

4000,000,000,000+ At A Tera

Lingfeng Li Brown University

Dec. 5, 2023, Lousville, **72023**

Tera-Z+ as a Flavor Factory

<i>b</i> -hadrons	Belle II $(50+5 \text{ ab}^{-1})$	LHCb (300 fb^{-1})	Tera- Z
$B^0, ar{B}^0$	$5.4 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	3×10^{13}	1.2×10^{11}
B^{\pm}	$5.7 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	3×10^{13}	1.2×10^{11}
B_s^0, \bar{B}_s^0	$6.0 \times 10^8 (5 \text{ ab}^{-1} \text{ on } \Upsilon(5S))$	1×10^{13}	3.1×10^{10}
B_c^{\pm}	_	1×10^{11}	1.8×10^8
$\Lambda_b^0, \bar{\Lambda}_b^0$	_	2×10^{13}	2.5×10^{10}
$c(\bar{c})$	2.6×10^{11}	$\gtrsim 10^{14}$	2.4×10^{11}
τ^{\pm}	9×10^{10}	_	7.4×10^{10}

Z Factory and LFUV Tests with Tau

Disclamer: will focus on experimental uncertainties/works rather than theoretical ones in this talk

Neutrinos Neutrals (photon/ π^0 / $\eta_{...}$) **Rare modes** BSM states

Advanced Technology Lepton Collider, $m_7 \gg m_f$ Very Clean Abundant Energy

Tau LFUV @ Tera Z+ | Lingfeng Li, Brown U.

□ Leptons ✓ □ Flavor Tagging $\Box b \rightarrow c \rightarrow \tau$ cascade \checkmark □ Long-lived particles Boost: O(fs) time scales Heavy Species: B_e B_c , Λ_b , exotics... □ Multiple soft tracks 🗸

FCNC Dileptonic Transitions

- Rare decays, sensitive to BSM
- \succ Partially motivated by R_K and R_{K*} anomalies
- > Flagship mode: $b \rightarrow s \tau \tau$, highly sensitive to LFUV in 3rd generation

- *Known to be difficult at other machines
- At B factories: soft tracks, low boost for displacement
- At hadron colliders: Low acceptance, large flavored background, lacking neutrino modes

Current expected precision > O(10⁻⁵)

Phenomenology

Tau LFUV @ Tera Z+ | Lingfeng Li, Brown U.

- Reconstruction from track momenta, on-shell condition and vertex displacements
- In reality, non-zero backgrounds mainly from hadronic D_(s) mesons with their decays to 3π+X

Example	Typical BR
$b \to c \bar{c} s$ Type	
e.g. $B_s \to K^{*0} D_s^{(*)+} D^{(*)-}$	$O(10^{-2} - 10^{-3})$
$b \to c \tau \nu$ Type	
e.g. $B^0 \to K^{*0} D_s^{(*)-} \tau^+ \nu$	$\mathcal{O}(10^{-3} - 10^{-5})$
$b \to c \bar{u} d$ Type	
e.g. $B^0 \to D^{(*)-} \pi^+ \pi^+ \pi^-$	$\mathcal{O}(10^{-2} - 10^{-3})$

Background reduction from multiple dimensions: isolation/resonance structure...

Track/vertex impact parameter resolutions

are most crucial to measurement

Tau LFUV @ Tera Z+ | Lingfeng Li, Brown U.

 Even better background mitigation by π⁰ reconstruction from background D_s decays

Charged Current Transitions

T.S.M. Hon X.H. Jiangn T.H. Kwokn LLn T. Liun 2210.10751

T. Zhengı J. Xuı L. Caoı D. Yuı W. Wangı S. Prellı Y.K.E. Cheungı M. Ruanı 2007.08234i

M. Fedele, C. Helsens, D. Hill, S. Iguro, M. Klute and X. Zuo, 2305.02998

Tau LFUV @ Tera Z+ | Lingfeng Li, Brown U.

 $\operatorname{Br}(B_c \to \tau \nu)$

Event Reconstruction

1. Identify the vertexes (primary & 2nd), find out the momentum direction of B

2. Estimate the B energy from the global energy-momentum conservation of each hemisphere

3. Find out the missing energy-momentum from mass-shell conditions

reconstructions of q² and B energy are sufficient ~ 1 GeV⁽²⁾

Tau LFUV @ Tera Z+ | Lingfeng Li, Brown U.

