ATLAS Status Report

Cigdem Issever
University of Oxford
Open LHCC Session
23.03.2011
Activities during 2010/2011 Technical Stop

- Maintenance and consolidation
 - cooling, ventilation, cryogenics, magnets, UPS …
 - Installation of Roman Pots (ALFA)

- End-cap calorimeters opened and closed → many repairs, including
 - liquid-argon EM calorimeter optical links
 - Tile calorimeter LVPS
 - Muon chambers specific repairs
 - ~3800 HV RPC connectors substituted, …
 - Magnets bus-bars

<table>
<thead>
<tr>
<th>Subdetector</th>
<th>Number of Channels</th>
<th>Approximate Operational Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels</td>
<td>80 M</td>
<td>97.2%</td>
</tr>
<tr>
<td>SCT Silicon Strips</td>
<td>6.3 M</td>
<td>99.2%</td>
</tr>
<tr>
<td>TRT Transition Radiation Tracker</td>
<td>350 k</td>
<td>97.5%</td>
</tr>
<tr>
<td>LAr EM Calorimeter</td>
<td>170 k</td>
<td>99.9%</td>
</tr>
<tr>
<td>Tile calorimeter</td>
<td>9800</td>
<td>98.8%</td>
</tr>
<tr>
<td>Hadronic endcap LAr calorimeter</td>
<td>5600</td>
<td>99.8%</td>
</tr>
<tr>
<td>Forward LAr calorimeter</td>
<td>3500</td>
<td>99.9%</td>
</tr>
<tr>
<td>LVL1 Calo trigger</td>
<td>7160</td>
<td>99.9%</td>
</tr>
<tr>
<td>LVL1 Muon RPC trigger</td>
<td>370 k</td>
<td>99.5%</td>
</tr>
<tr>
<td>LVL1 Muon TGC trigger</td>
<td>320 k</td>
<td>100%</td>
</tr>
<tr>
<td>MDT Muon Drift Tubes</td>
<td>350 k</td>
<td>99.8%</td>
</tr>
<tr>
<td>CSC Cathode Strip Chambers</td>
<td>31 k</td>
<td>98.5%</td>
</tr>
<tr>
<td>RPC Barrel Muon Chambers</td>
<td>370 k</td>
<td>97.0%</td>
</tr>
<tr>
<td>TGC Endcap Muon Chambers</td>
<td>320 k</td>
<td>99.1%</td>
</tr>
</tbody>
</table>
Access to the calorimeter front-end electronics

7 weeks of intense mechanical work
open and close the detector

3 weeks work on calorimeter electronics:

LAr front-end electronics repaired
Tiles front-end repaired

: 54 OTXs exchanged, 11 electronics boards
: 23 LVPS repaired/exchanged, 16 drawers
(3 drawers failed after closing)
ALFA Roman Pots: Installation

ALFA := 4 Roman Pot Stations for luminosity measurement
± 240 m from ATLAS IP

December: all 4 stations with Roman Pots installed and bake out finished
January: 8 fibre detectors, front-end electronics, cabling & infra-structure, laser survey finished
February, March Commissioning:
- readout and latencies with LEDs inside RPots
- DCS/TDAQ integrated into central ATLAS

Plans 2011:
- scraping for alignment & positioning with beams
- implementations of ALFA triggers in menu
- move out of garage for detection of halo particles
- physics run close to beam with high β^*
Luminosity weighted relative detector uptime and good quality data delivery during 2010 stable beams in pp collisions at \(\sqrt{s} = 7 \) TeV between March 30th and October 31st (in %). The inefficiencies in the LAr calorimeter will partially be recovered in the future.
Improved Luminosity Measurement

Thanks to LHC team and ATLAS efforts

- Improved determination
 - LHC bunch currents: 10% → 2.9%
- ATLAS vdM scan analysis
 - length scale: 2% → 0.3%
 - emittance growth: 3% → 0.5%
 - mu dependence: 2% → 0.5%
 - fit model: 1% → 0.1%
 - beam centering: 2% → 0.1%

van der Meer Scans
5 lumi detectors and up to 5 algorithms

Uncertainty reduced 11% → 3.4%
Electron Performance Results

Z mass resolution
\[\sigma_{\text{data}} = 1.73 \pm 0.08 \text{ GeV} \]
\[\sigma_{\text{MC}} = 1.49 \pm 0.02 \text{ GeV} \]

