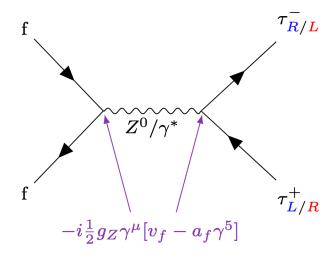
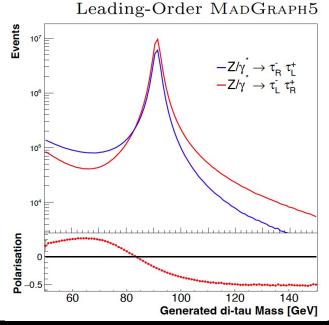


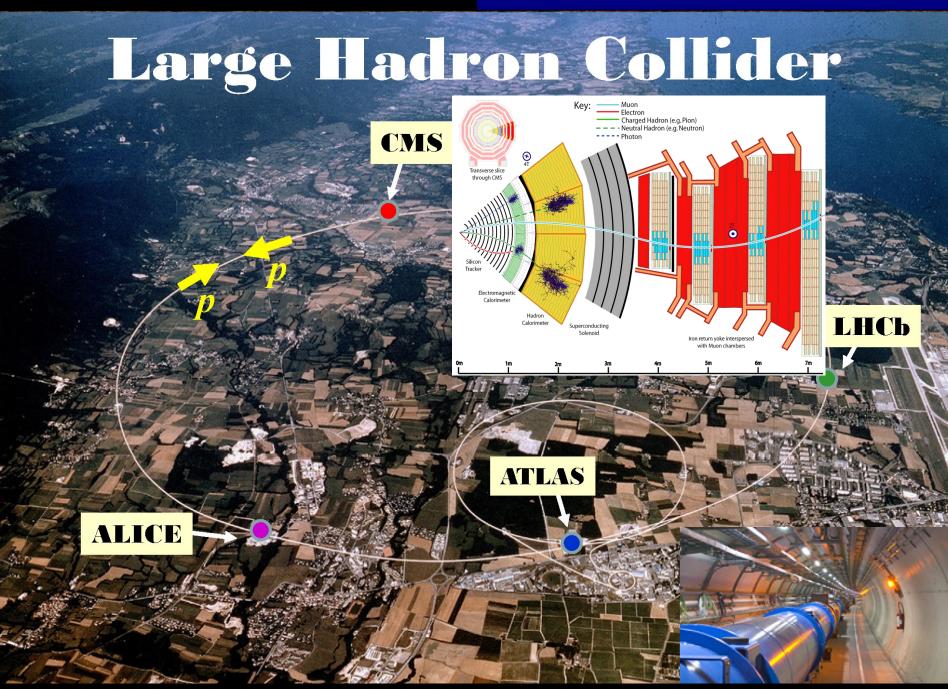
Measurement of the τ lepton polarization in Z boson decays using CMS detector


Dec 5th 2023 Tau 2023 conference, Louisville, KY


Motivation

- Electroweak mixing angle, sin²θ_w, is related to the effective vector and axial-vector couplings of the fermions to the Z boson
 - Such a mixing angle leads to different couplings for right- and left-handed fermions in weak neutral currents
- The polarization measures the ratio of vector to axial-vector neutral current couplings of the T lepton
- Aim of this analysis:
 - Measure average polarisation of leptons in Z/γ events:

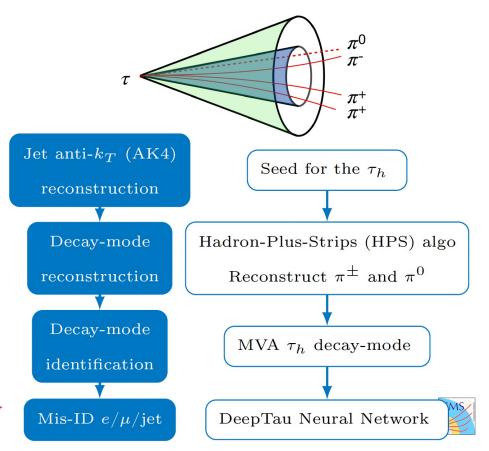
$$\langle \mathcal{P}_{\tau} \rangle = \frac{N(pp \to Z/\gamma \to \tau_R^- \tau_L^+) - N(pp \to Z/\gamma \to \tau_L^- \tau_R^+)}{N(pp \to Z/\gamma \to \tau_R^- \tau_L^+) + N(pp \to Z/\gamma \to \tau_L^- \tau_R^+)}$$


