

Wishlist for g-2 at Tau 2025

- **Brendan Kiburg**
- Fermi National Accelerator Laboratory
- Technical Publication Number: FERMILAB-SLIDES-23-407-PPD
- Tau 2023, Dec 4-8, Louisville Kentucky

Wishlist for g-2 at Tau 2025 Outline

- Tau g-2
- Muon g-2 Status
 - Experimental Status
 - Recent Results
 - Future Outlook
 - Theoretical Prediction
 - Dispersive Calculation
 - Prospects for Data Improvement
 - Tau Data
 - Lattice QCD

- Where Else to Look
 - Additional Analyses within Fermilab Muon g-2 (EDM, CPT/LV, DM)
 - JPARC g-2
 - MUonE
 - And beyond...
- Summary

g-2 Motivation (Tau)

Magnetic and Electric Tau Dipole Moments Revisited

1. Tau lepton DM

Why are we interested in Tau dipole moments?

• m = 1777 MeV

- Lifetime = 290 x 10⁻¹⁵ sec
- Tau lepton decays into hadrons
- Lepton universality
- Sensitivity to NP $(m_{\tau}/\Lambda)^n$

•
$$\left(\frac{\mathrm{m}_{\mathrm{\tau}}}{\mathrm{m}_{\mathrm{e}}}\right)^2 \approx 10^7$$
; $\left(\frac{m_{\mathrm{\tau}}}{m_{\mu}}\right)^2 \approx 3 \cdot 10^2$

 G.González- Sprinberg
 Louisville, 17th TAU 2023
 3

 Magnetic and Electric Tau Dipole Moments Revisited
 Monday
 Prof. Gabriel González-Sprinberg

 11:40 - 12:05

- New Physics (NP) can show up in the anomalous magnetic moment, a_{τ}
- m² enhancement
- Possible additional enhancements in Lepton nonuniversality models

g-2 Tau Techniques

- Lifetime too short to store / track
- Instead, examining ultra peripheral Pb-Pb collisions, coupling sensitive to a_{τ}

Event selection

 <u>ATLAS</u>: Focus on events with muon in final state μ +1 track or μ + 3 track

- <u>ALICE</u>: electron or muon and charged particle track
- Particle-ID capabilities → enhanced sensitivity

Measurement of the anomalous magnetic moment in ultraperipheral collisions with ALICE at the LHC Paul Alois Buhler

15:10 - 15:30

LHC Run 3 will improve sensitivity to a_{τ}

- Current results
 competitive with LEP
- Significant improvements coming in Run 3 analyses

 From this morning (Chiral Belle Upgrades – M. Roney) "Approaches the precision regime in tau that starts to be sensitive to Minimal Flavour Violation equivalent of muon g-2 anomaly"

The muon

Spin ¹/₂, encodes information about spin in its decay

• g= 2 + contributions from virtual particles

Magne	tic Field
	$ec{ au} = ec{\mu} imes ec{B}$

The muon

Spin ½, encodes information about spin in its decay

• g= 2 + contributions from virtual particles

Magnetic Field $ec{ au}=ec{\mu} imesec{B}$ U e

The muon

Spin ½, encodes information about spin in its decay

• g= 2 + contributions from virtual particles

$$\label{eq:m_m} \begin{split} m_{\mu} &\sim 207 \ m_{e} \ ; \ m_{\mu} \sim 0.06 \ m_{\tau} \\ 2.2 \ \mu S \ \tau_{\mu} \sim 8 \times 10^{6} \ \tau_{\tau} \\ \hline \mbox{Goldilocks mass and lifetime to} \\ \ \mbox{have sensitivity and store} \end{split}$$

Magnetic Field

Muon g-2: Motivation

$$\vec{\mu} = g \; \frac{q}{2m} \vec{S}$$

• a_{μ} is the anomalous magnetic moment (i.e the part that differs from 2)

$$a_{\mu}^{SM} = (g_{\mu}^{SM}-2)/2 = a_{\mu}^{QED} + a_{\mu}^{EW} + a_{\mu}^{QCD}$$