BDT Bu score

_	Physical Quantity	SM Value	Tera - Z	$10 \times \text{Tera-}Z$	Belle II	LHCb
_	$R_{J/\psi}$	0.289	4.25×10^{-2}	1.35×10^{-2}	-	-
	R_{D_s}	0.393	4.09×10^{-3}	1.30×10^{-3}	-	-
	$R_{D_s^*}$	0.303	3.26×10^{-3}	1.03×10^{-3}	-	-
Relative sensitivity	R_{Λ_c}	0.334	9.77×10^{-4}	3.09×10^{-4}	-	-
	$BR(B_c \to \tau \nu)$	2.36×10^{-2} [41]	0.01 [41]	3.16×10^{-3}	-	-
of 1% or less	${\rm BR}(B^+ \to K^+ \tau^+ \tau^-)$	1.01×10^{-7}	7.92 [42]	2.48 [42]	198 [2 3]	-
01 1/0 01 1035	$\mathrm{BR}(B^0 \to K^{*0} \tau^+ \tau^-)$	0.825×10^{-7}	$10.3 \ [42]$	3.27 [42]	-	-
achieved at a Tora 7	$BR(B_s \to \phi \tau^+ \tau^-)$	0.777×10^{-7}	24.5 [42]	$7.59 \ [42]$	-	-
acmeved at a refa-Z	$BR(B_s \to \tau^+ \tau^-)$	7.12×10^{-7}	$28.1 \ [42]$	8.85 [42]	-	702 [24]
	$BR(B^+ \to K^+ \bar{\nu} \nu)$	$4.6 \times 10^{-6} \ [23]$	-	-	0.11 [23]	-
	${\rm BR}(B^0\to K^{*0}\bar\nu\nu)$	$9.6 \times 10^{-6} \ [23]$	-	-	0.096 [23]	-
	$BR(B_s \to \phi \bar{\nu} \nu)$	9.93×10^{-6} [29]	1.78×10^{-2} [29]	5.63×10^{-3}	-	-

Tau LFUV @ Tera Z+ | Lingfeng Li, Brown U.

EFT – Pheno Correspondence

 $\frac{R_{J/\psi}}{R_{J/\psi}^{\rm SM}} = 1.0 + \text{Re}(0.12C_{S_L}^{\tau} + 0.034|C_{S_L}^{\tau}|^2 - 0.12C_{S_R}^{\tau} - 0.068C_{S_L}^{\tau}C_{S_R}^{\tau*} + 0.034|C_{S_R}^{\tau}|^2$

 $-5.3C_T^{\tau} + 13|C_T^{\tau}|^2 - 1.9C_{V_R}^{\tau} - 0.12C_{S_L}^{\tau}C_{V_R}^{\tau*} + 0.12C_{S_R}^{\tau}C_{V_R}^{\tau*} - \frac{R_{D_s}}{R_D^{SM}} = 1.0 + \operatorname{Re}(1.6C_{S_L}^{\tau} + 1.2|C_{S_L}^{\tau}|^2 + 1.6C_{S_R}^{\tau} + 2.4C_{S_L}^{\tau}C_{S_R}^{\tau*} + 1.2|C_{S_R}^{\tau}|^2 + 1.6C_{S_L}^{\tau}C_{S_R}^{\tau*} + 1.2|C_{S_R}^{\tau}|^2 + 1.6C_{S_R}^{\tau} +$ $+5.8C_T^{\tau}C_{V_R}^{\tau*}+1.0|C_{V_R}^{\tau}|^2+2.0\delta C_{V_L}^{\tau}+0.12C_{S_L}^{\tau}\delta C_{V_L}^{\tau*}$ $-0.12C_{S_R}^{\tau}\delta C_{V_L}^{\tau*} - 5.3C_T^{\tau}\delta C_{V_L}^{\tau*} - 1.9C_{V_R}^{\tau}\delta C_{V_L}^{\tau*} + 1.0|\delta C_{V_L}^{\tau}|^2),$

 $\frac{\kappa_{\Lambda_c}}{R_{\Lambda}^{\rm SM}} = 1.0 + \text{Re}(0.39C_{S_L}^{\tau} + 0.34|C_{S_L}^{\tau}|^2 + 0.49C_{S_R}^{\tau} + 0.61C_{S_L}^{\tau}C_{S_R}^{\tau*} + 0.34|C_{S_R}^{\tau}|^2$

 $+1.1C_T^{\tau}+12|C_T^{\tau}|^2-0.71C_{V_R}^{\tau}+0.49C_{S_L}^{\tau}C_{V_R}^{\tau*}+0.39C_{S_R}^{\tau}C_{V_R}^{\tau*}$ $-1.7C_T^{\tau}C_{V_R}^{\tau*} + 1.0|C_{V_R}^{\tau}|^2 + 2.0\delta C_{V_L}^{\tau} + 0.39C_{S_L}^{\tau}\delta C_{V_L}^{\tau*}$ $+ 0.49 C_{S_P}^{\tau} \delta C_{V_I}^{\tau*} + 1.1 C_T^{\tau} \delta C_{V_L}^{\tau*} - 0.71 C_{V_P}^{\tau} \delta C_{V_L}^{\tau*} + 1.0 |\delta C_{V_L}^{\tau}|^2)$.

