Neutrino Portals to the Dark Sector

Douglas Tuckler TRIUMF & Simon Fraser University

17th International Workshop on Tau Lepton Physics University of Louisville 12/05/2023

Evidence for Dark Matter

Dark matter exists! Lots of cosmo/astro evidence.

These observations tell us only about the macroscopic properties of DM. How can we probe the *microscopic* properties i.e. mass, non-gravitational interactions?

What even is DM?

Thermal Dark Matter

• Guiding principle: DM in thermal equilibrium at early times

Thermal Dark Matter

• Guiding principle: DM in thermal equilibrium at early times

 Actually, it's a bit more restrictive - big bang nucleosynthesis requires DM to be heavier than ~MeV

Thermal DM: MeV $\lesssim m_{\chi} \lesssim 100 \text{TeV}$

Light DM and Dark Sectors

- Light thermal DM requires light new particles
- New particles must be **SM singlets** \rightarrow **portal models**

Light DM and Dark Sectors

- Light thermal DM requires light new particles
- New particles must be **SM singlets** \rightarrow **portal models**

DM Targets to look for in experiments!

Mediator decays invisibly to DM

Mediator decays invisibly to DM •

LDMX is projected to rule out thermal DM via dark photon portal

Thermal DM via Higgs portal completely excluded

 $B^+ \to K^+ \chi \overline{\chi}$

LUX & Super-CDMS

LZ

10

CRESST II

NEWS

Super-CDMS

SNOLAB

 No dark matter/portal matter signal has been observed. Why? Where do we go from here?

- No dark matter/portal matter signal has been observed. Why? Where do we go from here?
- 1. Best Option: We need to build all the experiments.

- No dark matter/portal matter signal has been observed. Why? Where do we go from here?
- 1. *Best Option:* We need to build all the experiments.
- 2. <u>Maximally pessimistic option</u>: dark matter has **no non-gravitational interactions.**

- No dark matter/portal matter signal has been observed. Why? Where do we go from here?
- 1. Best Option: We need to build all the experiments.
- 2. <u>Maximally pessimistic option</u>: dark matter has **no non-gravitational interactions.**

<u>The Windchime Project</u>: Gravitational Detection of Dark Matter in the Laboratory

Small window where this could work so we better hope that DM has this mass!

10

- No dark matter/portal matter signal has been observed. Why? Where do we go from here?
- 1. Best Option: We need to build all the experiments.
- 2. *Maximally pessimistic option:* dark matter has no non-gravitational interactions.
- 3. DM is non-thermally produced

Freeze-in requires really tiny couplings e.g. dark photon $\epsilon \sim 10^{-10}$

Impossible to test with visible signatures unless you do clever model building

Q: Current/future beam dump constraints on HYPER space?

- No dark matter/portal matter signal has been observed. Why? Where do we go from here?
- 1. Best Option: We need to build all the experiments.
- 2. <u>Maximally pessimistic option</u>: dark matter has no non-gravitational interactions.
- 3. DM is non-thermally produced
- 4. Searches for DM assume that DM interacts with visible stuff (e.g. photons, electron, protons). *What if DM is more elusive than we thought?*

Focus of this talk: Neutrinophilic Dark Matter

Sterile Neutrino Dark Matter

keV-scale singlet fermion that mixes only with the SM neutrinos

$$\nu_4 = \nu_s \cos \theta + \nu_a \sin \theta$$

- Dodelson-Widrow Mechanism production via active-sterile neutrino oscillations in weak interactions - Non-thermal production
- Indirect detection: $\nu_s \rightarrow \nu_a \gamma$ with X-ray line at $E_{\gamma} = m_4/2$

S*v*DM is almost completely excluded. Can we save Dodelson-Widrow?

A Neutrinophilic Scalar Mediator

• Schematically, the sterile neutrino relic abundance is

$$\Omega \sim \Gamma \times \sin^2(2\theta)$$

- If $\Gamma = \Gamma_W$ then a large angle is required and we run into X-ray constraints.
- Can we compensate a smaller mixing angle by increasing the interaction rate? Yes! Introduce a scalar field ϕ of mass m_{ϕ} that mediates **new self interactions among SM neutrinos.**

$$\mathcal{L} \supset rac{1}{2} \lambda_{lphaeta}
u_{lpha}
u_{eta} \phi \longrightarrow
u_{(p_2)}
u_{(p_2)}
u_{(p_3)}
u_{(p_4)}
u_{(p_4)}$$

Experimentally, this is allowed to have a larger rate than the weak interactions

A Neutrinophilic Scalar Mediator

• New production mode for S ν DM via neutrinophilic mediator opens up a wide window for the DM relic abundance. Don't have to live on DW line.

