^{+0.026}_{-0.027}$ $-2.486^{+0.025}_{-0.028}$ $+2.427 \rightarrow +2.590$ $-2.570 \rightarrow -2.406$ 10^{-3} eV^2

Neutrino oscillation (in vacuum)

Matter effect

The propagation is different in matter due to interactions

Courtsey: A. Yu. Smirnov

- * Mixing angle in matter is defined with respect to the matter eigenstates.
- Mixing angle and masses in matter are determined by diagonalizing the effective Hamiltonian in matter

Two flavour case

The propagation equation

$$\iota \frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = H_F^{mat} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$

$$H_F^{mat} = E\mathbf{I} + \frac{1}{2E}U\begin{pmatrix} m_1^2 & 0\\ 0 & m_2^2 \end{pmatrix}U^{\dagger} + \frac{1}{2E}\begin{pmatrix} A & 0\\ 0 & 0 \end{pmatrix}$$

$$A = 2EV_{CC}$$
$$V_{CC} = \sqrt{2}G_F n_e$$

Due to charge current interaction of ν_e with electrons

 ν_{μ} , ν_{τ} \longrightarrow only neutral current interaction with electrons \longrightarrow same matter potential No matter effect for two generations in the $\nu_{\mu} - \nu_{\tau}$ channel to the leading order

MSW resonance

In matter, only u_e 's undergoes Charged current interaction \rightarrow an effective potential of $\sqrt{2}G_F N_e$

Effective mixing angle θ_M in matter

 $\tan 2\theta_M = \frac{\Delta m^2 \sin 2\theta}{\Delta m^2 \cos 2\theta - 2\sqrt{2}G_F n_e E}$

$$\Delta m^2 \cos 2\theta = 2\sqrt{2}G_F n_e E, \ \theta_M \to \pi/4$$

 $\Delta m_m^2 = \left[\left(\Delta m^2 \cos 2\theta - 2\sqrt{2} G_F n_e E \right)^2 + \Delta m^2 \sin^2 2\theta \right]^{1/2}$

MSW Resonance

L. Wolfenstein, PRD 17, 1978 S.P. Mikhyev, A.Yu. Smirnov, SJNP 42, 1985

For antineutrinos the potential changes sign

Resonance occurs for
$$\Delta m^2 < 0$$

Matter effect is sensitive to the ordering of the mass states

Evidence of MSW effect from solar data

Fogli and Lisi, New Journal of Physics, 2004

Matter Effect : Three flavours

* The propagation equation in matter for three flavours

$$\tilde{H} = \frac{1}{2E} \begin{bmatrix} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} + \begin{pmatrix} A & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\Delta_{21} = 0$ Approximation As $\Delta_{21} < < \Delta_{31}$ Validity: $L/E < < 1/\Delta_{21}$

Resonance in the 1-3 sector

Better for resonance energies, higher baselines $\alpha - s_{13}$ Approximation $\alpha = \Delta_{21}/\Delta_{31} \sim 0.03$ $\sin \theta_{13} \sim 0.15$ Series expansion in terms of α, s_{13}

Better for away from resonance, lower baselines

Matter resonance

$$\tan 2\theta_{13}{}^m = \frac{\Delta m_{31}^2 \sin 2\theta_{13}}{\Delta m_{31}^2 \cos 2\theta_{13} \pm 2\sqrt{2}G_F n_e E}$$

$$E_{res} = \frac{|\Delta m_{\rm atm}^2|\cos 2\theta_{13}}{2\sqrt{2}G_F N_e}$$

$$(\Delta m_{31}^2)^m = \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}$$

• For $\Delta m_{31}^2 > 0$ resonance in neutrinos • For $\Delta m_{31}^2 < 0$ resonance in antineutrinos

Hierarchy sensitivity

L (km)	$ ho_{\rm avg}({ m g/cc})$	$E_{\rm res}$ (GeV)
1000	3.00	9.9
3000	3.32	9.4
5000	3.59	8.7
7000	4.15	7.5
10000	4.76	6.6

Is matter effect maximum at resonance?

$$\mathcal{P}^{m}_{\nu_{\mu} \to \nu_{e}} = s_{23}^{2} \sin^{2} 2\theta_{13}^{m} \sin^{2} \left[\Delta_{31}^{m} L/E \right]$$

Matter effect is observed near $E \sim E_{res}$, where the amplitude is large, but we also require large phase.