Fermilab

+ a_{μ}^{NP}

Determining a_{μ} from experiment

Storage ring experiment

- Uniform, precisely measured B-field
- Measure muon precession in that field
- Weight by how muons sample that field in space and time

Starting Point: Run-1 Result

 $a_{\mu}(FNAL; Run-1) = 0.00 \ 116 \ 592 \ 040(54) \ [463 \ ppb]$

a_μ(Exp) = 0.00 116 592 061(41) [350 ppb]

Run-2/3 Result: FNAL + BNL Combination

a_µ(FNAL) = 0.00 116 592 055(24) [203 ppb]

Run-2/3 a_{μ} Uncertainties: Final Values

• Total uncertainty is **215 ppb**

[ppb]	Run-1	Run-2/3	Ratio
Stat.	434	201	2.2
Syst.	157	70	2.2

- Systematics of 70 ppb surpasses proposal goal (100 ppb)
- No dominant uncertainties to attack
- Modest improvements to field & beam dynamics possible

Wishlist : No surprises that cause systematic evaluation to increase

Quality	[ppb]	[ppl
ω_a^m (statistical)	_	20
ω_a^m (systematic)	—	2
C_e	451	3
C_p	170	1
C_{pa}	-27	1
C_{dd}	-15	1
C_{ml}	0	
$f_{\rm calib} \langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$	_	4
B_k	-21	1
B_q	-21	2
$\mu_{p}'(34.7^{\circ})/\mu_{e}$	_	1
m_{μ}/m_e	_	6 4
$g_e/2$	_	
Total systematic	_	7
Total external parameters	_	2
Totals	622	21

Quantity

Correction

Uncertainty

🔁 Fermilab

We can rewrite a_{μ} : our observables plus external measurements

- MuSEUM in J-PARC
- Muonium Hyperfine splitting measurement

- MRI magnet moved to experimental area
- Feb. 2024: Shimming
- Mar. 2024: Beam Run (?)

Ken-ichi Sasaki

inputs

FNAL Muon g-2 Data Summary

Ultimate Projected Precision ~ 120 ppb = <100 ppb (stat) \oplus 70 ppb (syst)

Theory Initiative (TI)

 u^{\flat}

On August 9, 2023, in view of the announcement of the new result by the Muon q-2 experiment at Fermilab scheduled for August 10, 2023, the Muon q-2 Theory Initiative has released the following statement summarizing the status of the Muon q-2 Theory in the Standard Model. It was updated on August 10, 2023 at 11:10 AM US CDT to reflect the new experimental average

STATEMENT

The Status of Muon g-2 Theory in the Standard Model

The Muon g-2 Theory Initiative \checkmark

https://muon-gm2-theory.illinois.edu/

Muon g-2 calculation

Muon g-2 calculation

Dispersive Theory Calculation is Driven by Experimental Input

Dispersive Theory Calculation is Driven by Experimental Input

Spectral differences have limited the combination (recall, need percent level precision) Evaluations inflate uncertainties to account for the tension \rightarrow has limited e+/e- prediction **Wishlist for 2025:** Understand spectral differences in e⁺e⁻ $\rightarrow \pi^+ \pi^-$

Various Evaluations of 2-pion contributions

Fermilab

New data further clouds interpretation

New from CMD-3 arXiv:2302.08834

- Disagrees with others by 2.5-5 σ !

