

Status and plans of tau fits for HFLAV/PDG

Alberto Lusiani, for the BABAR collaboration orcid.org/0000-0002-6876-3288

Introduction

HFLAV tau branching fraction fit

- HFLAV does a global fit of tau branching fractions
- preliminary measurements are included if judged sound and near publication
- published measurements adjusted for biases and uncertainties from updated external inputs
- correlations and dependencies from common nuisance parameters are taken into account
- PDG tau BR fit relies on HFLAV tau BR fit using just published results and BR unitarity constraint

HFLAV Tau group

Sw. Banerjee (co-convener) M. Chrząszcz K. Hayasaka A. Lusiani (co-convener) M. Roney B. Shwartz

fit result elaborations

lepton universality tests, determination of $|V_{us}|$ with tau measurements

recent updates, included in HFLAV 2022 report

new radiative corrections for tau hadronic decays

recent updates, included in the incoming HFLAV report

▶ tau mass measurement by Belle II [PRD 108 (2023) 032006] updates universality tests

fit now includes nuisance parameters constrained by measurements other than tau BR

HFLAV Tau BR fit basis modes linear combination supposed to sum to 1

2015, 31 basis modes

2016, 46 basis modes

			a. 1. (61)	(T) 1	$\bar{k}^{0}b^{-}b^{-}b^{+}u$	0.0247 ± 0.0100	1.00
$e^-\overline{\nu}_e\nu_\tau$	17.83 ± 0.04	decay mode	fit result (%) co	efficient	$K n n n \nu_{\tau}$	0.0247 ± 0.0199	1.000
$\mu^- \overline{\nu}_\mu \nu_\tau$	17.41 ± 0.04	$\mu^{-}\bar{\nu}_{-}\nu_{-}$	17.3936 ± 0.0384	1.0000	$\pi \pi \pi^{-} \nu_{\tau}$ (ex. K°, ω)	8.9870 ± 0.0314	1.002
$\pi^- \nu_{\tau}$	10.83 ± 0.06	μ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻	17.8174 ± 0.0200	1.0000	$\pi^{-}\pi^{-}\pi^{-}\pi^{0}\nu_{\tau}$ (ex. K^{0}, ω)	2.7404 ± 0.0710	1.000
$\pi^{-}\pi^{0}\nu_{\tau}$	25.52 ± 0.09	$e \nu_e \nu_\tau$	10.0105 ± 0.0510	1.0000	$h^{-}h^{-}h^{+}2\pi^{0}\nu_{\tau}$ (ex. K^{0}, ω, η)	0.0980 ± 0.0356	1.000
$\pi^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0})	9.30 ± 0.11	$\pi \nu_{\tau}$	10.8105 ± 0.0512	1.0000	$\pi^- K^- K^+ \nu_\tau$	0.1435 ± 0.0027	1.000
$\pi^{-3}\pi^{0}\nu_{\tau}$ (ex. K^{0})	1.05 ± 0.07	$K^- \nu_{\tau}$	0.6964 ± 0.0096	1.0000	$\pi^{-}K^{-}K^{+}\pi^{0}\nu_{\tau}$	0.0061 ± 0.0018	1.000
$h^{-}4\pi^{0}\nu_{\tau}$ (ex. K^{0}, η)	0.11 ± 0.04	$\pi^{-}\pi^{0}\nu_{\tau}$	25.4940 ± 0.0893	1.0000	$\pi^{-}\pi^{0}\eta\nu_{\tau}$	0.1389 ± 0.0072	1.000
$K^- \nu_{\tau}$	0.700 ± 0.010	$K^-\pi^0\nu_\tau$	0.4329 ± 0.0148	1.0000	$K^- m \nu_{\tau}$	0.0155 ± 0.0008	1.000
$K^{-}\pi^{0}\nu_{\tau}$	0.430 ± 0.015	$\pi^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0})	9.2595 ± 0.0964	1.0021	$K^{-}\pi^{0}n\nu_{-}$	0.0048 ± 0.0012	1.000
$K^{-2}\pi^{\nu}\nu_{\tau}$ (ex. K^{0})	0.069 ± 0.028	$K^{-}2\pi^{0}\nu_{\tau}$ (ex. K^{0})	0.0648 ± 0.0218	1.0000	$\pi - \bar{K}^0 m_{-}$	0.0094 ± 0.0015	1.000