 $\mathcal{P}^m_{\nu_\mu
ightarrow
u_e}$ is maximum when simultaneously

 $\sin^2 (2\theta_{13})^m = 1$ $\sin^2 \Delta_{31}^m = 1 = \sin^2 ((2p+1)\pi/2)$

This gives the maximum matter effect condition for L:

$$[\rho L]_{\mu e}^{max} = \frac{(2p+1)\pi \times 5.18 \times 10^3}{\tan 2\theta_{13}} \ km \ gm/cc$$

Maximum matter effect

For $\sin^2 2\theta_{13} = 0.1$, p=0, the maximum matter effect comes at $L \sim 10,000$ km

R. Gandhi, P. Ghoshal, S.G., P. Mehta, S. Umashanakar PRD 2005

Maximum matter effect in $P_{\nu_{\mu} \rightarrow \nu_{\mu}}$

$$P_{\mu\mu}^{m} = 1 - \cos^{2} \theta_{13}^{m} \sin^{2} 2\theta_{23} \sin^{2} \left[1.27(\Delta_{31} + A + \Delta_{31}^{m})L/2E \right] - \sin^{2} \theta_{13}^{m} \sin^{2} 2\theta_{23} \sin^{2} \left[1.27(\Delta_{31} + A - \Delta_{31}^{m})L/2E \right] - \sin^{4} \theta_{23} \sin^{2} 2\theta_{13}^{m} \sin^{2} \left(1.27\Delta_{31}^{m}L/E \right)$$

Different behaviour at 9700 km

* Fall at peak but rise at dip

Matter effect in $P_{\nu_{\mu} \rightarrow \nu_{\tau}}$

$$\begin{split} \mathbf{P}_{\mu\tau}^{m} &= \ \cos^{2}\theta_{13}^{m} \sin^{2}2\theta_{23} \sin^{2}\left[1.27(\Delta_{31}+\mathbf{A}+\Delta_{31}^{m})\mathbf{L}/2\mathbf{E}\right] \\ &+ \ \sin^{2}\theta_{13}^{m} \sin^{2}2\theta_{23} \sin^{2}\left[1.27(\Delta_{31}+\mathbf{A}-\Delta_{31}^{m})\mathbf{L}/2\mathbf{E}\right] \\ &- \ \cos^{2}\theta_{23}\mathbf{P}_{\mu\circ}^{m} \end{split}$$

Maximum matter effect when

$$E_{res} \simeq E_{peak}^{v}$$

 $[\rho L]_{\mu\tau}^{\text{max}} \simeq (2p+1) \pi 5.18 \times 10^3 (\cos 2\theta_{13}) \text{ Km gm/cc.}$

For p = 1 and sin²
$$2\theta_{13} = 0.1$$

$$\Delta P_{\mu\tau} = P_{\mu\tau}^{m} - P_{\mu\tau}^{v}$$

$$L = 9700 \text{ km}$$

$$\Delta P_{\mu\tau} \simeq \cos^{4} \left[\sin 2\theta_{13} (2p+1) \frac{\pi}{4} \right] - 1 = -0.7$$

Matter effect in $P_{\nu_{\mu} \rightarrow \nu_{\tau}}$

The vacuum mass eigenstate ν_1 is largely ν_e , ν_3 is largely $\nu_\mu \& \nu_\tau$ and ν_2 has no ν_e component.

Matter effect (increasing A) causes ν_e in ν_1^m to decrease & ν_μ, ν_τ to increase. At $A = A_{res}$ they are 50%. Similarly, ν_e in ν_3^m increases to 50%.

At resonance, all matter-dependent mass eigenstates $\nu_1^m, \nu_2^m \& \nu_3^m$ have significant $\nu_\mu \& \nu_\tau$ components.

 $P(\nu_{\mu} \rightarrow \nu_{\tau})$ depends on all 3 mass-squared differences.