- Convert polarisation into effective weak mixing angle sin²θ_w
- Any deviation from SM reveals a new physics beyond SM!

Abdollah Mohammadi

2

τ CMS reconstruction


<u>More in</u> <u>Valeria's talk</u>

Decay mode	Resonance	$\mathcal{B}(\%)$
Leptonic decays		35.2
$\tau^- \rightarrow e^- \overline{\nu}_e \nu_\tau$		17.8
$\tau^- \rightarrow \mu^- \overline{\nu}_\mu \nu_\tau$		17.4
Hadronic decays		64.8
$\tau^- \rightarrow h^- \nu_{\tau}$		11.5
$\tau^- ightarrow h^- \pi^0 u_{ au}$	$\rho(770)$	25.9
$\tau^- ightarrow h^- \frac{\pi^0 \pi^0}{\pi^0} u_{ au}$	$a_1(1260)$	9.5
$\tau^- \rightarrow h^- h^+ h^- \nu_{\tau}$	$a_1(1260)$	9.8
$\tau^- \rightarrow h^- h^+ h^- \pi^0 \nu_{\tau}$		4.8
Other		3.3

 τ_h appear in the detector with :

- 1 or 3 charged hadrons (mainly π^{\pm}, K^{\pm} , CMS does not distinguish them)
- 1 or more neutral pions that undergo the decay $\pi^0 \to \gamma \gamma$
- intermediate resonances in the decay

Many decay modes \rightarrow different signatures to be captured by the same algorithm

Event selection

Event Selection - Summary

$\tau_{\rm h}\tau_{\rm h}$ channel

Trigger : DoubleMediumIsoPFTau35 Hadronic taus : $p_{\rm T}(\tau_{\rm h}) > 40$ GeV and $|\eta(\tau_{\rm h})| < 2.1$

$au_{\mu} au_{ m h}$ channel

Trigger :

- IsoMu22
- IsoMu19 LooseIsoPFTau20

Muon:

- $p_{\rm T}(\mu) > 20 {\rm ~GeV}$ (> 23 GeV if IsoMu22)
- $|\eta(\mu)| < 2.1$

Hadronic tau :

- $p_{\rm T}(\tau_{\rm h}) > 30 \; {\rm GeV}$
- $|\eta(\tau_{\rm h})| < 2.3$

$ au_e au_{ m h}$	cha	nnel
Trig	\mathbf{ger}	:

- *Ele25*

Electron :

- $p_{\rm T}(e) > 26 \,\,{\rm GeV}$
- $|\eta(e)| < 2.1$

Hadronic tau :

- $p_{\rm T}(\tau_{\rm h}) > 30 \; {\rm GeV}$ $p_{\rm T}(\mu) > 15 \; {\rm GeV}$
- $|\eta(\tau_{\rm h})| < 2.3$

$au_e au_\mu$ channel **Trigger** :

- Mu8 Ele23
- Mu23 Ele12

Electron :

- $p_{\rm T}(e) > 15 {
 m GeV}$ $(> 24 \text{ GeV if } Mu8 \quad Ele23)$
- $|\eta(e)| < 2.4$
- Muon:
 - (> 24 GeV if Mu23 Ele12)
 - $|\eta(\mu)| < 2.4$

