Isospin breaking in au data for $(g-2)_{\mu}$

Mattia Bruno Taku Izubuchi (presenter) work in collab. with C. Lehner, A. Meyer for the RBC/UKQCD collaborations

The 17th International Workshops on Tau Lepton Physics, University of Louisville, December 8th 2023

Motivations for τ

Final states I = 1 charged

au data can improve $a_{\mu}[\pi\pi]$ \rightarrow 72% of total Hadronic LO \rightarrow competitive precision on a_{μ}^{W}

Experimental τ data very competitive for intermediate window

<ロト < 部ト < 目ト < 目ト 目 のQで 2/16 UNCORRECTED COMPARISON OF a^W_μ Experimental au data very competitive for intermediate window

(also recent similar analysis by Masjuan et al. 2310.14102)

3/16

Hadronic τ decays

$$\mathcal{M}(P,q,p_1\cdots p_{n_f}|f) = \frac{G_{\rm F}V_{\rm ud}}{\sqrt{2}} \,\bar{u}_{\nu}(-q)\gamma_{\mu}^L u_{\tau}(P) \,\langle f,p_1\cdots p_{n_f}|\mathcal{J}_{\mu}^-(0)|0\rangle$$

$$d\Gamma = \frac{1}{2m} d\Phi_q \sum_f d\Phi_f \sum_{\rm spin} |\mathcal{M}(P,q,p_1\cdots p_{n_f}|f)|^2$$

$$= \frac{1}{2m} d\Phi_q \frac{G_{\rm F}^2 |V_{\rm ud}|^2}{2} \mathcal{L}_{\mu\nu}(P,q) \,\rho_{\mu\nu}(p)$$

Lorentz + current conservation: single scalar spectral density ρ

$$\begin{aligned} \frac{d\Gamma(s)}{ds} &= G_{\rm F}^2 |V_{\rm ud}|^2 \frac{m^3}{32\pi^2} \left(1 + \frac{2s}{m^2}\right) \left(1 - \frac{s}{m^2}\right)^2 \rho(s) \\ &= G_{\rm F}^2 |V_{\rm ud}|^2 \,\kappa(s) \,\rho(s) \end{aligned}$$

W REGULARIZATION

[Sirlin '82][Marciano, Sirlin '88][Braaten, Li '90] Effective Hamiltonian $H_W \propto G_F O_{\mu\nu}$ $G_{\rm F}$ low-energy constant; 4-fermion operator $O_{\mu\nu}$ At $O(\alpha)$ new divergences in EFT \rightarrow need regulator, Z factors vs vs $W \text{ regularization: } \frac{1}{k^2} \rightarrow -\frac{m_W^2}{k^2(k^2-m_W^2)}$ [Sirlin '78] 1. universal UV divergences re-absorbed in $G_{\rm F}$ 2. process-specific corrections in S_{EW} , like a Z factor Effective Hamiltonian at $O(\alpha)$: $H_W \propto G_F S_{EW}^{1/2} O_{\mu\nu}$ photon at finite $a \neq W$ -regularization

matching required as noted by [Carrasco et al '15][Di Carlo et al '19]

ISOSPIN BREAKING Initial state

$$\begin{split} \sqrt{S_{EW}} &= Z = 1 + \delta Z_{\kappa} + \delta Z_{\rho} + \delta Z_{\kappa\rho} \\ \frac{d\Gamma}{ds} &= S_{EW} G_{\rm F}^2 |V_{\rm ud}|^2 \,\kappa(s) \,\rho(s) \\ &+ G_{\rm F}^2 |V_{\rm ud}|^2 \,\delta\kappa(s) \,\rho(s) \\ &+ G_{\rm F}^2 |V_{\rm ud}|^2 \,\kappa(s) \,\delta\rho(s) \\ &+ G_{\rm F}^2 |V_{\rm ud}|^2 \,\Delta_{\kappa\rho}(s) \end{split}$$

 $\delta\kappa$ known analytically from [Cirigliano et al '00] $\delta Z_{\kappa} = -\frac{\alpha}{4\pi} \log(m_W/m)$ [Sirlin '82]

 $\delta\kappa$ calculated in fully factorized form [in prep]

ISOSPIN BREAKING Final state

$$\sqrt{S_{EW}} = Z = 1 + \delta Z_{\kappa} + \frac{\delta Z_{\rho}}{\delta} + \delta Z_{\kappa\rho}$$

$$\begin{aligned} \frac{d\Gamma}{ds} &= S_{EW} G_{\rm F}^2 |V_{\rm ud}|^2 \,\kappa(s) \,\rho(s) \\ &+ G_{\rm F}^2 |V_{\rm ud}|^2 \,\delta\kappa(s) \,\rho(s) \\ &+ G_{\rm F}^2 |V_{\rm ud}|^2 \,\kappa(s) \,\delta\rho(s) \\ &+ G_{\rm F}^2 |V_{\rm ud}|^2 \,\Delta_{\kappa\rho}(s) \end{aligned}$$