A Neutrinophilic Scalar Mediator

• New production mode for S ν DM via neutrinophilic mediator opens up a wide window for the DM relic abundance. Don't have to live on DW line.

The Mono-neutrino Signature

 Unique signature due to the neutrinophilic nature of the mediator: Incoming neutrino radiates a scalar particle and then converts to a muon via CC interactions K. J. Kelly and Y. Zhang arXiv:1901.01259

Missing transverse momentum carried away by ϕ

٠

- Similar in spirit to mono-X searches at the LHC, missing transverse momentum technique @ LDMX
- High energy/intensity neutrino environments are excellent to probe this signature!

LHC Forward Physics Facility

A proposal to explore SM and BSM physics in the far forward region of LHC detectors

- Flux of high energy neutrinos can be used to probe our model!
- Advantages of LHC neutrinos:
 - High energy neutrinos can probe higher scalar masses
 - Neutrino scattering is DIS \rightarrow smaller uncertainties

Analysis Strategy

- Focus on argon detector, which has excellent energy/momentum resolution B. Batell, J. Feng, S. Trojanowski arXiv:2101.10338
- Parton-level event generation. Assume 5% muon momentum resolution, 15% hadron momentum resolution.
- Relevant observables:
 - Missing transverse momentum p_T
 - Total energy of all visible final states E_{vis}
 - Highest transverse momentum of visible final state objects p_T^{max}

Cut Flow

	$\nu_{\mu} + \overline{\nu}_{\mu} \ CC$	$m_{\phi} = 1 \text{ GeV}$
$E_{\rm vis.} < 600 { m ~GeV}$	61%	76%
$\not\!$	0.2%	26%
$p_T^{\max} < \frac{4}{3} \not\!\!p_T$	10^{-5}	15%

Significant reduction in bkg. from missing transverse momentum cut!

Reach of the Forward Physics Facility

• Feed relevant observables into a neural network to determine an optimal cut on S/\sqrt{B} to maximize the sensitivity.

FPF Reach: Thermal Dark Matter Targets

• The neutrinophilic scalar ϕ can also be a mediator to thermal DM

Big Picture for Neutrinophilic Scalars

Big Picture for Neutrinophilic Scalars

Sterile Neutrino Production in Supernova

- Supernovae another neutrino dense environment
- Same process that generates $S_{\nu}DM$ relic abundance in early universe produces $S_{\nu}DM$ in the supernova \rightarrow excessive supernova cooling!

Step 1: Get supernova profile $\mu_{\nu}(r), T(r), \rho(r), Y_e(r)$

- $\mu_{\nu_e}/T > 1 \rightarrow$ Fermi-Dirac Distributions are not exponentially suppressed! Enhanced cooling rate $\mu \neq 0 \rightarrow$ probe smaller couplings!
- $T_{SN} \sim 60 \text{ MeV} \rightarrow \text{can probe } m_{\phi} \text{ of 1 MeV up to few 100s of MeV.}$ Exactly where we are missing probes!

• Step 2: Calculate active-sterile neutrino mixing in matter

• Step 3: Optical depth, or ν_4 energy loss due to scattering

$$\tau = \int_{r}^{\infty} dr \, \sin^{2}(2\theta_{eff}) \, \Gamma(E, r) \qquad \qquad \begin{array}{l} \text{Interaction Rate} \\ \Gamma = \Gamma_{weak} + \Gamma_{\phi} \end{array}$$

Step 4: Sterile neutrino production matrix element

$$|\mathcal{M}|^2 = 32\pi^2 \lambda^2 m_{\phi}^2 \,\delta(s - m_{\phi}^2) \sin^2\theta_{\text{eff}}(r, E_4)$$

Step 5: Put everything together to calculate the luminosity

Supernova Cooling Bounds

• Observations of SN1987 bound the emission luminosity to be $L \leq 3 \times 10^{52}$ ergs/s

Big Picture

Big Picture

Great complementarity between different probes of neutrinophilic DM!

Summary

We don't know the particle nature of DM

- Dark sector portal models with visible signatures have not been detected so far.
- Maybe DM is much more elusive than we thought. Is there is fundamental connection between neutrinos and DM?
- Neutrino portal models are really cool and testable!!

Thanks! Questions?

FPF Reach: Final State Tau Leptons

- For $\lambda_{\mu\tau} \neq 0$, the signal is a **tau lepton** + p_T coming from a muon-neutrino beam.
- Only $\mathcal{O}(100)$ tau neutrinos are expected to interact with the detector. The signal will result in an excess of tau events compared to the SM.
- Simple analysis: count the number of signal events with a tau in the final state

Supernova Profile

λ Dependence of Relevant Quantities

MW Dwarf Galaxy Constraints