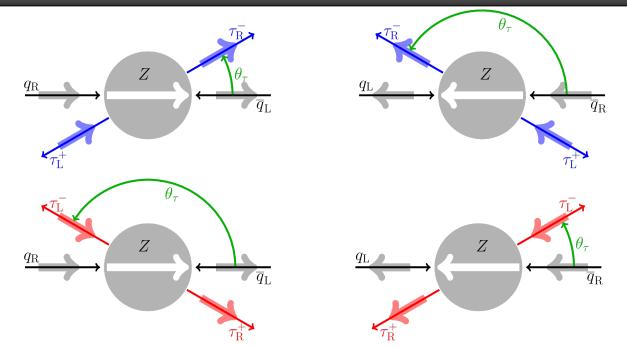
Abdollah Mohammadi

 $au_{
m h} au_{
m h}$ 42%

 $\mu au_{
m h}$

23%

 $\mathrm{e} au_{\mathrm{h}}$

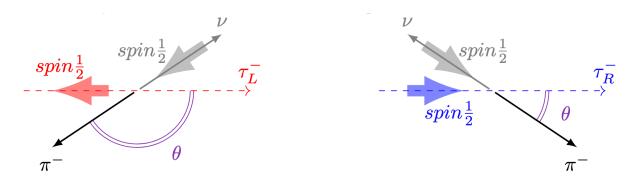

23%

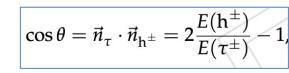
 $\mathrm{e}\mu$ $\mu\mu$

 $3\% \dot{6}\% \dot{3}\%$

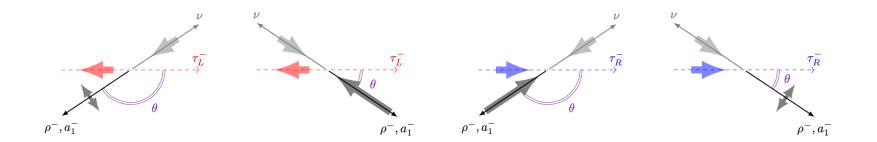
ee

Helicity states of incoming quarks and outgoing τ leptons.

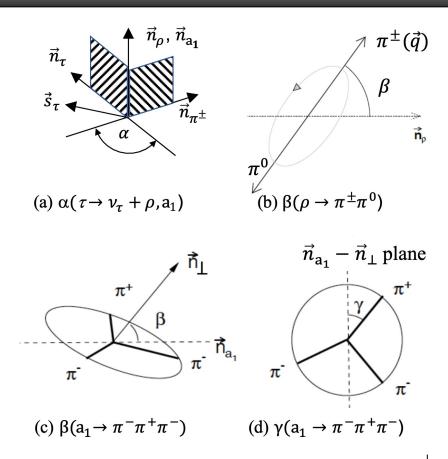



> The angle θ_{τ} is the scattering angle of the τ –lepton with respect to the quark momentum in the rest frame of the Z boson

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_{\tau}} = F_0(\hat{s})(1+\cos^2\theta_{\tau}) + 2F_1(\hat{s})\cos\theta_{\tau} - \lambda_{\tau}[F_2(\hat{s})(1+\cos^2\theta_{\tau}) + 2F_3(\hat{s})\cos\theta_{\tau}].$


> The helicity of τ leptons from Z boson decays can be measured from energy and angular distributions of the τ lepton decay products.

Helicity of τ leptons - Angle θ in τ rest frame



Intermediate spin-0 resonance $(\pi^{-}) \Rightarrow$ angle θ contains full helicity information

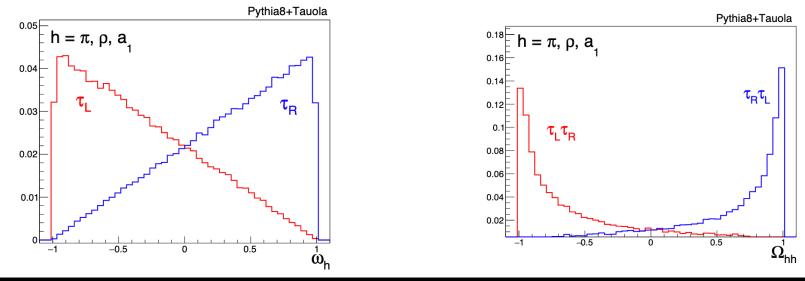
Intermediate spin-1 resonances (ρ^- , a_1^-) \Rightarrow angle θ depends on the polarisation of the resonance. Not sensitive enough to analyse by itself the τ – polarisation. <u>Need more discrminative variables</u>

