

Gabriel González Sprinberg, Instituto de Física Facultad de Ciencias, Universidad de la República Montevideo, Uruguay

gabrielg@fisica.edu.uy

1. Tau lepton dipole moments

2. Electric DM / conclusions

3. Magnetic DM / conclusions

1. Tau lepton DM

Why are we interested in Tau dipole moments?

- m = 1777 MeV
- Lifetime = 290 x 10⁻¹⁵ sec
- Tau lepton decays into hadrons
- Lepton universality
- Sensitivity to NP $(m_{\tau}/\Lambda)^n$

•
$$\left(\frac{m_{\tau}}{m_{e}}\right)^{2} \approx 10^{7}$$
; $\left(\frac{m_{\tau}}{m_{\mu}}\right)^{2} \approx 3 \cdot 10^{2}$

1. Tau lepton DM

PDG 2022/2023

$ au$ MAGNETIC MOMENT ANOMALY (a $_{ au}$)
$\mu_{ au}/(e\hbar/2m_{ au})$ —1 = ($g_{ au}$ —2)/2	>-0.052 and < 0.013 CL=95.0%
	ABDALLAH 04K DLPH $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$ at LEP2
$ au$ ELECTRIC DIPOLE MOMENT ($d_{ au}$)	
$\operatorname{Re}(d_{\tau})$	$-1.85 imes10^{-17}~{ m to}~6.1 imes10^{-18}~e$ cm
$Im(d_{ au})$	$-1.03 imes10^{-17} ext{ to }2.30 imes10^{-18} ext{ e cm}$
	INAMI 2022 Belle

1. Tau lepton DM

τ magnetic moment anomaly										
$\mu_{ au}/(e\hbar/2m_{ au})-$ 1 = ($g_{ au}-$ 2)/2	>-0.052 and $<$ 0.013 CL=95.0%			0.052 and < 0.013 CL=95.0%						
For a theoretical calculation [($g_ au$ –2)/2 = 117 $721(5) imes10^{-8}$], see EIDELMAN 2007 .										
VALUE	CL%	DOCUMENT ID		TECN	COMMENT					
>-0.052 and <0.013 OUR LIM	IT									
>-0.052 and $<$ 0.013	95	¹ ABDALLAH	2004K	DLPH	$e^+ \; e^- ightarrow e^+ e^- au^+ au^-$ at LEP2					
	 We do not use the following data for averages, fits, limits, etc. 									
< 0.107	95	² ACHARD	2004G	L3	$e^+ \; e^- ightarrow e^+ e^- au^+ au^-$ at LEP2					
>-0.007 and $<$ 0.005	95	³ GONZALEZ-SPRI	2000	RVUE	$e^+ \; e^- ightarrow au^+ au^-$ and $W ightarrow au u_ au$					
>-0.052 and $<$ 0.058	95	⁴ ACCIARRI	1998E	L3	19911995 LEP runs					
>-0.068 and $<$ 0.065	95	⁵ ACKERSTAFF	1998N	OPAL	19901995 LEP runs					
>-0.004 and $<$ 0.006	95	⁶ ESCRIBANO	1997	RVUE	$Z\! ightarrow au^+ au^-$ at LEP					
< 0.01	95	⁷ ESCRIBANO	1993	RVUE	$Z\! ightarrow au^+ au^-$ at LEP					
< 0.12	90	GRIFOLS	1991	RVUE	$Z ightarrow au au \gamma$ at LEP					
< 0.023	95	⁸ SILVERMAN	1983	RVUE	$e^+ \; e^- ightarrow au^+ au^-$ at <code>PETRA</code>					