Common facility w/ SND;
 some detector upgrades
 Analyzer seminar,
 community panels to
 investigate → No smoking
 gun

Wishlist for 2025: Understand why CMD normalization so different **Fermilab**

Improved e+/e- Prospects

Many machines/exp pushing to improve to sub % precision

🛟 Fermilab

Wishlist for 2025: Use larger e⁺e⁻ data sets to study tensions

Understanding NNLO ISR corrections in e+/e- data from BaBar

Tau Data inputs to a_{μ}^{HVP}

LEP and b-factories provide high-statistic tau decay samples Can relate $\tau^{-} \rightarrow \pi^{0} \pi^{-} \nu$ to $e^{+}e^{-} \rightarrow \pi^{+} \pi^{-}$ with difficult isospin corrections

Tau Data inputs to a_{μ}^{HVP}

Highlighted challenging isospin breaking term

😎 Fermilab

27 Dec 8, 2023 B. Kiburg I Wishlist for g-2 at Tau 2025

Need to determine integral of these σ to percent-level Shape of the isospin-breaking correction shows up in CMD + BaBar ratios

BaBar ratios

Wishlist for 2025: Understand impact of isospin corrections on spectral

²⁹ Dec 8, 202 shape above/below rho-omega mixing ... can Lattice QCD weigh in?

Tau Data inputs to a_{μ}^{HVP}

- Landscape of a_{μ}^{HVP} in flux
- Lots to understand in terms of spectral and absolute variations in e⁺ e^{-,} and τ data

Tau Data inputs to a_{μ}^{HVP}

- Landscape of a_{μ}^{HVP} in flux
- Lots to understand in terms of spectral and absolute variations in e⁺ e^{-,} and τ data ... as well as lattice...

a_{μ}^{SM} determined using HVP from lattice QCD or dispersive calc

- In 2020 the first highprecision lattice QCD result came out: BMW
- Showed significant tension with e⁺/e⁻ evaluation, much closer to experiment

Different windows in Euclidean time are sensitive to different systematics

- Enables comparisons between groups in each window
- Short Distance (SD) t: $0 \rightarrow t_0$
- Intermediate (W) $t: t_0 \rightarrow t_1$
- Long Distance (LD) t: $t_1 \rightarrow \infty$
- Systematics vary for different windows
 - SD → discretization
 - LD \rightarrow finite volume / stats

Intermediate Window Benchmark

- Contributes 1/3 of the LO HVP contribution
- Systematic uncertainties are smaller
- Dispersive data can be mapped to the Euclidean space

Data-driven determinations of light-quark-connected and strange-plus-disconnected window contributions to a_mu Kim Maltman

Status Intermediate window 2023

THE INTERMEDIATE-DISTANCE WINDOW

- BY 2023, many groups have results in this window with <1% precision
- Several groups include sub-leading contributions to a_{μ}^{HVP} , all in good agreement
- ~4 σ discrepancy with the r-ratio data
- Explains about 50% of the overall discrepancy between BMW and dispersive data
- In this window, where the lattice systematics are well-controlled, lattice QCD predicts significantly larger quark contribution to a_{μ} than the e+/e- data

Lattice Wishlist for Tau 2025

- Understand the 4σ discrepancy in the intermediate window between lattice QCD & $e^+e^- \rightarrow \pi^+\pi^-$ r-ratio evaluation
- Develop multiple comparisons in the long-distance window
 - LD window contributes 2/3 of the total HVP
 - Has trickier finite-volume systematics
 - Statistically limited
- Achieve multiple, full evaluations of a_μ^{HVP}

Additional Experimental handle on HVP: MUonE at CERN

• A novel approach to determine the leading hadronic contribution via a high-precision shape measurement of the differential cross section of μe elastic scattering

- Precision tracking off of target via silicon strip detectors
- Correlation between muon and electron angle
- Compute a_{μ}^{HLO} from 1 experiment
- Final Goal: 3 years of running → 0.3% precision on a^{HLO}_µ

MUonE

- 3 weeks Test Run 2023: proof of concept of the experimental proposal. Data analysis ongoing. Request for a longer commissioning run in 2025 instrumenting more tracking stations.
- Full apparatus (40 stations) after CERN Long Shutdown 3 (2026-28) to achieve the target precision (~0.3% stat and similar syst).
- Alternative method to calculate $a_{\mu}^{\rm HLO}$ with MUonE data: less sensitive to the parameterization chosen to model $\Delta \alpha_{\rm had}(t)$ in the MUonE kinematic range. Comparable uncertainty to the space-like integral method.