Helicity of τ leptons - Angles β , α and γ

Angular kinematics of τ decays are full described by 1-4 angles :

- $\tau^{\pm} \rightarrow \pi^{\pm} \nu : \theta$
- $\tau^{\pm} \rightarrow a_1^{\pm} \nu \rightarrow 3\pi^{\pm} \nu : \theta, \, \beta, \, \alpha, \, \gamma$
- $\tau^{\pm} \to \rho^{\pm} \nu \to \pi^{\pm} \pi^{0} \nu : \theta, \beta, \alpha \ (\beta \text{ can be reconstructed from four-momenta of pions})$

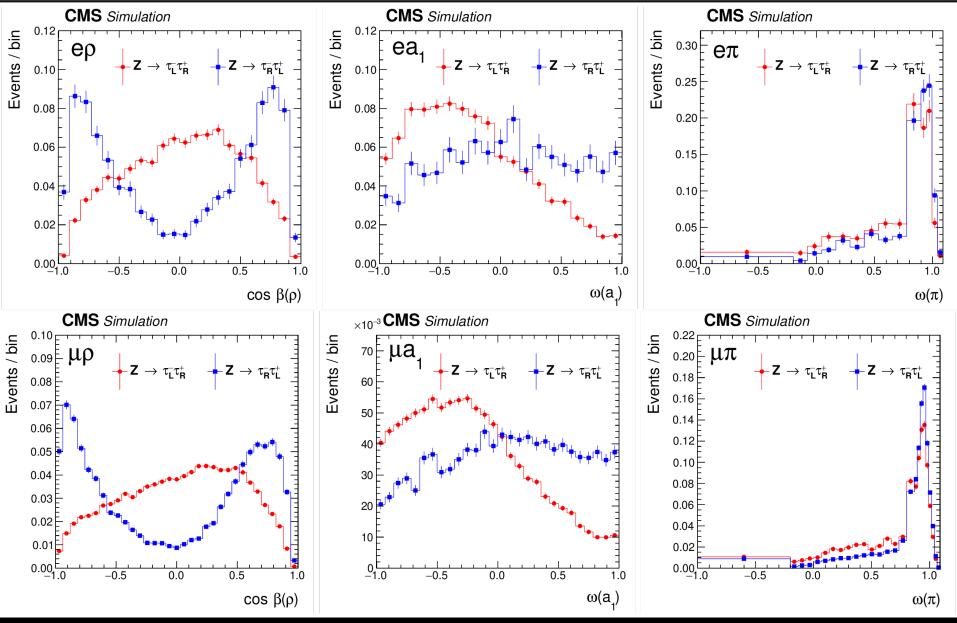
Discriminant Observables (optimal variables)


Definition : ratio of matrix elements (number of considered angles depends on decay mode)

$$\omega(\tau = \theta, \beta, \alpha, \gamma) = \frac{|M(\theta, \beta, \alpha, \gamma | \tau_R)|^2 - |M(\theta, \beta, \alpha, \gamma | \tau_L)|^2}{|M(\theta, \beta, \alpha, \gamma | \tau_R)|^2 + |M(\theta, \beta, \alpha, \gamma | \tau_L)|^2}$$