Matter effect in $P_{\nu_{\mu} \rightarrow \nu_{\tau}}$

R. Gandhi, P. Ghoshal, S.G., P. Mehta, S. UmaShanakar, PRL, 2005

Baselines covered by atmospheric neutrinos

Hierarchy sensitivity

$$\Delta P_{\alpha\beta} = P_{\alpha\beta}^{NH} - P_{\alpha\beta}^{IH}$$

 $N_{\mu} = N_{\mu}^{0} P_{\mu\mu} + N_{e}^{0} P_{e\mu}$ $\Delta N_{\mu} = N_{\mu}^{0} \Delta P_{\mu\mu} + N_{e}^{0} \Delta P_{e\mu}$

Hierarchy sensitivity

$$\Delta N_{\tau} = N_{\mu}^{0} \ \Delta P_{\mu\tau} + N_{e}^{0} \ \Delta P_{e\tau}$$

Hierarchy sensitivity from higher baselines and higher energies in tau events

What happens in presence of non-standard interactions ?

With Animesh Chatterjee and Supriya Pan, ongoing

Non-standard interactions

Standard-NC interaction

$$\nu_{\alpha} + f \rightarrow \nu_{\alpha} + f$$

 $\nu_{\alpha} + t \rightarrow \nu_{\beta} + t$

$$\mathcal{L} = -G^{\alpha\beta}\epsilon^{f}_{\alpha\beta}\bar{\nu}_{\alpha}\gamma^{\mu}\nu_{\beta}\bar{f}\gamma_{\mu}f$$
$$\epsilon_{\alpha\beta} = \sum_{f=e,u,d}\frac{N_{f}}{N_{e}}\epsilon^{f}_{\alpha\beta}$$

$$H = \frac{1}{2E} \left[U \text{diag}(0, \Delta m_{21}^2, \Delta m_{31}^2) U^{\dagger} + V \right]$$

For earth's matter $N_u \approx N_d \approx 3N_e$ $\varepsilon_{\alpha\beta} \approx \varepsilon^e_{\alpha\beta} + 3 \varepsilon^u_{\alpha\beta} + 3 \varepsilon^d_{\alpha\beta}$

 $V \Rightarrow \text{matter potential in presence of NSI,}$ $V = A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} e^{i\phi_{e\mu}} & \epsilon_{e\tau} e^{i\phi_{e\tau}} \\ \epsilon_{e\mu} e^{-i\phi_{e\mu}} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} e^{i\phi_{\mu\tau}} \\ \epsilon_{e\tau} e^{-i\phi_{e\tau}} & \epsilon_{\mu\tau} e^{-i\phi_{\mu\tau}} & \epsilon_{\tau\tau} \end{pmatrix}$ Here, $A \equiv 2\sqrt{2}G_F N_e E$ and $\epsilon_{\alpha\beta} e^{i\phi_{\alpha\beta}} \equiv \sum_{f \in C} \epsilon_{\alpha\beta}^{fC} \frac{N_f}{N_e}$

Effect of
$$\epsilon_{\mu\tau}$$

$$H_{mat} = \frac{A}{2E} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \epsilon_{\mu\tau} e^{i\phi_{\mu\tau}} \\ 0 & \epsilon_{\mu\tau} e^{-i\phi_{\mu\tau}} & 0 \end{bmatrix}$$

Current bound ;

$$-0.07 < \epsilon_{\mu\tau} < 0.04$$

$$H_{F} = \frac{1}{2E} \left[U diag(0,0,\Delta_{31}) U^{\dagger} \right] + \frac{A}{2E} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \epsilon_{\mu\tau} e^{i\phi_{\mu\tau}} \\ 0 & \epsilon_{\mu\tau} e^{-i\phi_{\mu\tau}} & 0 \end{bmatrix}$$

Main channels affected are $P_{\mu\mu}$, $P_{\mu\tau}$

$P_{\nu_{\mu} \to \nu_{\tau}}$ in presence of NSI

$$P^{m}_{\mu\tau} = \cos^{2} \theta^{m}_{13} \sin^{2} 2\theta_{23} \sin^{2} [1.27(\Delta_{31} + A + \Delta^{m}_{31})L/2E] + \sin^{2} \theta^{m}_{13} \sin^{2} 2\theta_{23} \sin^{2} [1.27(\Delta_{31} + A - \Delta^{m}_{31})L/2E] - \cos^{2} \theta_{23} P^{m}_{\mu e}$$

