

NOvA Current Status and Future Prospects

Teresa Lackey for the NOvA collaboration

7 December 2023

NOvA – NuMI Off-axis ν_e Appearance experiment

- Long baseline neutrino oscillation experiment;
- Designed to detect ν_e , ν_μ , $\overline{\nu}_e$, and $\overline{\nu}_\mu$ originating from the primarily muon (anti)neutrino NuMI beam at Fermilab.

The NOvA detectors

Near Detector cross-section analyses

- We study cross sections to gain a better understanding of neutrinonucleus interactions.
- In NOvA's case, this helps us inform our systematic uncertainties on oscillation and other non-cross-section results.
- Dataset contains millions of neutrino interactions in the Near Detector.
- Analyses in progress:
 - Inclusive measurements:
 - $\overline{\nu}_{\mu}$ CC, triple differential in T_{μ} , $\cos \theta_{\mu}$, E_{Avail}
 - $\overline{\nu}_e$ CC, double differential in E_e , $\cos \theta_e$
 - $\overline{\nu}$: ν ratios
 - Along with many exclusive measurements.

Near Detector cross-section analyses

- We study cross sections to gain a better understanding of neutrinonucleus interactions.
- In NOvA's case, this helps us inform our systematic uncertainties on oscillation and other non-cross-section results.
- Dataset contains millions of neutrino interactions in the Near Detector.
 Latest results:

 u_{μ} CC cross-section measurements - two double differential analyses

Focussing on sensitivity to 2p2h/MEC events

signal definition:

- Only one reconstructed track (low hadronic activity)
- Interaction contained within fiducial volume of detector
- $T_p \le 200 \text{ MeV}$ $T_\pi \le 175 \text{ MeV}$
- Measurement in bins of T_{μ} kinetic energy of muon, $\cos \theta_{\mu}$ scattering angle of muon

• 115 kinematic bins

signal definition:

- Only one reconstructed track (low hadronic activity)
- Interaction contained within fiducial volume of detector
- $T_p \le 200 \text{ MeV}$ $T_\pi \le 175 \text{ MeV}$
- Measurement in bins of T_{μ} kinetic energy of muon, $\cos \theta_{\mu}$ scattering angle of muon

• Uncertainty of 12-15%

QE	MEC	RES	DIS	COH
39.7%	33.7%	23.0%	2.5%	1.1%

Teresa Lackey I TAU 2023

signal definition:

- Interaction contained within fiducial volume of detector
- $0.5 < T_{\mu} < 2.5 \text{GeV}$ $\cos \theta_{\mu} > 0.5$
- Measurement in bins of $|\vec{q}|$ - three momentum transfer E_{Avail} - visible hadronic energy

- 27% selection efficiency, 92% purity
- 67 kinematic bins
 - Average uncertainty of 12% NOvA Preliminary

signal definition:

- Interaction contained within fiducial volume of detector
- $0.5 < T_{\mu} < 2.5 \text{GeV}$ $\cos \theta_{\mu} > 0.5$
- Measurement in bins of $|\vec{q}|$ - three momentum transfer E_{Avail} - visible hadronic energy

Teresa Lackey | TAU 2023

Teresa Lackey | TAU 2023

 ν_{μ} CC cross-section measurements summary

• Overall, models underestimate the cross sections in both muon and hadron systems. Muon Hadron

		system	system
	model	χ^2 -115 DOF	χ^2 -67 DOF
tuned to data	GENIE v2-12.2 + NOvA Tune	200	560
	Empirical MEC	190	910
	Valencia + MINERvA Tune	340	970
purely	Valencia	630	1900
theoretical	SuSA - v2	620	1000

- Poor agreement with all models; data is in closer agreement with tuned models.
- Future analyses will continue probing the 2p2h/MEC region.

Long-baseline neutrino oscillation results

Predicting energy spectra for the Far Detector

• Using the spectrum of neutrino events in the Near Detector, we can predict the ν_{μ} and ν_{e} energy spectra we expect to see at the Far Detector, varying Δm_{32}^2 , $\sin^2 \theta_{23}$, and δ_{CP} .