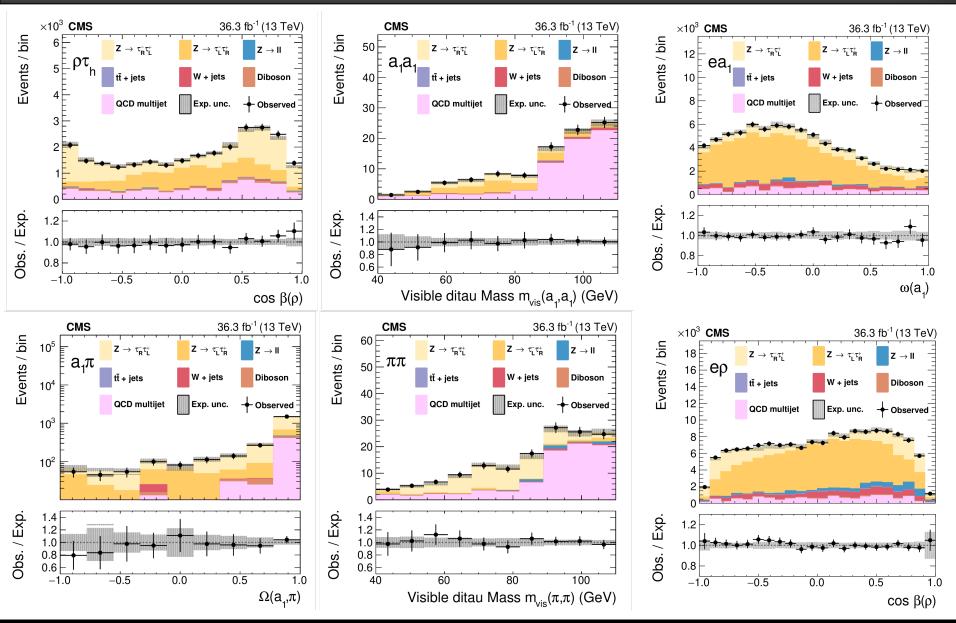
 $\theta,\beta,\alpha,\gamma$: angles approximately estimated from the decay data

Combination : helicity information from both taus is 100% anti-correlated (on generator level) $(e^{-}) + e^{-}(e^{+})$


$$\Omega(\tau^-, \tau^+) = \frac{\omega(\tau^-) + \omega(\tau^+)}{1 + \omega(\tau^-) \cdot \omega(\tau^+)}$$


Final Choice of Discriminators

Channel	Category	Discriminator	
$ au_e au_\mu$	$e + \mu$	$m_{ m vis}(e,\mu)$	visible mass
$ au_e au_{ m h}$	$e + a_1$	$\omega(a_1)$	optimal observable with SVfit
	$e + \rho$	coseta(ho)	visible optimal observable
	$e + \pi$	$\omega(\pi)$	optimal observable with SVfit
$ au_{ m \mu} au_{ m h}$	$\mu + a_1$	$\omega(a_1)$	optimal observable with SVfit
	$\mu + ho$	coseta(ho)	visible optimal observable
	$\mu + \pi$	$\omega(\pi)$	optimal observable with SVfit
$ au_{ m h} au_{ m h}$	$a_1 + a_1$	$m_{\mathrm{vis}}(a_1,a_1)$	visible mass
	$a_1 + \pi$	$\Omega(a_1,\pi)$	combined optimal observable with SVfit
	$ ho + au_{ m h}$	coseta(ho)	visible optimal observable (for leading ρ)
	$\pi + \pi$	$m_{ m vis}(\pi,\pi)$	visible mass


Discriminant Observables

Signal and background definition

Final Observables

Extraction of Polarisation by Template Fit

Fitting data distributions of optimal observables with templates for $Z \to \tau \tau$ signal and background :

$$\mathcal{T}(data) \stackrel{fit}{=} \mathcal{T}(sig, \langle \mathcal{P}_{\tau} \rangle, r) + \mathcal{T}(bkg)$$

Two parameters of interest :

- average tau polarisation $\langle \mathcal{P}_{\tau} \rangle$
- signal strength r

Events / bin $Z \rightarrow \tau_B^- \tau_L^+$ 90 ⊨ CMS 80 70 60 50 40 30 20 10 Obs. / Exp 1.4 1.2 0.8 0.6 -0.5 0.0 0.5 -1.01.0