. Tau	lepton DM		FL)M rea	l nar	-+		
•	au ELECTRIC DIPOLE MO	MENT (d_{τ})			i pui	L CONTRACTOR OF CONTRACTOR OFO		
	$Re(d_{ au})$				$-1.85 imes 10^{-17} ext{ to } 6.1 imes 10^{-18} \ e ext{ cm}$			
	VALUE ($10^{-16}\ e\ { m cm}$)	CL%	DOCUMENT ID		TECN	COMMENT		
	-0.185 to 0.061	95		2022	BELL	$E_{ m cm}^{ee}$ = 10.6 GeV		
	 We do not use the following data for averages, fits, limits, etc. 							
	< 2.3	90	² GROZIN	2009A	RVUE	From <i>e</i> EDM limit		
	< 3.7	95	³ ABDALLAH	2004K	DLPH	$e^+ \; e^- ightarrow e^+ e^- au^+ au^-$ at LEP2		
	< 11.4	95	⁴ ACHARD	2004G	L3	$e^+ \; e^- ightarrow e^+ e^- au^+ au^-$ at LEP2		
	$-0.22 ext{ to } 0.45$	95	⁵ INAMI	2003	BELL	$E_{ m cm}^{ee}$ = 10.6 GeV		
	< 4.6	95	⁶ ALBRECHT	2000	ARG	$E_{ m cm}^{ee}$ = 10.4 GeV		
	$> -3.1 ext{ and } < 3.1$	95	ACCIARRI	1998E	L3	19911995 LEP runs		
	> -3.8 and < 3.6	95	⁷ ACKERSTAFF	1998N	OPAL	19901995 LEP runs		
	< 0.11	95	^{8, 9} ESCRIBANO	1997	RVUE	$Z\! ightarrow au^+ au^-$ at LEP		
	< 0.5	95	¹⁰ ESCRIBANO	1993	RVUE	$Z\! ightarrow au^+ au^-$ at LEP		
	< 7	90	GRIFOLS	1991	RVUE	$Z ightarrow au au \gamma$ at LEP		
	< 1.6	90	DELAGUILA	1990	RVUE	$e^+ \; e^- ightarrow au^+ au^- \; E^{ee}_{ m cm}$ = 35 GeV		

G.González-Sprinberg

u lepton DM		EDM imaginary part						
$Im(d_{ au})$		$-1.03 imes 10^{-17} ext{ to } 2.30 imes 10^{-17}$						
VALUE ($10^{-16}\ e$ cm)	CL%	DOCUMENT ID		TECN	COMMENT			
-0.103 to 0.023	95		2022	BELL	$E_{ m cm}^{ee}$ = 10.6 GeV			
	• • We do r	not use the following data for a	verages, fits, limi	its, etc. • •				
$-0.25 ext{ to } 0.008$	95	² INAMI	2003	BELL	$E_{ m cm}^{ee}$ = 10.6 GeV			
< 1.8	95	³ ALBRECHT	2000	ARG	$E_{\rm cm}^{ee}\text{=}10.4~{\rm GeV}$			
1 INAMI 2022 use $e^+~e^- ightarrow au^+ au^-$ o	events from 833 fb $^{-1}$ o	f data. Also report a measuren	nent of Im(d_{τ}) = (-0.40 ± 0.3	22) $ imes 10^{-17} e$ cm.			
² INAMI 2003 use $e^+ e^- \rightarrow \tau^+ \tau^-$	events.							

³ ALBRECHT 2000 use $e^+ e^- \rightarrow \tau^+ \tau^-$ events. Limit is on the absolute value of Im(d_τ).

1. Tau lepton DM

$J = \frac{1}{2}$

Mass $m = 1776.86 \pm 0.12$ MeV $(m_{ au^+} - m_{ au^-})/m_{
m average} \ < \ 2.8 imes 10^{-4}$, CL = 90%Mean life $\tau = (290.3 \pm 0.5) \times 10^{-15}$ s $c\tau = 87.03 \ \mu m$ Magnetic moment anomaly > -0.052 and < 0.013, CL = 95% $\text{Re}(d_{\tau}) = -0.220 \text{ to } 0.45 \times 10^{-16} \text{ ecm, } \text{CL} = 95\%$ $Im(d_{\tau}) = -0.250$ to $0.0080 \times 10^{-16} e \text{ cm}$, CL = 95%Weak dipole moment Ζ ${
m Re}(d_{ au}^w) < 0.50 imes 10^{-17} \ e\,{
m cm}, \ {
m CL} = 95\%$ ${
m Im}(d_{ au}^w) < ~1.1 imes 10^{-17} ~e\,{
m cm},~{
m CL} = 95\%$ Ζ Weak anomalous magnetic dipole moment ${\sf Re}(lpha^{w}_{ au}) < \ 1.1 imes 10^{-3}$, ${\sf CL}=95\%$ ${
m Im}(lpha_{ au}^{w})<~2.7 imes10^{-3}$, CL =95%

