Fermilab DUS. DEPARTMENT OF Office of Science

Mu2e-II Experiment at Fermilab

Mete Yucel Tau Lepton 2023

Interest in Mu2e-II

Snowmass LOI

Mu2e-II: Muon to electron conversion with PIP-II Contributed paper for Snowmass

K. Byrum,¹ S. Corrodi,¹ Y. Oksuzian,¹ P. Winter,¹ L. Xia,¹ A. W. J. Edmonds,² J. P. Miller,² J. Mott,³ W. J. Marciano,⁴ R. Szafron,⁴ R. Bonventre^b,⁵ D. N. Brown^b,⁵ Yu. G. Kolomensky^{ab},⁵ O. Ning^a,⁵ V. Singh^a,⁵ E. Prebys,⁶ L. Borrel,⁷ B. Echenard,⁷ D. G. Hitlin,⁷ C. Hu,⁷ D. X. Lin,⁷ S. Middleton,⁷ F. C. Porter,⁷ L. Zhang,⁷ R.-Y. Zhu,⁷ D. Ambrose,⁸ K. Badgley,⁸ R. H. Bernstein,⁸ S. Boi,⁸ B. C. K. Casey,⁸ R. Culbertson,⁸ A. Gaponenko,⁸ H. D. Glass,⁸ D. Glenzinski,⁸ L. Goodenough,⁸ A. Hocker,⁸ M. Kargiantoulakis,⁸ V. Kashikhin,⁸ B. Kiburg,⁸ R. K. Kutschke,⁸ P. A. Murat,⁸ D. Neuffer,⁸ V. S. Pronskikh,⁸ D. Pushka,⁸ G. Rakness,⁸ T. Strauss,⁸ M. Yucel,⁸ C. Bloise,⁹ E. Diociaiuti,⁹ S. Giovannella,⁹ F. Happacher,⁹ S. Miscetti,⁹ I. Sarra,⁹ M. Martini,¹⁰ A. Ferrari,¹¹ S. E. Müller,¹¹ R. Rachamin,¹¹ E. Barlas-Yucel,¹² A. Artikov,¹³ N. Atanov,¹³ Yu. I. Davydov,¹³ v. Glagolev,¹³ I. I. Vasilyev,¹³ D. N. Brown,¹⁴ Y. Uesaka,¹⁵ S. P. Denisov,¹⁶ V. Evdokimov,¹⁶ A. V. Kozelov,¹⁶ A. V. Popov,¹⁶ I. A. Vasilyev,¹⁶ G. Tassielli,¹⁷ T. Teubner,¹⁸ R. T. Chislett,¹⁹ G. G. Hesketh,¹⁹ M. Lancaster,²⁰ M. Campbell,²¹ K. Ciampa,²² K. Heller,²² B. Messerly,²² M. A. C. Cummings,²³ L. Calibbi,²⁴ G. C. Blazey,²⁵ M. J. Syphers,²⁵ V. Zutshi,²⁵ C. Kampa,²⁶ M. MacKenzie,²⁶ S. Di Falco,²⁷ S. Donati,²⁷ A. Gioiosa,²⁷ V. Giusti,²⁷ L. Morescalchi,²⁷ D. Pasciuto,²⁷ E. Pedreschi,²⁷ F. Spinella,²⁷ M. T. Hedges,²⁸ M. Jones,²⁸ Z. Y. You,²⁹ A. M. Zanetti,³⁰ E. V. Valetov,³¹ E. C. Dukes,³² R. Ehrlich,³² R. C. Group,³² J. Heeck,³² P. Q. Hung,³² S. M. Demers,³³ G. Pezzullo,³³ K. R. Lynch,³⁴ and J. L. Popp³⁴

ArXiv Link

AMF workshop 2023

Mu2e

😤 Fermilab

e

What is Mu2e-II

• Current experiments searching muon sector of CLFV;

Ехр	Institut	Process	Sensitivity
MEG II	PSI	$\mu^{\pm} \to e^{\pm} + \gamma$	4.2×10^{-14}
Mu2e	FNAL	$\mu^- + N \to e^- + N$	6.0×10^{-17}
COMET	JPARC	$\mu^- + N \rightarrow e^- + N$	$10^{-15} - 10^{-17}$
МиЗе	PSI	$\mu^{\pm} \rightarrow e^{\pm} + e^+ + e^-$	$10^{-14} - 10^{-16}$

Increasing Mu2e capability

- Improve sensitivity.
- Probe higher mass scale.

Expanding upon Mu2e goals

- Change targets.
- Focus on excluding/including models.
- $\mu^- + N \rightarrow e^+ + N'$
- $\mu \to eX$

 θ_D parametrizes relative Magnitude of dipole and four-fermion coefficients.