$\delta\rho\leftrightarrow$ Lattice QCD+QED calculation

$$\delta Z_{\rho} = \frac{\alpha}{4\pi} c_0 \text{ is like 1-loop } Z_V = 1 + O(g_0^2)$$
 known from literature/calculable

ISOSPIN BREAKING Initial-final state

$$\begin{split} \sqrt{S_{EW}} &= Z = 1 + \delta Z_{\kappa} + \delta Z_{\rho} + \delta Z_{\kappa\rho} \\ \frac{d\Gamma}{ds} &= S_{EW} G_{\rm F}^2 |V_{\rm ud}|^2 \,\kappa(s) \,\rho(s) \\ &+ G_{\rm F}^2 |V_{\rm ud}|^2 \,\delta\kappa(s) \,\rho(s) \\ &+ G_{\rm F}^2 |V_{\rm ud}|^2 \,\kappa(s) \,\delta\rho(s) \\ &+ G_{\rm F}^2 |V_{\rm ud}|^2 \,\Delta_{\kappa\rho}(s) \end{split}$$

$$\begin{split} \Delta_{\kappa\rho} \text{ from EFT and two-pion channel} & [Cirigliano et al' 00] \\ Z_{\kappa\rho} &= \frac{\alpha}{\pi} (1 + \frac{3}{2}\bar{Q}) \log(m_W/m) \text{ from } W \text{-regularization [Sirlin '82]} \\ \text{Working on inclusive strategy from Lattice [in prep]} \end{split}$$

ISOSPIN BREAKING

Strategy

- 1. take experimental $d\Gamma/ds$ (e.g. Aleph13, Belle08)
- 2. $\delta\kappa$ initial state corrections: analytic, under control

4. define
$$\delta\Gamma_{EM} \equiv \kappa(s) + \delta\kappa(s) + \Delta_{\kappa\rho}(s)$$
 and calculate

$$\frac{1}{S_{EW}G_{\rm F}^2|V_{\rm ud}|^2} \frac{1}{\delta\Gamma_{EM}(s)} \frac{d\Gamma^{\rm exp}}{ds} = \rho(s) + \delta\rho(s)$$

- 5. Laplace transfrom to Euclidean time
- 6. add difference $ee-\tau$ evaluated from LQCD+QED

SYNERGY

from QCD we need a 4-point function f(x, y, z, t): known kernel with details of photons and muon line 1 pair of point sources (x, y), sum over z, t exact at sink stochastic sampling over (x, y) (based on |x - y|) Successfull strategy: x10 error reduction [RBC '16]

from QCD we need a 4-point function f(x, y, z, t): $(g-2)_{\mu}$ kernel + photon propagator Similar problem \rightarrow re-use HLbL point sources!

The RBC & UKQCD collaborations

University of Bern & Lund Dan Hoying

BNL and BNL/RBRC

Peter Boyle (Edinburgh) Taku Izubuchi Yong-Chull Jang Chulwoo Jung Christopher Kelly Meifeng Lin Nobuyuki Matsumoto Shigemi Ohta (KEK) Amarjit Soni Raza Sufian Tianle Wang

CERN

Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Sarah Fields Ceran Hu Yikai Huo Joseph Karpie (JLab) Erik Lundstrum Bob Mawhinney Bigeng Wang (Kentucky)

University of Connecticut

Tom Blum Luchang Jin (RBRC) Douglas Stewart Joshua Swaim Masaaki Tomii

Edinburgh University

Matteo Di Carlo Luigi Del Debbio Felix Frhen Vera Gülpers Maxwell T Hansen Tim Harris Rvan Hill Raoul Hodgson Nelson Lachini 7i Yan Li Michael Marshall Fionn Ó hÓgáin Antonin Portelli James Richings Azusa Yamaguchi Andrew Z.N. Yong

Liverpool Hope/Uni. of Liverpool Nicolas Garron

Nicolas Garron

LLNL

Aaron Meyer

<u>University of Milano Bicocca</u> Mattia Bruno

<u>Nara Women's University</u> Hiroshi Ohki <u>Peking University</u> Xu Feng

University of Regensburg

Davide Giusti Andreas Hackl Daniel Knüttel Christoph Lehner Sebastian Spiegel

RIKEN CCS

Yasumichi Aoki

University of Siegen

Matthew Black Anastasia Boushmelev Oliver Witzel

University of Southampton

Alessandro Barone Bipasha Chakraborty Ahmed Elgaziari Jonathan Flynn Nikolai Husung Joe McKeon Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