FIRST ORDER INTERACTION WITH ELECTRIC FIELD

$$H_{\rm EDM} = -\vec{d} \cdot \vec{E} \quad ; \quad \vec{d} = d\vec{s} \quad \longleftarrow$$

Classical electromagnetism Non relativistic quantum mechanics Non-relativistic limit

Relativistic quantum mechanics: Dirac equation

$$H = \overline{\Psi} \left(i(\partial + e \mathcal{A}) - m \right) \Psi + \frac{i}{2} d \overline{\Psi} \gamma^5 \sigma^{\mu\nu} \Psi F_{\mu\nu}$$

2. Electric dipole moment

Time reversal T-odd, Parity P-odd (Landau 1957) / CPV

- vertex corrections
 - at least 4-loops for leptons (Shabalin '78, Hoogeveen '90)
- Beyond SM: one loop effect (2HDM,SUSY, ...)• dimension six effective operator

Besides:

• EDM tensor structure is chirality flipping magnitude.

SM:

- EDM generated by physics at Λ scale may have ~ (m/ Λ)ⁿ factors
- τEDM depends on the underlying mechanisms of CP violation

2. Electric dipole moment

Experiments

$$|d_{\gamma}^{e}| < 1.1 \times 10^{-29} \text{ e cm } \text{CL } 90.0 \%$$

$$|d_{\gamma}^{\mu}|$$
 < 1.8 x 10⁻¹⁹ e cm CL 95.0 %

$$|d_{\gamma}^{n}| < 1.8 \times 10^{-26} \text{ e cm } \text{CL } 90.0 \%$$

Re(
$$d_{\tau}$$
) -1.85×10^{-17} to $6.1 \times 10^{-18} \ e \ {\rm cm}$ Im(d_{τ}) -1.03×10^{-17} to $2.30 \times 10^{-18} \ e \ {\rm cm}$

2. Electric dipole moment

SM/EDM is well below within present experimental limits:

$$d_{\gamma}^{q} \approx 10^{-32} - 10^{-34} \text{ ecm} \quad \text{CKM 3-loops}$$

$$d_{\gamma}^{e} \approx 10^{-38} \text{ ecm} \quad \text{CKM 4-loops}$$

Naively, for the SM Tau EDM

$$\mathbf{d}_{\gamma}^{\tau} \approx \frac{\mathbf{m}_{\tau}}{\mathbf{m}_{e}} \mathbf{d}_{\gamma}^{e} \approx 10^{-33} - 10^{-34} \text{ecm}$$

J.F.Donoghue '78 I.B.Khriplovich,M.E.Pospelov '90 A.Czarnecki,B.Krause '97 M.Pospelov, A.Ritz '14

...16 orders of magnitude below experiments...

G.González-Sprinberg

2. Electric dipole moment

τ -EDM computed in many BSM:

ext. Higgs sector / SUSY / Leptoquarks / LR ...

BSM τ -EDM not far from the bounds

Non-vanishing signal for a T-EDM CPV observable I NEW PHYSICS

2. Electric dipole moment

Experiments/bounds:

$$\begin{split} \Delta \sigma & (e^+e^- \to \tau^+\tau^-) \\ \Delta \Gamma & (Z \to \tau^+\tau^-) \\ \Delta \sigma & (e^+e^- \to \tau^+\tau^-\gamma \gamma) \\ \Delta \Gamma & (Z \to \tau^+\tau^- \gamma) \end{split}$$

CPV-observables in Tau-pair production: linear EDM terms

SPIN TERMSand/orTRIPLE PRODUCTS(angular distributions)(triple spin-momentum products)

2. Electric dipole moment

Experiments/colliders: LEP LEP2 LHC BABAR BELLE BELLE2...

- 2. Electric dipole moment
 - CP : Spin terms
 - Expectation values of tensor observables
 - a. Spin terms : Linear polarizations Spin-spin correlations

Which means measurements of the angular distribution of Tau decay products

b. Expectation values of tensor spin-momentum obs.

