

The 17th international workshop on tau lepton physics

Louisville (KY) – December 6th, 2023

Tau 2023

Search for LFV decays with tau leptons in the final state at CMS

Luca Guzzi for the CMS collaboration

luca.guzzi@cern.ch

INFN Milano-Bicocca

Brief introduction

- The standard model (SM) has proven a solid description of particle interactions up to today energy scales
- One of the goals of LHC is to **search for processes beyond the SM** (BSM) and extend our current understanding of it
- Lepton Flavour Violating (LFV) decays represent a diversified ground for BSM searches
- LFV are **strongly suppressed** in the SM, and only allowed at very low branching fraction by neutrino oscillations
 - example: BR $(\tau \rightarrow 3\mu) \sim 10^{-55}$ doi:10.1140/epic/s10052-020-8059-7

Brief introduction

- New Physics (NP) models may enhance LFV processes up to detectable rates
- it may manifest in **BSM decays of known particles**, such as the Higgs or the tau lepton
- ...or it may manifest as the direct/indirect **effect of undiscovered particles**, such as new heavy neutral bosons (Z'), supersymmetric particles, QBH, ...
- coupling to the third family may be enhanced in some models ightarrow

LFUV

• The CMS experiment can access a large set of BSM scenarios

Talk overview

Results from lepton flavour violating decays (LFV) at CMS involving tau leptons

- Search for the LFV $\tau \rightarrow 3\mu$ decay in CMS in Run-2 data
- Search for heavy resonances and quantum black holes in eµ, eτ and µτ final states in proton-proton collisons at sqrt(s)=13 TeV
- Search for lepton flavour violating decays of the Higgs boson in the μτ and eτ final states in proton-proton collision at sqrt(s)=13 TeV
- Test of **lepton flavour universality violation** (LFUV) in semileptonic Bc+ meson decay at CMS

The CMS detector

collected luminosity:

- Run1: 25 /fb pp @ 7 and 8 TeV
- <u>Run2: 140 /fb pp @ 13 TeV</u>
- Run3 ongoing

- cylindric compact (15m x 21m) detector
- high granularity pixel + strip silicon tracker for excellent track, PV and SV measurements
- PbWO₄ crystal ECAL and brass+plastic HCAL to achieve hermeticity and jet+EG shower measurement
- 3.8T solenoid for pT measurement
- external muon chambers outside steel return yoke for a clean muon detection and pT measurement
- two level trigger system (hardware + software)

$\tau \longrightarrow 3\mu$ sources of τ leptons

Two sources of τ leptons by CMS: heavy flavours and W bosons

 heavy flavour (HF) mesons are the most abundant source of tau leptons in pp collisions (~10¹¹ tau leptons per /fb)

- low-pT and high $|\eta| \rightarrow$ less efficient trigger selection
- more sensitive to fake signal muons from π 's and K's
- production in the W channel less abundant (~10⁷ tau leptons per /fb)
 - harder spectra and more central decay \rightarrow more efficient trigger selection
 - properties of $W \rightarrow \tau v$ bring additional handles for background suppression (large missing pT, low hadron activity, larger signal pT)

LFV process, strongly suppressed by the SM

allowed by some BSM models at detectable
 branching fraction (~10⁻⁹) <u>10.1007/JHEP10(2018)148</u>

pp collision @13 TeV 90 /fb

- 2016 data analysis (30 /fb) already public <u>10.1007/JHEP01(2021)163</u>
- result extended to full Run2 era

online event selection: dedicated trigger paths selects signal
events with three muons or two muons and a track
offline signature: charge-one three muon events from a displaced
vertex

figure of merit: three-muon invariant mass distribution

- simultaneous ML fit the signal strength
- categorization based on the invariant mass resolution and production channel

$\tau {\longrightarrow} 3\mu$ background rejection

background sources

- kinematically closed decays of D mesons
 - veto $\phi \rightarrow \mu \mu$ and $\omega \rightarrow \mu \mu$ resonances
 - fake-muon (pions and kaons) by suppression by track quality
- semileptonic decays of D mesons
 - involves non-reconstructed particles \rightarrow mass below signal region
 - further suppression by a **BDT discriminator**
- combinatorial: suppressed by the BDT discriminator
- electroweak $W \rightarrow \mu v + FSR$ decays: 3μ + large MET prompt background survives the MVA selection, removed by cutting on the displacement significance from the interaction point