Stony Brook University

Fangcheng He Sergey Syritsyn (RBRC)

Contribution to a_{μ}

 $\begin{array}{ll} \text{Time-momentum representation} & [\text{Bernecker, Meyer, '11}] \\ G^{\gamma}(t) = \frac{1}{3} \sum_{k} \int d\vec{x} \ \langle j_{k}^{\gamma}(x) j_{k}^{\gamma}(0) \rangle & \rightarrow & a_{\mu} = 4\alpha^{2} \sum_{t} w_{t} G^{\gamma}(t) \end{array}$

Isospin decomposition of u, d current

$$j_{\mu}^{\gamma} = \frac{i}{6} \left(\bar{u} \gamma_{\mu} u + \bar{d} \gamma_{\mu} d \right) + \frac{i}{2} \left(\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d \right) = j_{\mu}^{(0)} + j_{\mu}^{(1)}$$

$$\begin{split} &\frac{i}{2} \left(\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d \right), \begin{bmatrix} I = 1\\ I_3 = 0 \end{bmatrix} \rightarrow j^{(1,-)}_{\mu} = \frac{i}{\sqrt{2}} \left(\bar{u} \gamma_{\mu} d \right), \begin{bmatrix} I = 1\\ I_3 = -1 \end{bmatrix} \\ &\text{Isospin 1 charged correlator } G^W_{11} = \frac{1}{3} \sum_k \int d\vec{x} \, \left\langle j^{(1,+)}_k(x) j^{(1,-)}_k(0) \right\rangle \end{split}$$

$$G_{II'}^{\gamma} \equiv \frac{1}{3} \sum_{k} \int d\vec{x} \langle j_k^{(I)}(x) \, j_k^{(I')}(0) \rangle \,, \quad \delta G^{11} \equiv G_{11}^{\gamma} - G_{11}^W$$

FINAL STATE

IB corrections for charged (τ) and neutral (ee) [MB et al PoS'18] difference of τ and ee spectral densities in Euclidean time

[MB Edinburgh'22]

many (quark) diagrams involved:

plot = window $\times \mu$ -kernel $\times (V - F)$ 481 phys.pion mass ensemble


```
first calculation of all diagrams [BMWc '20]
ongoing RBC/UKQCD effort
significant stat. improvement for leading-diagrams
first results for sub-leading diagrams
```

INCLUSIVITY PROBLEM

Take $\Delta_{\kappa\rho}$ from EFT \rightarrow restrict to two-pion channel discard G_{00}^{γ} , keep G_{01}^{γ}

Lattice calculation fully inclusive in energy (cut at m_{τ}) and channels G_{01} mostly dominated by $\pi\pi$. Is it correct? simple estimate $a^{W}[3\pi] \leq 20\%$ of $a^{W}[2\pi]$ [MB Edinburgh '22]

Isospin-breaking in 2π and 3π from [Colangelo et al 22][Hofericther et al '23] IB correction of $a^W[3\pi]\approx -1\cdot 10^{-10}$ IB correction of $a^W[2\pi]\approx +1\cdot 10^{-10}$ warning if precision from Lattice $\ll 2\cdot 10^{-10}$

LONG-DISTANCE

Intermediate two-pion channel effective field theory meson dominance models

[Cirigliano et al '01, '02] [Flores-Talpa et al. '06, '07]

Full estimate in LQCD+QED [MB et al in prep] integral of inf.vol. kernel w/ 3-point QCD correlators working on proof for analytic continuation, ie no inverse problem

CONCLUSIONS

Windows very powerful quantities: intermediate window a^W_μ hadronic τ -decays can shed light on tension lattice vs e^+e^-

 τ data very competitive on intermediate window historic tension w/ ee data and in IB τ effects preliminary analysis Aleph < 0.5% accuracy on a^W_μ (old) LQCD IB effects precision $O(1.5)\cdot 10^{-10}$ [MB Edinburgh '22] new EuroHPC allocation, blinding

 \longrightarrow Goal for ee- τ correction is with error $\sim O(1) \times 10^{-10}$

Work in progress to finalize full formalism [MB et al, in prep] W-regularization and short-distance corrections (re-)calculation of initial state rad.cor. initial-final rad.cor: proof for analytic continuation numerical calculation of final state IB corrections relevant also for QED correction to HVP

Thanks for your attention

Experimental τ data very competitive for intermediate window

<ロト<部ト<単ト<単ト<単ト 15/16

UNCORRECTED COMPARISON OF a^W_μ Experimental au data very competitive for intermediate window

16 / 16