Triple spin-momentum correlations

- 2. Electric dipole moment
 - a. Spin terms in e[±] unpol prod. of tau pairs

			_	Correlations	Р	CP	Т
Polarizations	Р	CP	Т	$s_{xx}, s_{yy}, s_{zz},$			1
$(\mathbf{s_1} + \mathbf{s_2})_{x,z}$	_	+	+	$(s_{xz} + s_{zx})$	+	+	+
$(\mathbf{s_1} + \mathbf{s_2})_y$	+	+		$(s_{xy}+s_{yx}),$		4	
$(\mathbf{s_1} - \mathbf{s_2})_y$	+			$(s_{yz} + s_{zy})$			
$(\mathbf{s_1} - \mathbf{s_2})_{x,z}$	_		+	$(\mathbf{s_1}\times\mathbf{s_2})_{x,z}$	_	_	_
				$(\mathbf{s_1} imes \mathbf{s_2})_y$	+		+

x: Transverse y: Normal z: Longitudinal

x,z production plane

- 2. Electric dipole moment
 - a. Spin terms in e[±] unpol prod. of tau pairs

Normal polarization/spin-correlations P_N^{τ} / $(s_1 x s_2)_{x,z}$

NORMAL-TRANSVERSE CORRELATION

$$C_{xy}^{-} \text{ term in } d\sigma(e^{+}e^{-} \to \gamma \to \tau^{+}\tau^{-} \to h^{+}\overline{\nu}h'^{-}\nu)$$

$$\frac{d\sigma^{8}}{d\Omega_{\tau}d^{3}q_{-}^{*}d^{3}q_{+}^{*}}\Big|_{C_{xy}^{-}} = \frac{\alpha^{2}\beta^{2}}{128\pi^{3}s^{2}}Br_{+}Br_{-}d_{\tau}^{\gamma} \qquad n_{\pm}^{*} = \pm\alpha_{\pm}\hat{q}_{\pm}^{*}$$

$$\sin^{2}\theta \left(n_{+x}^{*}n_{-y}^{*} - n_{+y}^{*}n_{-x}^{*}\right) \qquad q_{\pm} \text{ are the momentum of the hadrons}$$

$$\delta(q_{-}^{*} - P_{-})\delta(q_{+}^{*} - P_{+}) \qquad P_{\pm} = \frac{m_{\tau}^{2} - m_{\pm}}{2m\tau}$$

- 2. Electric dipole moment
 - **b.** Tensor observables:

$$\mathsf{T}_{ij} = (\mathsf{s}_+ \mathsf{x} \mathsf{s}_-)_i \cdot \mathsf{q}_j$$

W.Bernreuther, O.Nachtmann etal

since'89 and in 2022

More on this:

K. Inami talk in a few minutes...

2. Electric dipole moment

Some conclusions

- Linear polarization / correlations / triple products CPodd observables at low/high energy may provide stringent Tau-EDM bounds
- Recent results have recently improve the limits on the Tau EDM
- Tau-EDM bounds might become competitive with other EDM bounds if bounds improved
- High statistics data may contribute to this limits
- New data and new ideas are coming

3. Magnetic dipole moment

FIRST ORDER INTERACTION WITH MAGNETIC FIELD $H_{MDM} = -\vec{\mu} \cdot \vec{B} \qquad \vec{\mu} = \mu \vec{s}$

$$H_{Dirac} = \overline{\psi} \left(i \left(\partial + eA \right) - m \right) \psi + \frac{\iota}{2} a \overline{\psi} \sigma^{\mu\nu} \psi F_{\mu\nu}$$

$$\mu = 2(1+a) \frac{e\hbar}{2mc}$$

Schwinger 1948 QED:

a = $\alpha/2\pi \approx 0.00116141$

Flavor and mass-independent at first order

e+ /

3. Magnetic dipole moment

a = $\alpha/2\pi \approx 0.00116141$

>-0.052 and < 0.013 CL=95.0%

- ABDALLAH 04K DLPH $e^+e^- \rightarrow e^+e^-\tau^+\tau^$ at LEP2
- Close to $\alpha/2\pi$ in the SM
- Finite 1-loop contr. SM / BSM (finite: tensor structure)
- chirality-flipping magnitude
- may depend on the underlying mass generation mechanism