Signal templates :

$$\mathcal{T}(sig, \langle \mathcal{P}_{\tau} \rangle, r) = r \cdot \left[\frac{1 + \langle \mathcal{P}_{\tau} \rangle}{2} \cdot \frac{\mathcal{T}(Z \to \tau_{R}^{-} \tau_{L}^{+})}{2} + \frac{1 - \langle \mathcal{P}_{\tau} \rangle}{2} \cdot \frac{\mathcal{T}(Z \to \tau_{L}^{-} \tau_{R}^{+})}{2} \right]$$
templates for right- and left-handed τ
(splitting is done with MADGRAPH5 spin flag)

Background processes :

 $Z^0/\gamma^*
ightarrow e^- e^+/\mu^- \mu^+$, $t\bar{t} + ext{jets}$, di-boson, $W + ext{jets}$ (normalisation from

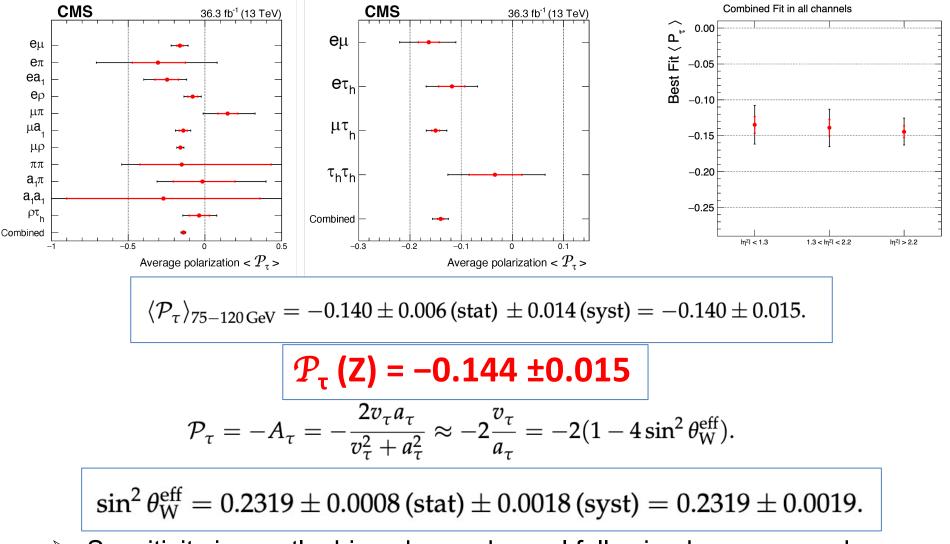
data) and QCD (normalisation and shape from data)

<u>Closure test</u> : The average polarisation of MC MADGRAPH5 is found back by extracting polarisation with templates

Major source of systematics

Systematic Source - τ DM Migrations

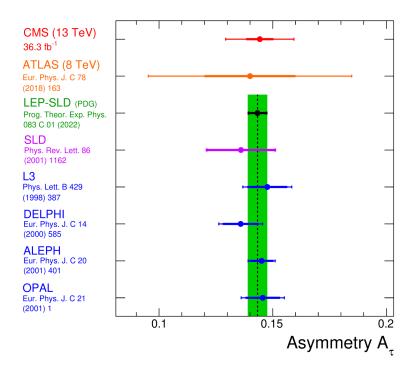
- Does MC simulation describes decay-mode reconstruction in data well?
- Variations of migrations have strong impact on polarisation measurement :
 - Problem of normalisation inside categories
 - Discriminant variables are optimised for a given τ decay-mode
- Define 3 most important migrations :


•
$$x_0^{\text{reco}} \equiv x^{\text{reco}}(h^{\pm} \leftrightarrow h^{\pm}\pi^0)$$