τ→3µ results

Tau2023

LFV decays at CMS

- Signal strength extracted with UML fit to the threemuon invariant mass distribution
 - categories are combined via simultaneous fit of the signal strength
 - no signal evidence in data \rightarrow upper limit set on the $\tau \rightarrow 3\mu$ branching fraction
- extend the analysis with the 2016 analysis
 (doi.org/10.1007/JHEP01(2021)163) to the full Run2
 dataset
- comparable to the world best UL set by Belle at 2.1 x 10⁻⁸ @90% CL

observed (expected) upper limit @ 90% of CL

B(**T**→3µ) < 2.9 (2.4) x 10⁻⁸

observed (expected) upper limit @ 95% of CL

HIGH-MASS RESONANCES AND QUANTUM BLACK HOLES

- search for LFV signatures eµ, eτ, μτ in CMS 13
 TeV pp data (138 /fb)
- **signature**: two prompt isolated (tau reconstructed in hadronic decays)
- signal strength extracted from invariant mass distribution of the di-lepton final state
- results interpreted in different BSM models
 - Z' production and LFV coupling
 - sneutrinos production and LFV coupling
 - quantum balck holes (QBH) to LFV final states

example: μτ channel invariant mass (other channels in the backup)

main background sources

- **ttbar** (and multi-boson): from MC simulation
- W+jets and QCD multi-jet: fake rate estimation from data control regions

HIGH-MASS RESONANCES AND QUANTUM BLACK HOLES

 no signal evidence found in data → upper limits are set for each channel as a funciton of the heavy resonance invariant mass at 95% CL

example: expected and observed upper limits as a function of the heavy resonance mass for the μτ channel (other channels in the backup)

excluded heavy resonances mass values at 95% CL (TeV)

Channel	RPV SUSY	$\widetilde{\nu}_{\tau}$ (TeV)	LFV Z' (TeV)	QBH $m_{\rm th}$ (TeV)
	$\lambda = \lambda' = 0.01$	$\lambda=\lambda'=0.1$	$\mathcal{B}=0.1$	n=4
eμ	2.2(2.2)	4.2(4.2)	5.0(4.9)	5.6(5.6)
$\mathrm{e} au$	1.6 (1.6)	3.7(3.7)	4.3(4.3)	5.2(5.2)
μτ	1.6 (1.6)	3.6(3.7)	4.1 (4.2)	5.0(5.0)

HIGH-MASS RESONANCES AND QBH

 model-independent interpetation is obtained reducing the high-mass bins to a single bin starting from a threshoold mass m^{min}

 model-dependent limits can be obtained by dividing the above result by the fraction of events above m^{min} for the BSM model under test

Η→eτ,μτ

- search for LFV Yukawa couplings in CMS 13 TeV pp data (137 /fb)
- **signature**: muon/electron and oppositely charged tau lepton
 - eτ_h, μτ_h, eτ_μ, μτ_e
 - further categorization based on jet multiplicity (0, 1, 2 jets) and H production mode (ggH, VBF)
- signal strength extracted from the output
 distribution of a BDT with a binned ML fit

main background sources

- $Z \rightarrow \tau \tau$: embedding technique fake rate estimation ($Z \rightarrow \mu \mu$ collision data replacing the final state with a simulated τ pair)
- W+jets and QCD multi-jet → fake rate estimation from control regions

Η→eτ,μτ

no significant excess \rightarrow upper limits on the branching fractions at 95% CL

- H→μτ < 0.15 (0.15) %
- H→eτ < 0.22 (0.16) %

results are also interpreted as **exclusion limits on the LFV** Yukawa couplings at 95% CL

- $\sqrt{|Y\mu\tau|^2 + |Y\tau\mu|^2} < 1.11 \times 10^{-3}$ •
- $\sqrt{|Yet|^2 + |Yte|^2} < 1.35 \times 10^{-3}$

5

LFUV: $R_{J/\Psi}$ from B^+_{c} decays

• LFU: the coupling of vector bosons to leptons is predicted equal except for lepton mass differences

•
$$R_{J/\Psi} = \frac{B(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{B(B_c^+ \to J/\psi \mu^+ \nu_{\mu})} = 0.2582$$

- B_c^+ channel not accessible at B-factories
- a deviation from the SM prediction would be an indication of NP
- CMS R_{J/Ψ} measurement on **pp data @ 13TeV (59.9 /fb)** collected during 2018
- **signature**: three muon final state $(J/\psi \rightarrow \mu\mu, \tau \rightarrow \mu\nu\nu)$