3. Magnetic dipole moment Theory SM: Eidelman/Passera 2007

$$a_{f} = a_{f}^{QED} + a_{f}^{Weak} + a_{f}^{Strong} + \dots \qquad a_{l}^{QED} = A_{1} + A_{2} \left(\frac{m_{l}}{m_{j}}\right) + A_{2} \left(\frac{m_{l}}{m_{k}}\right) + A_{3} \left(\frac{m_{l}}{m_{j}}, \frac{m_{l}}{m_{k}}\right) \\ A_{i} = A_{i}^{(2)} \left(\frac{\alpha}{\pi}\right) + A_{i}^{(4)} \left(\frac{\alpha}{\pi}\right)^{2} + A_{i}^{(6)} \left(\frac{\alpha}{\pi}\right)^{3} + \dots$$

$$\left(A_1^{(2)} = \frac{1}{2}\right)$$
Schwinger

$$a_{\tau}^{\rm SM} = 117\,721\,(5) \times 10^{-8}$$

Samuel/Li/Mendel '91 117300(300)x10⁻⁸ 260 HAD 56 EW

3. Magnetic dipole moment

PDG 2022/3

e Magnetic moment anomaly $(g-2)/2 = (1159.65218062 \pm 0.00000012) \times 10^{-6}$

 μ Magnetic moment anomaly $(g-2)/2 = (11659206 \pm 4) \times 10^{-10}$

 τ $\,$ Magnetic moment anomaly >-0.052 and <0.013, CL =95%

3. Magnetic dipole moment

BSM effective Lagrangian approach

$$L_{eff} = L_0 + \frac{1}{\Lambda^2} \sum_{i} \mathbf{C}_i \mathbf{O}_i + \mathbf{O}\left(\frac{1}{\Lambda^4}\right)$$

 $L_{\text{NP}} = \alpha_{\text{B}} Q_{\text{B}} + \alpha_{\text{W}} Q_{\text{W}} + \text{h.c.}$

Operators

$$O_{w} = \frac{g}{2\Lambda^{2}} \overline{L}_{L} \vec{\sigma} \phi \sigma_{\mu\nu} \tau_{R} W^{\mu\nu}$$

$$O_{B} = \frac{g'}{2\Lambda^{2}} \overline{L}_{L} \sigma \phi \sigma_{\mu\nu} \tau_{R} B^{\mu\nu}$$

$$B^{\mu}, \vec{W}^{\mu} \rightarrow A^{\mu}, Z^{\mu}, W_{+}^{\mu}, W_{-}^{\mu}$$

$$\phi \rightarrow v/\sqrt{2}$$

3. Magnetic dipole moment

$$SSB: \qquad \mathcal{L}_{eff} = \epsilon_{\gamma} \frac{e}{2m_Z} \overline{\tau} \sigma_{\mu\nu} \tau F^{\mu\nu} + \epsilon_Z \frac{e}{2m_Z s_W c_W} \overline{\tau} \sigma_{\mu\nu} \tau Z^{\mu\nu} \\ + \left(\epsilon_W \frac{e}{2m_Z s_W} \overline{\nu_{\tau L}} \sigma_{\mu\nu} \tau_R W^{\mu\nu}_+ + \text{h.c.} \right) ,$$

$$\begin{aligned} \varepsilon_{\gamma} &= (\alpha_{\rm B} - \alpha_{\rm W}) \frac{\rm vm_{z}}{\sqrt{2}\Lambda^{2}}; \\ \varepsilon_{z} &= -\left(\alpha_{\rm B} s^{2}_{\rm W} + \alpha_{\rm W} c^{2}_{\rm W}\right) \frac{\rm vm_{z}}{\sqrt{2}\Lambda^{2}}; \\ \varepsilon_{\rm W} &= \alpha_{\rm W} \frac{\rm vm_{z}}{\Lambda^{2}} = -\sqrt{2} \left(\varepsilon_{z} + \varepsilon_{\gamma} s^{2}_{\rm W}\right) \end{aligned}$$

$$-0.005 < a_{\gamma} < 0.002,$$

 $-0.0007 < a_Z < 0.0019,$
 $-0.06 < \epsilon_W < 0.07,$

LEP1/SLD: Z decay rates + pol asymm LEP2: xsections + W DR CDF/D0: W DR

3. Magnetic dipole moment

Experiments/colliders: LEP LEP2 LHC BABAR BELLE BELLE2...

3. Magnetic dipole moment

Experiments/colliders: LEP LEP2 LHC BABAR BELLE BELLE2...

3. Magnetic dipole moment **Experiments**

OBSERVABLES

Cross sections

Linear polarizations

Spin correlations

Decay distributions

3. Magnetic dipole moment The anomaluos magnetic moment is defined by

 $a_{\tau} = F_2 (q^2 = 0)$. Both taus also on-shell.