• $x_1^{\text{reco}} \equiv x^{\text{reco}}(h^{\pm}\pi^0 \leftrightarrow h^{\pm}\pi^0\pi^0)$
• $x_{10}^{\text{reco}} \equiv x^{\text{reco}}(3h^{\pm} \leftrightarrow 3h^{\pm}\pi^0)$

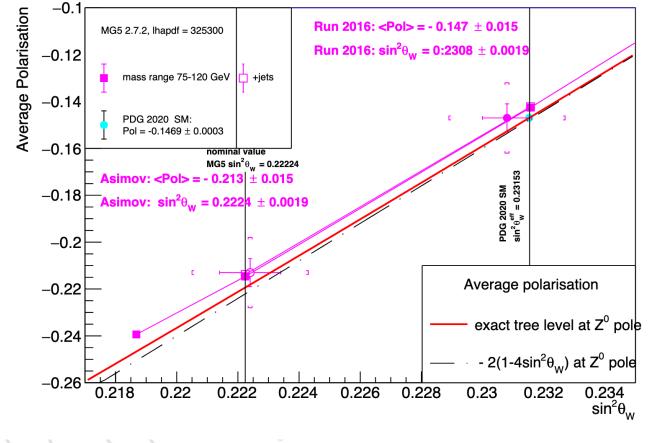
CMS Simulation Supplementary $\tau_{\mu}\tau_{h}$ 3.8 ± 0.3 36.2 ± 0.8 29.1 ± 0.7 13.4 ± 0.5 17.5 ± 0.6 other 80 70 $3h^{\pm}1\pi^{0}$ 1.3 ± 0.1 2.3 ± 0.2 0.7 ± 0.1 18.3 ± 0.4 77.5 ± 0.4 (MVADM=11) Predicted au decay modes 60 Purity (in %) $_{40}^{50}$ $3h^{\pm}$ 0.2 ± 0.0 0.6 ± 0.0 0.2 ± 0.0 89.7 ± 0.2 9.3 ± 0.2 MVADM=10) $h^{\pm}2\pi^{0}$ 2.4 ± 0.1 28.2 ± 0.3 69.1 ± 0.3 0.1 ± 0.0 0.2 ± 0.0 (MVADM=2) 30 $h^{\pm}1\pi^{0}$ 6.3 ± 0.1 73.7 ± 0.2 19.6 ± 0.1 0.1 ± 0.0 0.2 ± 0.0 (MVADM=1) 2010 h^{\pm} 16.5 ± 0.2 1.3 ± 0.1 81.9 ± 0.2 0.2 ± 0.0 0.1 ± 0.0 (MVADM=0) Generated τ decay modes

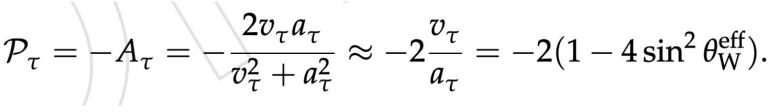
Parameters x_i^{reco} quantify the fraction of all events in a given reconstructed DM *i* that migrate differently in data compared to MC.


Results of the Average τ Polarisation

Sensitivity is mostly driven by μτ channel following by eτ, eμ, and ττ.
 No dependence on the pseudo-rapidity of the Z₀ boson

Summary


- Polarization of τ⁻ leptons in the decay of Z bosons produced in pp collisions using CMS detector is presented to an integrated luminosity of 36.3 fb⁻¹.
- The measured τ^- lepton polarization, $\mathcal{P}_{\tau}(Z) = -0.144 \pm 0.015$, is in good agreement with the SLD, LEP and ATLAS results.
- The measured polarization constrains the effective couplings of τ⁻ leptons to the Z boson and determines the effective weak mixing angle to be sin² θ^{eff}_W = 0.2319 ± 0.0019
- No deviation from SM! Improving the sensitivity requires both more data and more importantly, better understanding/reducing the systematics.


Backup

Abdollah Mohammadi (UW-Madison)

Polarization curve

Polarisation curve

Abdollah Mohammadi (UW-Madison)