PIP-II

😤 Fermilab

- Mu2e-II beam is delivered using CW of magnetically stripped H⁻ directly from LINAC instead of slow extracted protons from delivery ring(DR).
- $1.4 \times 10^9 \text{ H}^-$ per spill, 62 ns bunch width compared to 250 ns for Mu2e.
- 10^{-11} extinction is required for the beam compared to 10^{-10} for Mu2e.

Mu2e vs Mu2e-II Beam Comparison

Parameter	Mu2e	Mu2e-II
Proton source	Slow extraction from DR	PIP-II Linac
Proton kinetic energy	$8 { m GeV}$	$0.8 { m GeV}$
Beam Power for expt.	8 kW	100 kW
Protons/s	$6.25 imes 10^{12}$	$7.8 imes10^{14}$
Pulse Cycle Length	$1.693 \ \mu s$	$1.693~\mu { m s}$
Proton rms emittance	2.7	0.25
Proton geometric emittance	0.29	0.16
Proton Energy Spread (σ_E)	$20 { m MeV}$	$0.275 \mathrm{MeV}$
$\delta p/p$	2.25×10^{-3}	2.2×10^{-4}
Stopped μ per proton	$1.59 imes 10^{-3}$	$9.1 imes 10^{-5}$
Stopped μ per cycle		$1.2 imes 10^5$

Solenoids

- Production solenoid(PS) needs to change(cold mass) to handle the increased power delivered by PIP-II beam line.
- Lower energy beam is deflected more in vertical direction entering PS.
- Replacing PS cold mass;
 - Superconducting;
 - Cable-in-conduit conductor(CICC).
 - Internally cooled AI cable.
 - High-temperature superconducting(HTS) coils.
 - Resistive;
 - Water cooled resistive Cu coil.
 - LN₂ cooled resistive Cu or Al coil.
- TS may require some modifications.
- DS will be used as is.

Production target

- 100 kW on Mu2e-II target needs active cooling.
 - Carbon or Tungsten spheres on a conveyer belt.
 - Switch from copper to tungsten for HRS.
 - Need in situ monitoring of the target.
- R&D platform for AMF experiments and the Muon Collider.

Potential stopping targets

- Misalignment angle probes different Wilson coefficients.
- Preferably, for a complementary study one requires large angle -> heavy Z.
- Need muon lifetime > 250 ns, therefore Z < 25.

			Decay In Or	bit compariso	n	
	spin	NA/%	$E_{\rm end}/{ m MeV}$	$B/{ m MeV}^{-6}$	$ au_{\mu}/\mathrm{ns}$	$\Gamma_{ m cap}/s^{-1}$
$^{6}_{3}$ Li	1	7	104.64	1.3×10^{-19}	2175.3	4680
$^7_3\mathrm{Li}$	$\frac{3}{2}$	93	104.78	1.3×10^{-19}	2186.8	2260
$^{27}_{13}\mathrm{Al}$	$\frac{5}{2}$	100	104.97	8.9×10^{-17}	864	662×10^3
$^{46}_{22}{ m Ti}$	0	8	104.25	5.2×10^{-16}		
$^{47}_{22}{ m Ti}$	$\frac{5}{2}$	7	104.26	5.3×10^{-16}		
$^{48}_{22}{ m Ti}$	0	74	104.26	5.3×10^{-16}	329.3	2.59×10^6
$^{49}_{22}{ m Ti}$	$\frac{7}{2}$	5	104.26	5.4×10^{-16}		
$^{50}_{22}{ m Ti}$	0	5	104.26	5.4×10^{-16}		
${}^{51}_{23}{ m V}$	$\frac{7}{2}$	100	104.15	6.3×10^{-16}	284.5	3.07×10^6
$^{50}_{24}\mathrm{Cr}$	0	4	104.04	7.1×10^{-16}	233.7	3.82×10^6
$^{52}_{24}\mathrm{Cr}$	0	84	104.04	7.2×10^{-16}	256.0	3.45×10^6
$^{53}_{24}\mathrm{Cr}$	$\frac{3}{2}$	10	104.05	7.1×10^{-16}	266.6	$3.30 imes 10^6$
$^{54}_{24}\mathrm{Cr}$	0	2	104.05	6.9×10^{-16}	284.8	3.06×10^6

T. Suzuki, D. F. Measday, and J. P. Roalsvig,

"Total Nuclear Capture Rates for Negative Muons," Phys. Rev. C 35 (1987) 2212.