This quantity is gauge independent

AND

for QED, F_2 ($q^2 \neq 0$) is also gauge independent

Besides, weak interactions gauge dependence goes to 0 for $q^2 > 0$

At one loop QED:

$$F_2(s) = \left(\frac{\alpha}{2\pi}\right) \frac{2m_\tau^2}{s} \frac{1}{\beta} \left(\log\frac{1+\beta}{1-\beta} - i\pi\right), \quad \text{for } q^2 = s > 4m_\tau^2,$$

3. Magnetic dipole moment

UNPOLARIZED BEAM

Normal polarization asymmetries: Imaginary part

$$\frac{d\sigma^{S}}{d\cos\theta_{\tau^{-}}} = \frac{\pi\alpha^{2}}{4s}\beta(s_{-}+s_{+})_{y}Y_{+},$$

$$Y_{+} = \gamma \beta^{2} (\cos \theta_{\tau^{-}} \sin \theta_{\tau^{-}}) \operatorname{Im} \{F_{2}(s)\}$$

Angular distribution:

$$\frac{d\sigma_{\rm FB}}{d\phi_{\pm}} = \mp \frac{\pi \alpha^2}{12s} \operatorname{Br}(\tau^+ \to h^+ \bar{\nu}_{\tau}) \operatorname{Br}(\tau^- \to h^- \nu_{\tau})(\alpha_{\pm}) \beta^3 \gamma \operatorname{Im}\{F_2(s)\} \sin \phi_{\pm}.$$
$$A_N^{\pm} = \frac{\sigma_L^{\pm} - \sigma_R^{\pm}}{\sigma} = \pm \alpha_{\pm} \frac{1}{2(3 - \beta^2)} \beta^2 \gamma \operatorname{Im}\{F_2(s)\}$$

G.González-Sprinberg

3. Magnetic dipole moment POLARIZED BEAM

Longitudinal and Transverse polarization asymmetries:

Real part

L / T pol. are P-odd , beam polarization is needed

$$\frac{d\sigma^{S}}{d\cos_{\tau^{-}}}\Big|_{\lambda} = \frac{\pi\alpha^{2}}{8s}\beta\{(s_{-}+s_{+})_{y}Y_{+} + \lambda[(s_{-}+s_{+})_{x}X_{+} + (s_{-}+s_{+})_{z}Z_{+}]\},\$$

$$X_{+} = \sin \theta_{\tau} - \left[|F_{1}|^{2} + (2 - \beta^{2}) \gamma^{2} \operatorname{Re}\{F_{2}\} \right] \frac{1}{\gamma},$$

$$Z_{+} = \cos \theta_{\tau} - \left[|F_{1}|^{2} + 2 \operatorname{Re}\{F_{2}\} \right],$$

3. Magnetic dipole moment

POLARIZED BEAM

Angular distribution L/T polarization asymmetries:

$$A_T^{\pm} = \frac{\sigma_R^{\pm}|_{\text{Pol}} - \sigma_L^{\pm}|_{\text{Pol}}}{\sigma} = \mp \alpha_{\pm} \frac{3\pi}{8(3 - \beta^2)\gamma} \Big[|F_1|^2 + (2 - \beta^2)\gamma^2 \operatorname{Re}\{F_2\} \Big],$$

$$A_L^{\pm} = \frac{\sigma_{\rm FB}^{\pm}(+)|_{\rm Pol} - \sigma_{\rm FB}^{\pm}(-)|_{\rm Pol}}{\sigma} = \mp \alpha_{\pm} \frac{3}{4(3-\beta^2)} \Big[|F_1|^2 + 2\,{\rm Re}\{F_2\} \Big],$$

Combining both observables

$$\operatorname{Re}\left\{F_{2}(s)\right\} = \mp \frac{8(3-\beta^{2})}{3\pi\gamma\beta^{2}} \frac{1}{\alpha_{\pm}} \left(A_{T}^{\pm} - \frac{\pi}{2\gamma}A_{L}^{\pm}\right).$$

3. Magnetic dipole moment

Some conclusions

- Still far from SM prediction...
- Enough room for BSM effects
- More statistics and experiments still ongoing
- New ideas/approaches are coming
- We may need to consider tau g-2 more seriously (first speaker)

Thanks for your attention

Discussions/comments with

J.Bernabéu, J.Vidal and A.Santamaria

are gratefully acknowledged