$K^{-3}\pi^{-5}\nu_{\tau}$ (ex. K^{-5}, η)	0.052 ± 0.027	$\pi^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0})	1.0428 ± 0.0707	1.0000	$\pi^- \pi^+ \pi^- m (or K^0)$	0.0034 ± 0.0010	1.000
$\pi^- K \nu_\tau$	0.845 ± 0.028	$K^{-}3\pi^{0}\nu_{\tau}$ (ex. K^{0}, η)	0.0478 ± 0.0212	1.0000	$\pi \pi \pi \eta \nu_{\tau}$ (ex. K)	0.0219 ± 0.0013	1.000
$\pi^{-}K^{-}\pi^{0}\nu_{\tau}$	0.388 ± 0.015	$h^{-}4\pi^{0}\nu_{\pi}$ (ex. K^{0} , n)	0.1119 ± 0.0391	1.0000	K = 0	0.0410 ± 0.0092	1.000
$\pi^{-}K_{S}^{0}K_{S}^{0}\nu_{\tau}$	0.0232 ± 0.0007	$\pi^- \bar{K}^0 \nu$	0.8395 ± 0.0140	1.0000	$n \pi^{\circ}\omega\nu_{\tau}$	0.4085 ± 0.0419	1.000
$\pi^- K_S^o K_L^o \nu_\tau$	0.12 ± 0.05	$K = K^0 \eta$	0.0000 ± 0.0110 0.1470 ± 0.0052	1.0000	$K^- \phi \nu_{\tau}$	0.0044 ± 0.0016	0.831
$K = K^0 \nu_\tau$	0.149 ± 0.005	$-\bar{\nu}_{\tau} = 0$	0.1479 ± 0.0000	1.0000	$\pi^- \omega \nu_\tau$	1.9494 ± 0.0645	1.000
$K K^{-}\pi^{-}\nu_{7}$	0.151 ± 0.007	$\pi K \pi \nu_{\tau}$	0.3821 ± 0.0129	1.0000	$K^{-}\pi^{-}\pi^{+}\nu_{\tau}$ (ex. K^{0}, ω)	0.2927 ± 0.0068	1.000
$\pi \pi' \pi \nu_{\tau}$ (ex. K [*] , ω) ===+====0, (, V ⁰ ,)	8.99 ± 0.06 2.70 ± 0.08	$K \pi^{0}K^{0}\nu_{\tau}$	0.1503 ± 0.0071	1.0000	$K^{-}\pi^{-}\pi^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0}, ω, η)	0.0394 ± 0.0142	1.000
$K^{-} \pi^{+} \pi^{-} \mu = (\alpha x K^{0})$	2.70 ± 0.08 0.204 ± 0.015	$\pi^{-}K^{0}\pi^{0}\pi^{0}\nu_{\tau}$ (ex. K^{0})	0.0263 ± 0.0226	1.0000	$\pi^{-}2\pi^{0}\omega\nu_{\tau}$ (ex. K^{0})	0.0071 ± 0.0016	1.000
$K = \frac{1}{2} $	0.254 ± 0.015	$\pi^{-}K_{S}^{0}K_{S}^{0}\nu_{\tau}$	0.0233 ± 0.0007	2.0000	$2\pi^{-}\pi^{+}3\pi^{0}\nu_{\tau}$ (ex. $K^{0}, \eta, \omega, f_{1}$)	0.0014 ± 0.0027	1.000
$K^- K^+ \pi^- \mu$ (ex. K^-, η)	0.073 ± 0.012 0.144 ± 0.005	$\pi^- K^0_S K^0_L \nu_\tau$	0.1080 ± 0.0241	1.0000	$3\pi^{-}2\pi^{+}\nu_{\tau}$ (ex. K^{0}, ω, f_{1})	0.0769 ± 0.0030	1.000
$K^{-}K^{+}\pi^{-}\pi^{0}\mu$	0.0061 ± 0.0025	$\pi^{-}\pi^{0}K_{S}^{0}K_{S}^{0}\nu_{\tau}$	0.0018 ± 0.0002	2.0000	$K^{-2}\pi^{-2}\pi^{+}\nu_{\pi}$ (ex. K^{0})	0.0001 ± 0.0001	1.000
$h^-h^-h^+2\pi^0\nu_{\pi}$ (ex. K^0, ω, η)	0.10 ± 0.04	$\pi^{-}\pi^{0}K_{S}^{0}K_{L}^{0}\nu_{\tau}$	0.0325 ± 0.0119	1.0000	$2\pi^{-}\pi^{+}\omega u_{-}$ (ex. K^{0})	0.0084 ± 0.0006	1.000
$h^{-}h^{-}h^{+}3\pi^{0}\nu_{\tau}$	0.023 ± 0.007				$3\pi^{-}2\pi^{+}\pi^{0}\mu$ (or K^{0} $n \oplus f_{t}$)	0.0001 ± 0.0000	1.000
$3h^-2h^+\nu_{\tau}$ (ex. K^0)	0.0839 ± 0.0035	1			$U^{-2\pi} = 2\pi - 2\pi + 2\pi - 2\pi + 2\pi + 2\pi + 2\pi + 2\pi +$	0.0000 ± 0.0009	1.000
$3h^{-}2h^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0})	0.0178 ± 0.0027	1			-5 (5 , 0 -0 +)	0.0001 2 0.0001	1.000
$h^-\omega\nu_\tau$	2.00 ± 0.08	1			$\pi J_1 \nu_\tau (J_1 \rightarrow 2\pi 2\pi^+)$	0.0052 ± 0.0004	1.000
$h^- \omega \pi^0 \nu_\tau$	0.41 ± 0.04	1			$\pi 2\pi^{\circ}\eta\nu_{\tau}$	0.0194 ± 0.0038	1.000
$\eta \pi^{-} \pi^{0} \nu_{\tau}$	0.139 ± 0.010	L					
$\eta K^- \nu_\tau$	0.0152 ± 0.0008						