An alternative evaluation of the leading-order hadronic contribution to the muon g-2 with MUonE	Riccardo Pilato	0
Tuesday	09:55 - 10:2	20

Wishlist for Tau2025

 Full proposal developed

23

 Commissioning run (2025) with scaled down detector

JPARC Muon g-2 & EDM

Novel g-2 approach Ideal for pushing Muon EDM limits

Experiment adopts new method (different systematics):

- Low-emittance beam (cooling+ acceleration)
- Compact storage ring
- Very weak magnetic focusing

JPARC Muon g-2 & EDM

Wishlist for Tau2025:

- Continued ramp up of JPARC support
 - Progress on the
 muon source,
 cooling, accelerator
 and detectors!

Searching for NP within Fermilab Muon g-2 (Muon EDM)

• Presence of a muon EDM would tilt precession plane

- Look for a rotation of muon precession out of the plane, oscillating out of phase with the g-2 wiggle. Requires:
 - precision pitch angle of decay electron
 - Tracker alignment and acceptance
 - Knowledge of vector components of the magnetic field
- Run 1/2/3 analysis nearing completion (still blind)
 - Statistical error dominated
 - Anticipated sensitivity $Id_{\mu}I \sim 5 \times 10^{-20} e \cdot cm$
 - ~4x better than current BNL limit of $Id_{\mu}I < 1.9 \times 10^{-20}$ e·cm
- At least 4x statistics on tape $\rightarrow \sim 2 \times 10^{-20} \, \text{e} \cdot \text{cm}$ ultimate limit

Searching for NP within Fermilab Muon g-2 data (CPT/LV)

$$\mathcal{L}' = -a_{\kappa}\overline{\psi}\gamma^{\kappa}\psi - \underbrace{b_{\kappa}\overline{\psi}\gamma_{5}\gamma^{\kappa}\psi - \frac{1}{2}H_{\kappa\lambda}\overline{\psi}\sigma^{\kappa\lambda}\psi}_{+\frac{1}{2}ic_{\kappa\lambda}\overline{\psi}\gamma^{\kappa}\overset{\leftrightarrow}{D^{\lambda}}\psi + \frac{1}{2}id_{\kappa\lambda}\overline{\psi}\gamma_{5}\gamma^{\kappa}\overset{\leftrightarrow}{D^{\lambda}}\psi}$$

- Lorentz-violating extensions (e.g. <u>Kostelecký et.al</u>.)to the SM include terms with CPT/Lorentz violating signatures for our data
- Signals
 - Sidereal oscillation in ω_a (T = 23hr 56min)
 - a(μ+) a(μ-)
 - Global fits to BNL/FNAL
- Improvements/complementarity to BNL
 - >20 x statistics w/ reduced systematics
 - Longer lever arm (ran for ~36 mos over 6 years compared to ~9 mos over 3 at BNL)

🚰 Fermilab

- Different latitude
- Expecting > 4x improvement

Searching for NP within Fermilab Muon g-2 data (Dark Matter)

- Coherent DM interactions can exert a spin torque and cause an oscillation in a_{μ} or the EDM signal
- Similar to sidereal variation analysis but the period now depends on the m_{DM}

 $ec{\omega}_a(t) = \omega_{
m sm} \hat{z} + ec{\omega}_{
m dm}(t) \qquad ec{\omega}_{
m dm} pprox - rac{a_0}{\Lambda} m_a ec{v} \sin\left(m_{
m dm} t
ight)$

- Stacked plots are sensitive to overall shift in ω_a , but time-resolved analysis needed for ultimate sensitivity
- Precision analyses underway of a_µ vs time (t=100ms → 5 years)

Ryan Janish, Harikrishnan Ramani PRD **102**, 115018 (2020)