LFUV: $R_{J/\psi}$ from B^+_{c} decays

contribution of signal channels extracted from two observables with a **binned ML fit**

- $q^2 = (p(B_c^+) p(J/\Psi))^2$ computed under collinearity hypothesis
- 2D secondary vertex displacement significance

 $R_{J/\Psi} = 0.17^{+0.18}_{-0.17} (stat)^{+0.21}_{-0.22} (syst)^{+0.19}_{-0.18} (theo)$

compatible with the SM prediction within the experimental uncertainty (0.2582)

main background sources

- fakes from kaons and pions: reduced with track-quality cuts and modelled from collision data control regions with inverted selection cuts
- other B meson and feed down decays: from simulation
- combinatorial: extrapolated from data control regions

Summary of the talk

• Lepton flavour symmetries offer a wide set of possible tests for the standard model, spanning

from low-momentum to high-mass observables, involving known and unknown particles

- At CMS, LFV and LFUV are under investigation in many fields (B-physics, Higgs, exotica states)
- $\tau \rightarrow 3\mu$ obs (exp) upper limit set to 2.9 (2.4) x 10⁻⁸ @ 90% CL comparable to B factories
- o excluded LFV Higgs decays to $\mu\tau$ (et) to 0.15 (0.22) % @ 95% CL
- o **BSM heavy particles** (Ζ', QBH and sneutrinos) excluded in their LFV decays to eµ, eτ, μτ
- measurement of the **LFU ratio** $R_{J/\Psi} = 0.17 \pm 0.33$ compatible with the SM within the experimental uncertainty

Tau lepton reconstruction in one slide

- tau lepton reconstruction occurs for its hadronic final state (~65%), where the tau is reconstructed as a jet of charged and neutral hadrons
 - electron and muon decay modes can only be reconstructed as electron and muon physics objects
- the hadron-plus-strip algorithm is used to identify possible candidates among jets
 - looks for charged tracks and EM energy deposits inside some isolated cone, compatible with a tau decay
- tau reconstruction is subject to fakes from jets, muons and electrons
 - a convolutional DNN is used to estimate the probability of the candidate being a genuine tau
 - trained on low-level and high-level information from the detector

Decay mode	Meson resonance	$\mathcal{B}\left[\% ight]$
$ au^- ightarrow { m e}^- \overline{ u}_{ m e} u_{ au}$		17.8
$ au^- o \mu^- \overline{ u}_\mu u_ au$		17.4
$ au^- ightarrow { m h}^- u_ au$		11.5
$ au^- ightarrow { m h}^- \pi^0 u_ au$	ho(770)	26.0
$ au^- ightarrow { m h}^- \pi^0 \pi^0 u_ au$	$a_1(1260)$	10.8
$ au^- ightarrow { m h}^- { m h}^+ { m h}^- u_ au$	$a_1(1260)$	9.8
$ au^- ightarrow { m h}^- { m h}^+ { m h}^- \pi^0 u_ au$		4.8
Other modes with hadrons		1.8
All modes containing hadrons		64.8

STATE OF THE ART AND 2016 CMS RESULT (T \rightarrow 3M)

Observed upper limits (x10⁻⁸ @90% CL)

• Belle	782 fb ⁻¹	$\mathcal{B}(\tau \longrightarrow \Im \mu) < 2.1$	$e^+e^- \rightarrow \tau^+\tau^-$	<u>10.1016/j.physletb.2010.03.037</u>
• BaBar	468 fb ⁻¹	$\mathcal{B}(\tau \longrightarrow \Im \mu) < \Im.\Im$	$e^+e^- \rightarrow \tau^+\tau^-$	<u>10.1103/PhysRevD.81.111101</u>
• LHCb	2 fb ⁻¹	$\mathcal{B}(\tau \longrightarrow \Im \mu) < 4.6$	HF→ τ	<u>10.1007/JHEP02(2015)121</u>
• ATLAS	20.3 fb ⁻¹	$\mathcal{B}(\tau \longrightarrow \Im \mu) < \Im \Im$	$W \rightarrow \tau$	<u>10.1140/epjc/s10052-016-4041-9</u>
• CMS (partial Run-2)	33.2 fb ⁻¹	$\mathcal{B}(\tau \longrightarrow \Im \mu) < 8.0$	HF+W→ τ	<u>10.1007/JHEP01(2021)163</u>