J. Heeck, R. Szafron, and Y. Uesaka, [2110.14667]

Tracker

Tracker Model - 36 tracker planes

Tracker Planes(24/36) - November 2023

Biggest difference is the reduced straw thickness from 15 μm to 8 μm

	Mu2e	Mu2e-I
Wall thickness (µm)	18.1	8.2
Al thickness (μm)	0.1	0.2
Au thickness (µm)	0.02	0.0
Linear Density (g/m)	0.35	0.15
Pressure limits (atm)	0 - 5	0 - 3
Elastic Limit (gf)	1600	500

- R&D needed for;
 - Straw handling.
 - Module production.
 - Leaks.
- Consider other tech;
 - NA62/COMET 12
 μm ultrasound weld.
 - Microform Al extrusion 2 μm

DOI: 10.1134/S1547477122020108 COMET 12 μ ultrasound welded

Microform extrusion

Comparison using thinner straws

15 μm vs 8 μm

Mu2e-II CE reconstructed momentum

Conversion electron

Alternative tracker geometry

Blue is 25 μm W sense wire, red is 50 μm Al and orange is 40 μm Al field wires. Alternatively 5 μm metaled mylar foils can replace the field layer.

- No glueing is needed as there is no need to eliminate leaks.
- He is needed for the drift gas to minimize multiple scattering.
- However He is $\times 2$ slower than ArCO₂ and will reduces rates.

Calorimeter

- Crystal needs to withstand 0.1-1 Mrad;
 - BaF₂ met requirements but long wavelengths must be suppressed.
 - LYSO:Ce also met requirements but is slower(40 ns decay time).
- Photosensors has the same rad requirements;
 - For BaF₂ they must be sensitive to 220 nm fast component and insensitive to 300 nm slow component.
 - AlGaN photocathode works well with BaF₂.
 - R&D is underway to improve radiation hardness of these SiPMs.

Calo disks - October 2023

Cosmic ray veto

Cosmic background ~= 1 bg event per day. Covers all DS and part of TS.

Mu2e-II

- Change geometry to further minimize gaps between scintillators and increase granularity.
- SiPMs with better PDE and potted fibers to increase light yield.

- 4 overlapping layers of scintillators.
 - 3 layer coincidence veto
- Readout through WLS fibers & 2x2 mm² SiPMs on both ends.

Trigger and Data Acquisition(TDAQ)

Backgrounds and sensitivity

- Mu2e-II results are for a C production target.
- More R&D and software optimization is needed.
- This estimate is considered to be conservative.

Results	Mu2e	Mu2e-II (5-year)
Backgrounds		
DIO	0.144	0.263
Cosmics	0.209	0.171
RPC (in-time)	0.009	0.033
RPC (out-of-time)	0.016	< 0.0057
RMC	< 0.004	< 0.02
Antiprotons	0.040	0.000
Decays in flight	< 0.004	< 0.011
Beam electrons	0.0002	< 0.006
Total	0.41	0.47
N(muon stops)	6.7×10^{18}	5.5×10^{19}
SES	3.01×10^{-17}	3.25×10^{-18}
$R_{\mu e}$ (discovery)	1.89×10^{-16}	2.34×10^{-17}
$R_{\mu e}(90\% \text{ CL})$	6.01×10^{-17}	6.39×10^{-18}

Arxiv link

Schedule Prediction

‡ Fermilab

Summary

- Mu2e-II is a worthwhile follow up to Mu2e in all cases with respect to Mu2e result.
- PIP-II will provide a much finer beam allowing Mu2e-II and other muon experiments to flourish.
- However more intense beam brings a harsher environment in terms of radiation. All subsystems will require significant R&D to meet this criteria.
- Mu2e-II offers many challenges and opportunities to work on regardless of the subsystem.

BACKUP

Extinction

- Extinction is measure of out-of-time beam
- Mu2e-II requires extinction < 10⁻¹¹
 - cf Mu2e requirement < 10⁻¹⁰
- PIP-II specification is 10⁻⁴
 - Likely will be better
- Second stage (10⁻⁹ with safety margin) with resonant dipoles and collimators, modified from Mu2e
 - Lower momentum means larger deflection
 - No beam halo from Mu2e's slow extraction septum
 - Lower momentum means lower punch through at collimator

Measured bunch-by-bunch extinction from PIP-II linac

Extinction monitor

Mu2e's extinction monitor is integrated into beam dump shielding

- Sees about one ~4 GeV/c particle per 10⁶ protons on target
- Statistical measurement of extinction over several hours
- Monitor adaptable to Mu2e-II (800 MeV beam)
- Acceptance of channel is a challenge since trajectory much different
- Reworking requires R&D