Predicting energy spectra for the Far Detector

• Using the spectrum of neutrino events in the Near Detector, we can predict the ν_{μ} and ν_{e} energy spectra we expect to see at the Far Detector, varying Δm_{32}^2 , $\sin^2 \theta_{23}$, and $\delta_{\rm CP}$.

Predicting energy spectra for the Far Detector

• Using the spectrum of neutrino events in the Near Detector, we can predict the ν_{μ} and ν_{e} energy spectra we expect to see at the Far Detector, varying Δm_{32}^2 , $\sin^2 \theta_{23}$, and δ_{CP} .

Convert the expected Far Detector true energy spectrum to reconstructed energy and compare with data.

Measured Far Detector neutrino energy spectra _{v-beam} NOvA Preliminary _{v-beam} NOvA Preliminary

Interpreting the results - two analysis methods

- Data selection and prediction remain the same.
- Results for ~equal ν -enhanced and $\overline{\nu}$ -enhanced beam modes.
 - -13.6×10^{20} protons-on-target in ν -enhanced beam
 - -12.5×10^{20} protons-on-target in $\overline{\nu}$ -enhanced beam

Interpreting the results - two analysis methods

- Data selection and prediction remain the same.
- Results for ~equal ν -enhanced and $\overline{\nu}$ -enhanced beam modes.
 - -13.6×10^{20} protons-on-target in ν -enhanced beam
 - -12.5×10^{20} protons-on-target in $\overline{\nu}$ -enhanced beam

Frequentist

- Requires Feldman-Cousins for correct confidence regions
 - computationally intensive and time-consuming.
- Profiling maximizes parameters not shown.

Confidence Regions:
 χ²

Bayesian

- Faster to look at other parameters like $\sin^2 2\theta_{13}$, Jarlskog-Invariant
 - can also look at the effect of systematics in more detail.
- Utilizes Markov Chain Monte Carlo which uses marginalization

 integrates over parameters not shown.
- Credible Regions: posterior probability densities

more details here:

Joint Fit with T2K in progress

- NOvA and T2K have general agreement, but there are different preferences for δ_{CP} values in normal ordering.
- Results expected early next year.

Future prospects More data

- Continuing to collect (anti)neutrino data.
 - Already have an additional $10-13 \times 10^{20}$ protons-on-target from ν -enhanced beam.
 - Plan to collect beam data until the beginning of 2027.
- > 3σ mass-ordering sensitivity for 30-40% of $\delta_{\rm CP}$ values.

More analyses

- Recent results (talks linked):
 - <u>sterile neutrinos</u> in the 3+1 model,
 - <u>non-standard-interactions</u> (NSI).
- Many cross-section analyses in the pipeline, with first inclusive antineutrino results from NOvA imminent.
- Ongoing joint analysis with T2K, results expected early next year.
- Analyzing data from our Test Beam detector to better understand some of our systematic uncertainties.
- Other non-cross-section and nonneutrino-oscillation results.

Questions?

NOvA Collaboration Meeting at Fermilab — October 2023

lackey32@fnal.gov

Why off-axis?

- At 14.6 mrad off-axis, the beam peaks around 2 GeV, which is close to the location of the first oscillation maximum for our baseline.
- We see more ~2 GeV neutrinos at this off-axis location than if we were on-axis. It has the additional benefit of reducing backgrounds from higher energy NC events which can mimic ν_e events.