$\mathcal{B}(au o a_1(\pi \gamma) u)$ pseudo-measurement

B(τ → a₁(πγ)ν) is ALEPH estimate, not a measurement
 B(τ → a₁γν) = B(τ → 3πν)_{EXP, ALEPH} · B(a₁ → πγ)_{EXP}
 required to close the measured / estimated tau BR unitarity

past HFLAV editions

HFLAV

- \blacktriangleright use ALEPH pseudo-measurement, based on $\mathcal{B}(au o 3\pi
 u)_{\mathsf{EXP, ALEPH}}$
- \blacktriangleright con: ALEPH pseudo-measurement does not use updated value of $\mathcal{B}(au o 3\pi
 u)$
- PDG (HFLAV fit)
 - use constraint $\mathcal{B}(\tau
 ightarrow a_1 \gamma
 u) = \mathcal{B}(\tau
 ightarrow 3\pi
 u)_{\text{current fit}} \cdot \mathcal{B}(a_1
 ightarrow \pi \gamma)_{\text{EXP}}$
 - \blacktriangleright pro: uses updated value of ${\cal B}(au o 3\pi
 u)$
 - con: uncertainty of $\mathcal{B}(a_1 o \pi \gamma)$ not taken into account
 - \Rightarrow resulting $\mathcal{B}(au o a_1 \gamma
 u)$ uncertainty underestimated

since 2023

lacksim add nuisance fit parameter $\mathcal{B}(a_1 o \pi \gamma)$ with its own χ^2 contribution

 after fit convergence, χ² restricted to tau measurements is computed ⇒ consistency checks remain limited to tau measurements

same treatment for PDG and HFLAV variants

Radiative corrections notation

not including universal EW correction $S_{EW}^{m_{\tau}}$

including universal EW correction $S_{EW}^{m_{\tau}}$

$$\begin{split} & \vdash \Gamma(\tau^- \to \pi^- \nu_\tau) = \Gamma_{\text{th,LO}}(\tau^- \to \pi^- \nu_\tau)(1 + \delta R'_{\tau\pi}) \\ & \vdash \Gamma(\tau^- \to K^- \nu_\tau) = \Gamma_{\text{th,LO}}(\tau^- \to K^- \nu_\tau)(1 + \delta R'_{\tau K}) \\ & \vdash \frac{\Gamma(\tau^- \to K^- \nu_\tau)}{\Gamma(\tau^- \to \pi^- \nu_\tau)} = \frac{\Gamma_{\text{th,LO}}(\tau^- \to K^- \nu_\tau)}{\Gamma_{\text{th,LO}}(\tau^- \to \pi^- \nu_\tau)} \frac{(1 + \delta R'_{\tau K})}{(1 + \delta R'_{\tau\pi})} = \frac{\Gamma_{\text{th,LO}}(\tau^- \to K^- \nu_\tau)}{\Gamma_{\text{th,LO}}(\tau^- \to \pi^- \nu_\tau)} (1 + \delta R'_{\tau K/\tau\pi}) \end{split}$$