CMS 2016 (partial Run-2) result has proven that the experiment can investigate both the HF and W production channels with a good sensitivity \rightarrow analysis extended to Run-2 (this presentation)

HEAVY RESONANCE OBSERVABLES AND QBH

Tau2023 LFV decays at CMS

10.1007/JHEP05(2023)227

SNEUTRINOS AND Z'LFV CROSS SECTION BOSON EXCLUSION LIMITS

modeldependent exclusion limits for sneutrinos and Z'boson production and LFV decays in different channels

10.1007/JHEP05(2023)227

MODEL-INDEPENDENT LFV EXCLUSION LIMITS

Tau2023

LFV decays at CMS

- model-independent exclusion limits in different final states (vs. invariant mass cut threshold)
- model dependent limits are recovered counting for the model fraction of events above threshold f_m

$$(\sigma \mathcal{B} \mathrm{A} arepsilon)_{\mathrm{excl}}(\mathrm{total}) = rac{(\sigma \mathcal{B} \mathrm{A} arepsilon)_{\mathrm{MI}}(m^{\mathrm{min}})}{f_m(m^{\mathrm{min}})}.$$

SNEUTRINOS COUPLINGS EXCLUSION LIMITS

 sneutrinos production and decay coupling exclusion regions under small-width approximation

 $\sigma \mathcal{B} \approx (\lambda_{311}')^2 [(\lambda_{132})^2 + (\lambda_{231})^2] / \{3(\lambda_{311}')^2 + [(\lambda_{132})^2 + (\lambda_{231})^2]\},$

INDIRECT CONSTRAINTS ON LFV YUKAWA

Channel	Coupling	Bound
$\mu ightarrow e \gamma$	$\sqrt{ Y_{\mu e} ^2 + Y_{e \mu} ^2}$	$< 3.6 \times 10^{-6}$
$\mu ightarrow 3e$	$\sqrt{ Y_{\mu e} ^2+ Y_{e\mu} ^2}$	$\lesssim 3.1 imes 10^{-5}$
electron $g-2$	${ m Re}(Y_{e\mu}Y_{\mu e})$	$-0.019\ldots0.026$
electron EDM	$ { m Im}(Y_{e\mu}Y_{\mu e}) $	$<9.8\times10^{-8}$
$\mu \rightarrow e$ conversion	$\sqrt{ Y_{\mu e} ^2+ Y_{e\mu} ^2}$	$<4.6\times10^{-5}$
M - \overline{M} oscillations	$ Y_{\mu e}+Y^*_{e\mu} $	< 0.079
$ au ightarrow e\gamma$	$\sqrt{ Y_{ au e} ^2+ Y_{e au} ^2}$	< 0.014
$\tau \to 3e$	$\sqrt{ Y_{ au e} ^2+ Y_{e au} ^2}$	$\lesssim 0.12$
electron $g-2$	${ m Re}(Y_{e au}Y_{ au e})$	$[-2.1\dots 2.9] imes 10^{-3}$
electron EDM	$ { m Im}(Y_{e au}Y_{ au e}) $	$< 1.1 \times 10^{-8}$
$ au o \mu \gamma$	$\sqrt{ Y_{ au\mu} ^2+ Y_{\mu au} ^2}$	0.016
$ au ightarrow 3\mu$	$\sqrt{ Y_{ au\mu}^2+ Y_{\mu au} ^2}$	$\lesssim 0.25$
muon $g-2$	$\mathrm{Re}(Y_{\mu au}Y_{ au\mu})$	$(2.7\pm0.75) imes10^{-3}$
muon EDM	${ m Im}(Y_{\mu au}Y_{ au\mu})$	$-0.8\dots 1.0$
$\mu \to e \gamma$	$\left(Y_{ au\mu}Y_{ au e} ^2 + Y_{\mu au}Y_{e au} ^2 ight)^{1/4}$	$< 3.4 \times 10^{-4}$

$H \rightarrow LT$ mass observables

• collinear mass distributions for different channels of the $H \rightarrow I\tau$ analysis

$H \rightarrow LT BDT SCORE$

• BDT score distribution for different channels and categories of the $H \rightarrow I\tau$ analysis

$H \rightarrow LT BDT SCORE$

• BDT score distribution for different channels and categories of the $H \rightarrow I\tau$ analysis