 $\frac{\mathrm{BR}(B_s \to \tau^+ \tau^-)}{\mathrm{BR}(B_s \to \tau^+ \tau^-)^{\mathrm{SM}}} = 1.0 + \mathrm{Re}(0.46C_{10}^{\prime \tau} + 0.054|C_{10}^{\prime \tau}|^2 - 0.78C_P^{\tau} - 0.18C_{10}^{\prime \tau}C_P^{\tau *}$ $+0.15|C_{D}^{\tau}|^{2}+0.78C_{D}^{\prime\tau}+0.18C_{10}^{\prime\tau}C_{D}^{\prime\tau*}-0.31C_{D}^{\tau}C_{D}^{\prime\tau*}$ $+ 0.15 |C_{P}^{\prime \tau}|^{2} + 0.086 |C_{S}^{\tau}|^{2} - 0.17 C_{S}^{\tau} C_{S}^{\prime \tau *}$ $+ 0.086 |C_S^{\prime \tau}|^2 - 0.46 \delta C_{10}^{\tau} - 0.11 C_{10}^{\prime \tau} \delta C_{10}^{\tau *}$ $+ 0.18C_P^{\tau}\delta C_{10}^{\tau*} - 0.18C_P^{\prime\tau}\delta C_{10}^{\tau*} + 0.054|\delta C_{10}^{\tau}|^2)$.

Tau LFUV @ Tera Z+ | Lingfeng Li, Brown U.

D D^* D_{s} D_s^* B_c θ $J(\psi)$ Λ_{h} 81.8° $J(\psi)$ 103° 3.01° 109° 1.96° 22.9° 103° 102° 6.55° 102° 82.8° 90° D D^* 3.01° 102° 107° 4.45° 20.6° 81.2° _ 107° 108° 88° D_s 109° 6.55° 90° _ D_s^* 1.96° 4.45° 108° 23.3° 102° _ 82.8° 22.9° 82.8° 20.6° 88° 23.3° 79.6° Λ_h 81.2° 81.8° 90° 90° 82.8° 79.6° B_c _

 $+ 1.4 C_T^\tau + 1.4 |C_T^\tau|^2 + 2.0 C_{V_R}^\tau + 1.6 C_{S_L}^\tau C_{V_R}^{\tau *} + 1.6 C_{S_P}^\tau C_{V_P}^{\tau *}$

+ $1.6C_{S_R}^{\tau}\delta C_{V_L}^{\tau*}$ + $1.4C_T^{\tau}\delta C_{V_L}^{\tau*}$ + $2.0C_{V_R}^{\tau}\delta C_{V_L}^{\tau*}$ + $1.0|\delta C_{V_L}^{\tau}|^2$),

 $+1.4C_T^{\tau}C_{V_R}^{\tau*}+1.0|C_{V_R}^{\tau}|^2+2.0\delta C_{V_L}^{\tau}+1.6C_{S_L}^{\tau}\delta C_{V_L}^{\tau*}$

Angles between channels in the theory space near the SM

Posterior of SMEFT Wilson Coeff. with MCMC

Tau LFUV @ Tera Z+ | Lingfeng Li, Brown U.*certainly model-dependent

At the Z pole: an ALP example

> A lot of interesting LFUV physics to be tested at the Z pole, usually targeting a much higher precision L. Calibbi, Z. Huang, S. Qin, Y. Yang, X. Yin, 2212.02818 ➢ Invisible (delicate) $m_a = 10 \text{ GeV}$ reconstruction) vs. 10^{-1} Signal displaced (straight Background 10-2 forward) , 10-3 , ∩ **1**0-3 , \rightarrow An ALP with $f_a >$ 10^{-4} Kowk et al. TeV and LFUV τ In progress 10-5 coupling might be -15-10-5 tested directly BDT score