Teresa Lackey I TAU 2023

🚰 Fermilab

Other cross-section analyses in progress

- Inclusive measurements:
 - $\overline{\nu}_{\mu}$ CC, triple differential in T_{μ} , $\cos \theta_{\mu}$, E_{avail}
 - $\overline{\nu}_e$ CC, double differential in E_e , $\cos \theta_e$
 - ν : $\overline{\nu}$ ratios
- Exclusive measurements:
 - $\overline{\nu}_{\mu}$ CC π^0
 - and ν : $\overline{\nu}$ ratio
 - $\overline{\nu}_{\mu}$ CC zero meson
 - ν_{μ} CC one π
 - νe elastic scattering
 - $\nu_{\mu} \operatorname{CC} \pi^{\pm}$
 - $\nu_{\mu} + N \rightarrow \nu_{\mu}, \ \mu^+, \ \mu^-$ (neutrino trident)

 ν_{μ} CC cross-section measurements - two double differential analyses

Muon system

- Only one reconstructed track (low hadronic activity)
- Interaction contained within fiducial volume of detector
- $T_p \leq 200 \text{ MeV}$ $T_{\pi} \leq 175 \text{ MeV}$
- Measurement in bins of T_u - kinetic energy of muon, $\cos \theta_u$ - scattering angle of muon

- $0.5 < T_{\mu} < 2.5 \text{GeV}$ $\cos \theta_{\mu} > 0.5$
- Measurement in bins of $|\vec{q}|$ - three momentum transfer E_{Avail} - visible hadronic energy

muon-system model comparisons

‡ Fermilab

hadron-system model comparisons

Teresa Lackey I TAU 2023

POT vs. time

- 13.6×10^{20} protons-on-target in ν -enhanced beam
- 12.5×10^{20} protons-on-target in $\overline{\nu}$ -enhanced beam

Measured Far Detector neutrino energy spectra _{v-beam} NOvA Preliminary _{v-beam} NOvA Preliminary

Other measurements now possible with Bayesian analysis

prior uniform in $\delta_{\rm CP}$

$$\Pi(\delta_{\rm CP}) = \begin{cases} \frac{1}{2} \sin^2 \left(\frac{1}{4} (\delta_{\rm CP} + \pi) \right), & -1 \le \delta_{\rm CP} / \pi \le 3\\ 0, & \text{otherwise.} \end{cases}$$

3-Flavor Oscillation Systematics

Source of Uncertainty	$\sin^2 \theta_{23}$	$\delta_{ m CP}/\pi$	$ \Delta m_{32}^2 \ (\times 10^{-3} \ {\rm eV}^2)$
Beam Flux	+0.00034 / -0.0008	+0.0023 / -0.0099	+0.0014 / -0.0023
Detector Calibration	+0.005 / -0.025	+0.028 / -0.17	$+0.019 \ / \ -0.019$
Detector Response	+0.0016 / -0.0021	+0.0041 / -0.0035	+0.0067 / -0.0085
Lepton Reconstruction	+0.0026 / -0.002	+0.006 / -0.016	+0.0094 / -0.015
Near-Far Uncor.	+0.002 / -0.0016	+0.012 / -0.028	+0.0013 / -0.0048
Neutrino Cross Sections	+0.0027 / -0.0034	+0.044 / -0.07	+0.0066 / -0.012
Neutron Uncertainty	+0.0049 / -0.0078	+0.0012 / -0.042	+0.011 / -0.017
Systematic Uncertainty	+0.0083 / -0.027	+0.054 / -0.19	+0.024 / -0.028
Statistical Uncertainty	+0.022 / -0.033	+0.21 / -0.87	$+0.043 \ / \ -0.055$

Exotic analyses

- Many 'exotic' analyses in progress.
 - Exotic = any non-cross-section or non-neutrino-oscillation result
- slow / fast magnetic monopoles
- neutrino magnetic moment
- light dark matter
- upward-going muons
- microscopic black holes
- seasonal variation of cosmic rays
- sidereal variations
- high-energy muons
- ultra-high-energy showers
- atmospheric neutrinos

Other analyses with results in the past couple of years

Non-Standard Interactions (NSI) Allow for non-zero, off-diagonal components in matter potential matrix.

Sterile Neutrinos in 3+1 model

No evidence for sterile neutrinos, also have limits for θ_{34} .

Sensitivities

- Continuing to collect (anti)neutrino data.
 - Already have an additional 10-13 \times 10²⁰ protons-on-target from ν -enhanced beam.
- > 3σ mass-ordering sensitivity for 30-40% of $\delta_{\rm CP}$ values

🚰 Fermilab