Wishlist Summary for Tau 2025

Muon g-2 Experiment

- Publish Run 4-6 analysis
- Maintain systematic uncertainty of 70 ppb (No suprises!)
- Reduce total uncertainty on a_{μ}^{exp} by 35% (190 ppb \rightarrow 120 ppb)
- Publish companion EDM + CPT/LV & DM searches
- MUonE
 - Complete a fully developed proposal for physics run after long shutdown
 - Achieve first commissioning run (2025) w/ scaled down detector
- JPARC g-2 / EDM effort
 - Develop novel experimental method to determine a_{μ} with different systematic effects
 - Achieved demonstration of mature muon source, cooling, acceleration with launch of detector production

Wishlist Summary for Tau 2025

- **Theory**
 - Understand spectral differences in $e^+e^- \rightarrow \pi^+\pi^-$
 - Understand why CMD-3 normalization so different from KLOE/BaBar/CMD-2
 - Update results from KLOE, BABAR, BELLE-II, CMD,... and the corresponding dispersive evaluations
 - Understand impact of isospin corrections on spectral shape of τ data above and below the rho-omega mixing: Can lattice QCD weigh in and provide model-independent calculations for the isospin corrections?
 - Understand the 4σ discrepancy in the intermediate window between lattice QCD & e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}$ r-ratio evaluation
 - Develop multiple comparisons in the long-distance window, which contributes 2/3 of the total HVP, as well as full evaluations
 - Utilize blinding methods whenever possible to reduce unintentional biases

ht by Light Had -

- Stubleading contributions (≈ 25 % of total): This difficult proble $\downarrow k = p' - p$
- HLBL has smaller arger π^0, η, η' Exchanges of = lattice results After some excelle (f_0, a_1, f_2, \ldots)
- and dispersive app $\mu^{-(p)}$ $\mu^{-}(p')$ Not yet well known
- Corresponds to 0.15 ppm uncertainty on a_{μ}

list for g-2 at Tau 2025

- dominant contribution to total uncertainty TI Outlook: We expect that ongoing work on both approaches will yield reduced with the second second

Vishiist: Converge on HLbL calc. with Drowleeleutation taining vector contribut - new $q_4 = 0$ DR program for high Eesphaner

[Luedtke @ Higgscentre workshop with Procura and Sto

Recent publication

Fig. 11. Compilation of a_{μ} predictions subtracted by the central value of the experimental world average [2]. The

Note: Similar plots for the intermediate window

Davier et al: <u>arXiv:2312.02053</u>

Fig. 5. Significance of the difference between pairs of the three most precise $e^+e^- \rightarrow \pi^+\pi^-$ experiments for narrow energy intervals of 50 MeV or less (top) and larger energy intervals (bottom) indicated by the horizontal lines.

Lepton Universality connections

If anomaly persists, potential explanation include things like $U(1)L_{u}-L_{\tau}$ extension of the SM

Figure 2: One loop contribution to muon (g-2) mediated by neutral gauge boson $Z_{\mu\tau}.$

Muon g-2 (Lepton Universality)

Anyway, muon g-2 gives us some hint to violate the lepton universality. For example, Lµ-L τ model explains this discrepancy. So, muon g-2 may Indicates deep relation between τ and μ . We may need to consider tau g-2 more seriously.

Summary: New Precise Lattice Calculations are in tension with Dispersive Calculations for a_{μ}

- Important to see how story evolves
 - Will need to see how other windows compares
 - There are several tensions within the dispersive calculations, within lattice and between dispersive and lattice contributions for HVP
- Critical to support efforts to understand these discrepancies and develop a firm theoretical calculation

Overall Timeline & Summary

A. El-Khadra's talk at P5 town hall, March 2023

- Major exp & theory updates planned in 2023
- Both exp & theory planning significant updates by 2025
- Open questions on theory-theory & theory-exp anomalies will be addressed on this timeline

Hadronic Corrections: Comparisons

rerinilab

A. El-Khadra

P5 town hall, 21-24 Mar 2023

Simultaneous measurements: g-2, EDM

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

Expected time spectrum of e^+ in $\mu \rightarrow e^+\nu\nu$ decay

55