Other Interesting Physics

No	Drocoss	$\sqrt{2} \left(C_{a} \mathbf{V} \right)$	Parameter	Observable	Current	CEPC	Estimation	Key detector	Relevant
NO.	Process	\sqrt{s} (GeV)	v) of interest precision		precision	Precision	method	performance	Section
1	$Z ightarrow \mu \mu a$	91.2	-	BR upper limit	-	$\lesssim 3 \times 10^{-11}$ [251]	Fast simulation	Tracker Missing energy	12
2	$B\to K\hat{\pi}(\to\mu\mu)$	91.2	-	BR upper limit	-	$\lesssim 10^{-10}$ [261]	Fast simulation	Tracker Vertex	12
3	$Z \to \pi^+ \pi^-$	91.2	-	BR upper limit	-	$\mathcal{O}(10^{-10}) \; [109]$	Guesstimate	Tracker PID	9
4	$Z \to \pi^+ \pi^- \pi^0$	91.2	-	BR upper limit	-	$\mathcal{O}(10^{-9})$ [109]	Guesstimate	Tracker PID ECAL	9
5	$b \rightarrow s \tau^+ \tau^-$	91.2	-	BR upper limit	-	$B^{0} \rightarrow K^{*0}\tau^{+}\tau^{-} \sim \mathcal{O}(10^{-6})$ $B_{s} \rightarrow \phi\tau^{+}\tau^{-} \sim \mathcal{O}(10^{-6})$ $B^{+} \rightarrow K^{+}\tau^{+}\tau^{-} \sim \mathcal{O}(10^{-6})$ $B_{s} \rightarrow \tau^{+}\tau^{-} \mathcal{O}(10^{-5})$	[71] Fast simulation	Tracker Vertex Jet origin ID	4
6	$Z\to \rho\gamma$	91.2	-	BR upper limit	$< 2.5 imes 10^{-5}$ [150]	${\cal O}(10^{-9})~[109]$	Guesstimate	Tracker PID ECAL	9
7	$Z \to J/\psi \gamma$	91.2	-	BR upper limit	$< 1.4 imes 10^{-6}$ [150]	$10^{-9} - 10^{-10}$ [109]	Guesstimate	Tracker PID ECAL	9
8	$Z \to \tau \mu$	91.2	-	BR upper limit	$< 6.5 \times 10^{-6}$ [105–107]	$\mathcal{O}(10^{-9}) \ [108, 109] \ \mathcal{O}(10^{-9}) \ [108, 109] \ 1 imes 10^{-9} \ [110]$	Guesstimate	$E_{ m beam}$ Tracker PID	6

9	$Z \to \tau e$	91.2	-	BR upper limit	$< 5.0 \times 10^{-6}$	[105–107]	$egin{array}{llllllllllllllllllllllllllllllllllll$	Guesstimate	E_{beam} Tracker PID	6
10	$Z \to \mu e$	91.2	-	BR upper limit	$<7.5\times10^{-7}$	[105–107]	$egin{array}{llllllllllllllllllllllllllllllllllll$	Guesstimate	E_{beam} Tracker PID	6
11	$\tau \to \mu a$	91.2	-	BR upper limit	$\lesssim 7 \times 10^{-4}$ [259]		$\lesssim 35 \times 10^{-6}$	Fast simulation	Tracker Missing energy	12
12	$\tau \to \mu \mu \mu$	91.2	-	BR upper limit	$<2.1\times10^{-8}$	[150]	$\mathcal{O}(10^{-10})~[108,109]$	Guesstimate	Tracker Lepton ID	8
13	$\tau \to eee$	91.2	-	BR upper limit	$<2.7\times10^{-8}$	[150]	$\mathcal{O}(10^{-10})~[108,109]$	Guesstimate	Tracker Lepton ID	8
14	$\tau \to e \mu \mu$	91.2	-	BR upper limit	$<2.7\times10^{-8}$	[150]	$\mathcal{O}(10^{-10})~[108,109]$	Guesstimate	Tracker Lepton ID	8
15	$\tau \to \mu e e$	91.2	-	BR upper limit	$<1.8\times10^{-8}$	[150]	$\mathcal{O}(10^{-10})~[108,109]$	Guesstimate	Tracker Lepton ID	8
16	$\tau \to \mu \gamma$	91.2	-	BR upper limit	$<4.4\times10^{-8}$	[150]	$\mathcal{O}(10^{-10})~[108,109]$	Guesstimate	Tracker Lepton ID ECAL	8
17	$\tau \to e \gamma$	91.2	-	BR upper limit	$< 3.3 \times 10^{-8}$	[150]	${\cal O}(10^{-10})\;[108,109]$	Guesstimate	Tracker Lepton ID ECAL	8
18	$B_c ightarrow \tau \nu$	91.2	$ V_{cb} $	$\sigma(\mu)/\mu$	$\mathrm{BR}{\lesssim}~30\%~[267]$		O(1%) [63]	Full simulation	Tracker Lepton ID Missing energy Jet origin ID	3
19	$B_s \to \phi \nu \bar{\nu}$	91.2	-	$\sigma(\mu)/\mu$	${\rm BR} < 5.4 \times 10^{-3} \; [1]$	50]	$\lesssim 2\%$ [35]	Full simulation	Tracker Vertex Missing energy PID	4
20		91.2		$ au_{ au}$ (s) lifetime	$\pm 5 \times 10^{-16} \ [150]$		$\pm 1 \times 10^{-18}$ [108]	Guesstimate	-	8
21		91.2		m_{τ} (MeV)	± 0.12 [150]		$\pm 0.004 \pm 0.1 [108]$	Guesstimate	-	8
22	$ au ightarrow \ell \nu \bar{\nu}$	91.2	-	BR	$\pm 4 \times 10^{-4}$ [150]		$\pm 3 imes 10^{-5}$ [108]	Guesstimate	Tracker Lepton ID Missing energy	8