In absence of NSI, OMSD

$$P_{\mu\tau}^{NSI} = -\sin^2 2\theta_{13}^M \sin^2 \theta_{23}^M \cos^2 \theta_{23}^M \sin^2 [\frac{1.27\Delta_{31}^M L}{E}] + \sin^2 2\theta_{23}^M \{\cos^2 \theta_{13}^M \sin^2 [\frac{1.27\Delta_{32}^M L}{E}] + \sin^2 \theta_{13}^M \sin^2 [\frac{1.27\Delta_{21}^M L}{E}] \}$$

In presence of NSI, OMSD

$$\sin 2\theta_{13}^{M} = \sin 2\theta_{13}^{m} \left[1 - \frac{A \epsilon_{\mu\tau} \cos 2\theta_{13}^{m} \sin 2\theta_{23}}{\Delta_{31}^{m}} \right] \xrightarrow{\text{Resonance in absence of NSI}} \sin 2\theta_{13}^{M} = 1 \implies \sin 2\theta_{13}^{M} = 1$$

$$E_{3}^{M} - E_{1}^{M} = \Delta_{31}^{m} + A\epsilon_{\mu\tau} \cos \phi_{\mu\tau} \cos 2\theta_{13}^{m} \sin 2\theta_{23}$$
$$E_{2}^{M} - E_{1}^{M} = \Delta_{21}^{m} - A\epsilon_{\mu\tau} \cos \phi_{\mu\tau} (1 + \sin^{2}\theta_{13}^{m}) \sin 2\theta_{23}$$
$$E_{3}^{M} - E_{2}^{M} = \Delta_{32}^{m} + A\epsilon_{\mu\tau} \cos \phi_{\mu\tau} \sin 2\theta_{23} (1 + \cos^{2}\theta_{13}^{m})$$

Matter effect due to NSI

Large effects in higher energies and baselines

Probabilities at 9700 km

Larger differences between SI, NSI at higher energies

NSI probabilities higher or lower than the standard probability depending on the sign of $\epsilon_{\mu\tau}$ There are energies where $+\epsilon_{\mu\tau}$, $-\epsilon_{\mu\tau}$ give same probability

Probability level analysis

$$\chi^2 = \frac{(P(\epsilon_{\mu\tau} = x) \quad P(\epsilon_{\mu\tau} = 0))^2}{P(\epsilon_{\mu\tau} = 0)}$$

Higher sensitivity at larger baselines and energies Sensitivities seen in the $P_{\mu\tau}$ channel

Bound on $\epsilon_{\mu\tau}$ using muon events

Impact of including the ν_{τ} channel

 ν_{τ} Detection efficiency 30% ν_{τ} Detection efficiency 100% 25 25 and v_r detection v₇ detection 20 20 v_u detection 15 15 ΔX^2 ∇_{X^2} 10 10 ν_µ and ν_τ detection 5 v₇ detection v,, detection 0 -1.00 -0.75 -0.50 -0.25 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 0.00 0.25 0.50 1.00 0.75 1.00 ×10⁻² ×10⁻² $\varepsilon_{\mu\tau}$ $\varepsilon_{\mu\tau}$

Atmospheric neutrinos in DUNE 400 kt years,E > 15-200 GeVImprovement in the bound by one order of magnitude by including higher energy eventsThe effect of the ν_{τ} channel depends on the detection efficiency

Bakhti, Rajaee, Shin, PRD, 2022

Simulation of atmospheric ν_{τ} events

Hadronic decay channels

Leptonic decay channels

Conrad, de Gouvea, Shalgar, Spitz, PRD 2010

Talk by Adam Aurisano Talk by Barbara Yaggey Alvarez

NSI and beam ν_{τ} events

Summary

- * In two generation no matter effect in $\nu_{\mu} \nu_{\tau}$ channel
- * In three generation appreciable matter effect around 9700 km
- * Genuine three generation effect
- * Contribution to hierarchy sensitivity from ν_{τ} events ?
- * Considered NSI driven by $\epsilon_{\mu\tau}$
- * Enhanced sensitivity due to ν_{τ} events

Future plans

- * Introduce other relevant NSI parameters
- * Event level analysis of the ν_{τ} events for atmospheric neutrinos
- * Other new physics through ν_{τ} channel and matter effect in atmospheric neutrinos
- * Ultimate wish list exploring combined sensitivity of beam and atmospheric ν_{τ} events to explore possible synergies

Impossible is not a fact. It's an opinion. Impossible is not a declaration. It's a dare. Impossible is potential. Impossible is temporary. Impossible is nothing.

- Muhammad Ali