note

•
$$\delta R_{\tau K/\tau \pi} = \delta R'_{\tau K/\tau \pi}$$

Radiative corrections in tau fit results elaborations

lepton universality

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{\mathcal{B}(\tau \to h\nu_{\tau})}{\mathcal{B}(h \to \mu\bar{\nu}_{\mu})} \frac{2m_{h}m_{\mu}^{2}\tau_{h}}{(1 + \delta R_{\tau h/h\mu})m_{\tau}^{3}\tau_{\tau}} \left(\frac{1 - m_{\mu}^{2}/m_{h}^{2}}{1 - m_{h}^{2}/m_{\tau}^{2}}\right)^{2} \qquad (h = \pi \text{ or } K)$$

$|V_{us}|$ from tau exclusive decays

$$\blacktriangleright \mathcal{B}(\tau^- \to K^- \nu_\tau) = \frac{1}{16\pi} \left(\frac{G_F}{\hbar^3 c^3} \right)^2 |V_{us}|_{\tau K}^2 f_{K\pm}^2 \frac{\tau_\tau}{\hbar} m_\tau^3 c^3 \left(1 - \frac{m_K^2}{m_\tau^2} \right)^2 (1 + \delta R_{\tau K}')$$

Alberto Lusiani (orcid.org/0000-0002-6876-3288) - TAU2023, 4-8 December 2023, Louisville, USA

 $\tau {
ightarrow} K$

Radiative corrections in tau fit results elaborations

until HFLAV 2018

• $\delta R_{\kappa\mu} = (1.07 \pm 0.21)\%$ [Cirigliano, Neufeld 2011] (updated)

since HFLAV 2022

$$\delta R'_{\tau\pi/\pi\mu} = (0.18 \pm 0.57)\% \qquad \delta R'_{\tau\kappa/\kappa\mu} = (0.97 \pm 0.58)\%$$

$$\delta R_{ au\pi} = (1.77 \pm 0.57)\% \qquad \delta R_{ au K} = (1.86 \pm 0.58)\%$$

[M.A.Arroyo-Ureña, G.Hernández-Tomé, G.López-Castro, P.Roig, I.Rosell, PRD 104 (2021) L091502]

assuming 100% correlation between
$$\delta R_{\tau\pi/\pi\mu}$$
, $\delta R_{\tau\pi}$ and $\delta R_{\tau K/K\mu}$, $\delta R_{\tau K}$ because tau radiative corrections uncertainties dominate

• assuming no correlation between $\delta R'_{\tau\pi/\pi\mu}$, $\delta R'_{\tau\kappa/\kappa\mu}$ and $\delta R_{\tau\pi}$, $\delta R_{\tau\kappa}$

$$\bullet \quad (1 + \delta R_{\tau K/\tau \pi}) = \frac{(1 + \delta R_{\tau K})}{(1 + \delta R_{\tau \pi})}$$

 $\blacktriangleright (1 + \delta R'_{\tau K}) = S^{m_{\tau}}_{EW} (1 + \delta R_{\tau K})$

Comparison of new [HFLAV 2022] vs. old [HFLAV 2018] radiative corrections

Comparison of new [HFLAV 2022] vs. old [HFLAV 2018] radiative corrections

lepton universality tests and $|V_{us}|$ all computed using the HFLAV 2022 tau branching ratio fit results and varying only the radiative corrections

Tau mass fit including Belle II recent measurement

Canonical tau universality plot

Status and plans of tau fits for HFLAV/PDG

$|V_{us}|$ from tau measurements

Status and plans of tau fits for HFLAV/PDG

$|V_{us}|$ from $\tau \to X_s \nu_{\tau}$ uncertainties budget

to be updated, but negligible changes in HFLAB 2023

On-going work

LFV limits combinations

- compute tau LFV upper limit combinations averaging corresponding branching fraction mesurements and then calculating upper limit on the average
- can use HFLAV techniques to update measurements for updated external inputs and to take into account common systematics
- some papers may not document the measured branching fraction

SW infrasctructure for averaging and publishing

- improving automatization of averaging procedure and their publication
- export results in published electronic material
- access PDG information electronically (PDG functionality being improved)

Conclusion

preparing for the Belle II tau measurements...

Backup Slides

the second s	COT 1	the second se