Mu2e Extinction monitor

Radiation

Radiation around production target

- Displacements/atom (DPA) damage to PS coil
 - FOM is ratio of muon stops in stopping target to hottest DPA rate in PS coil
 - For Mu2e-II beam this FOM is close to or better than for Mu2e 8 GeV beam
 - DPA level around 4×10⁻⁵
 DPA/yr
 - Allows to run without annealing for ~1 yr

Beam power may imply different HRS

 W HRS with 25 cm inner bore radius would tolerate 100 kW beam Radiation at the detector

- Doses ~20 times Mu2e at electronics and equipment alcoves
- Scaling by beam power yields estimated hadron fluxes (E > 30 MeV):
 - 3.7×10⁵ h/cm2/yr at rack electronics
 - 750 h/cm²/yr tracker and calorimeter electronics
- Estimates will be improved, but will require radiation-tolerant electronics

Environmental radiation

- MARS simulations suggest approximately 20 times Mu2e
- Mitigation to be evaluated, may require, e.g.,
 - Increasing berm
 - Fencing a controlled area

Stopping Target Monitor

Stopping Target Monitor (STM) measures denominator of Rme

- Monitors X-ray and g-ray emission from stopping target during muon capture
- 10% accuracy
- For Al target:
 - 347 keV from 2p to 1s transition, prompt with muon stop
 - 1809 keV from nuclear capture, with 864 ns muon lifetime in Al
 - 844 keV from ²⁶Mg* capture product, lifetime 9.5 minute
- Mu2e uses HPGe detector (excellent resolution) and LaBr₃ crystal (high rate, radiation hard) at 34 m from target
- To continue to use in higher rate and higher dose Mu2e-II may:
 - Increase absorber in STM beamline to reduce "beam flash"
 - Use HPGe at low intensity to calibrate LaBr₃
 - Move detectors off-axis
 - Replace some calorimeter crystals with LaBr₃ or LYSO
 - Create tertiary photon beam and measure that
- Subject of further R&D

AMF concept

High Temperature Superconductor (HTS)

Thinking about HTS for production solenoid

- Cable more costly than LTS
 - But gap is closing
 - Can operate at higher current density
- R&D will cost more than for LTS
 - Thanks to fusion, already high on learning and availability curves
 - What we learn is of interest to others
 - E.g., muon collider "prototype", maybe AMF
- Operating cost lower than for LTS
 - Higher temperature operation
 - Gaseous cooling
 - Cryostable (hard to quench)
 - Quench detection harder
- Radiation damage limits similar with LTS
 - HTS conductor (REBCO) can be annealed; Nb3Sn can not

Thanks to Zachary Hartwig and Luca Bottura!

Accelerator Evolution(ACE) formerly known as PIP-III

- Booster replacement.
 - Extend SRF or a new RCS.
 - Supply 8 GeV up to 2.4 MW.
 - New science spigots;
 - 2 GeV continuous wave. What we
 - 2 GeV pulsed(~1MW). want !
 - 8 GeV pulsed(~1MW).
- AMF can work with both options.
 - Needs accumulator ring in both cases.

Mu2e(-II) physics besides $\mu \rightarrow e$

Tracker LDRD R&D

Achieving higher sensitivity requires better resolution

- Discriminate to higher momentum in decay-in-orbit tail
- Tracking LDRD has been extremely useful so far
 - + Low mass straws 15 μ Mu2e \rightarrow 8 μ Mu2e-II
- Investigating challenges
 - Collapse under own weight or static forces
 - Keep inflated once terminated
 - Metallization important to lowering leak rate
 - Paper removal, Alloy formation
 - Finding companies willing to make samples
 - 3 μ straws?

8 m Mylar straws using spiral winding

October 6, 2023

8 \Box straws with terminations

F. Porter - Mu2e Collaboration Meeting

Gold/aluminum alloy Formation (mu2e straw)

65

High power target LDRD R&D (future)

- (Continue to) study configurations in simulation
- Additional realism in prototyping
 - (prototype 3 with realistic materials)
- Investigate other options, perhaps jointly with muon collider
 - Fluidized tungsten powder
 - Liquid heavy metal
- Cooling plant, remote handling

Estimate \$2M

Discussion with K.Lynch:

- Good for designs, prototypes, long-term testing
- Likely to need more, but would be good start
- Additional work also may have additional sources (university program, GARD, LDRD for novel ideas, SBIR/STTR, some on FNAL ops, etc)
- Preparing a list of R&D items

Concept for fluidized tungsten target

Liquid heavy metal concept

October 6, 2023

F. Porter - Mu2e Collaboration Meeting

64

RPF Experiment Targetry – R&D Approach for Muon Collider