23	$b\to c\ell\nu$	91.2	-	R_{H_c}	$R_{J/\psi} = 0.71 \pm 0.17 \pm 0.18$ [268] $R_{\Lambda_c} = 0.242 \pm 0.076$ [269]	relative (stat. only) $R_{J/\psi} \lesssim 5\%$ $R_{D_s^{(*)}} \lesssim 0.4\%$ $R_{\Lambda_c} \sim 0.1\%$	[38]	Fast simulation	Tracker Vertex	3
24	$B_s \to J/\psi \phi$	91.2	$\phi_s (= -2\beta_s)$	$\Gamma_s, \Delta \Gamma_s$	$\Gamma_s = 657.3 \pm 2.3 \text{ ns}^{-1} [150]$ $\Delta \Gamma_s = 65.7 \pm 4.3 \pm 3.7 \text{ ns}^{-1} [270]$ $\phi_s = -87 \pm 36 \pm 21 \text{ mrad} [270]$	$\begin{split} \sigma(\Gamma_s) &= 0.072 \text{ ns}^{-1} \\ \sigma(\Delta\Gamma_s) &= 0.24 \text{ ns}^{-1} \\ \sigma(\phi_s) &= 4.3 \text{ mrad} \end{split}$	[45]	Full simulation	Tracker Vertex Lifetime resolution Jet origin ID	5
25	$B^0 \to \pi^0 \pi^0$	91.2	α	BR, A_{CP}	$BR^{00} = (1.59 \pm 0.26) \times 10^{-6} (16\%)$ $C^{00}_{CP} = -0.33 \pm 0.22$ [150]	$ \begin{aligned} \sigma(BR)/BR^{00} &= 0.45\% \\ \sigma(a^{00}_{CP}) &= \pm \ (0.0140.018) \end{aligned} $	[31]	Fast simulation	ECAL Jet origin ID	5
26	$B^0 \to \pi^+\pi^-$	91.2	α	BR	$BR^{+0} = (5.5 \pm 0.4) \times 10^{-6} (7\%) $ [150]	$\sigma(BR)/BR^{+0}=0.19\%$	[31]	Fast simulation	ECAL Tracker Jet origin ID	5
27	$B^+ \to \pi^+ \pi^0$	91.2	α	BR, A_{CP}	$BR^{+-} = (5.12 \pm 0.19) \times 10^{-6} (4\%)$ $C^{+-}_{CP} = -0.314 \pm 0.030 \qquad [150]$ $S^{+-}_{CP} = -0.670 \pm 0.030$	$\begin{aligned} \sigma(BR)/BR^{+-} &= 0.18\% \\ \sigma(C_{CP}^{+-}) &= \pm \ (0.004 - 0.005) \\ \sigma(S_{CP}^{+-}) &= \pm \ (0.004 - 0.005) \end{aligned}$	[31]	Fast simulation	ECAL Tracker Vertex Jet origin ID	5

and more.....

A flavor physics white paper at a Tera-Z+ is about to launch

Tau LFUV @ Tera Z+ | Lingfeng Li, Brown U.

Preview, comment and endorse the document via the QR code or the <u>link</u>

Backup Slides

Tau LFUV @ Tera Z+ | Lingfeng Li, Brown U.

Backgrounds (II)

□ Muon mis-PID from charged pion are set to 1% according to CEPC full sim.

D. Yu, T. Zheng, M.Ruan, 2105.01246

 □Fake Xc resonance (also include PID) estimated from LHCb sidebands
 ▷The effect is negligible

Signal-Background Discrimination