J/ψ Resolution
\[\sigma_{\text{data}} = 132 \pm 2 \text{ MeV} \]
\[\sigma_{\text{MC}} = 134 \pm 1 \text{ MeV} \]

Calibrated at Z peak
Excellent linearity

forward-central Zs
electrons above the tracker acceptance
ID and Muon Combined Performance Results

Low p_T efficiency from $J/\psi \rightarrow \mu\mu$ decays

High p_T efficiency from $Z \rightarrow \mu\mu$ decays

Efficiency understood down to very low p_T

Improve momentum scale and resolution

Muon scale uncertainty is < 1%

Dimuon mass resolution 1.8% barrel and 3% end-cap

Smear MC hit uncertainties

$$\sigma = a \ast \sigma + c$$

$\sigma = 1$

Present understanding of ID alignment

<table>
<thead>
<tr>
<th>Detector</th>
<th>coordinate</th>
<th>Barrel</th>
<th>End-caps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>local x</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>local y</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td>SCT</td>
<td>local x</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>TRT</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Measuring ψ and B^\pm production is an important test-bed for a variety of QCD models. Measurements made in slices of ψ p_T from 1 to 70 GeV and in 4 rapidity slices from 0 to 2.4. One rapidity slice shown here (0.75-1.5).

Reconstruction of an exclusive B decay mode

$B^\pm \rightarrow \psi K^\pm$
35 pb$^{-1}$:

$260000 \ W \rightarrow l \nu$

$25000 \ Z/\gamma^* \rightarrow ll$

$W/Z \rightarrow e\nu\mu\mu$ Candidate
W and Z Inclusive Cross-Section – 33-36 pb⁻¹

- **Main improvements** wrt 0.3pb⁻¹ measurement (JHEP, 12:060, 2010)
 - Systematic uncertainties diminished (/3): $\sigma(Z \rightarrow ll) 1.2\%$, $\sigma(W \rightarrow l\nu) 2.4\% + \text{lumi}$
 - Experimental uncertainties smaller than theory uncertainties in fiducial regions
 - $\sigma(Z \rightarrow ee)$ extended up to $|\eta| \sim 4.9$

NNLO predictions consistent with data

Remarkable success of pQCD and PDFs
W Charge Asymmetry (muon channel)

\[A_\mu = \frac{d \sigma_{W \mu^+} / d \eta_\mu - d \sigma_{W^-} / d \eta_\mu}{d \sigma_{W \mu^+} / d \eta_\mu + d \sigma_{W^-} / d \eta_\mu} \approx \frac{d(x)}{u(x)} \]

- Measurement constrains PDFs
 - \(10^{-3} \leq x \leq 10^{-1}\)

\(\chi^2 = 8.8\)
WW → eνμν Candidate

Run 167576 Event 120642801
Time 2010-10-24 13:06:00 EDT

<table>
<thead>
<tr>
<th>$p_T^{\mu^-}$ [GeV]</th>
<th>η^{μ^-}</th>
<th>ϕ^{μ^-}</th>
<th>$p_T^{e^+}$ [GeV]</th>
<th>η^{e^+}</th>
<th>ϕ^{e^+}</th>
<th>E_T^{miss} [GeV]</th>
<th>$\phi_{E_T^{\text{miss}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.8</td>
<td>-0.63</td>
<td>0.20</td>
<td>21.2</td>
<td>-1.56</td>
<td>-0.56</td>
<td>68.8</td>
<td>-3.08</td>
</tr>
</tbody>
</table>
Diboson Production

- **WW Production**
 - Test non-abelian nature of EW sector
 - Sensitive to **Triple Gauge Couplings**
 - Main background to $H \rightarrow WW$
 - NLO prediction: $46 \pm 3 \text{ pb}$
 - Results:
 \[
 \sigma_{WW} = 40^{+20}_{-16} (\text{stat}) \pm 7 (\text{syst}) \text{ pb}
 \]
 - 8 events observed, 1.7 ± 0.6 bkg expected
 - Dominated by statistical uncertainty 44%

- **W/Z+γ Production**
 - Sensitive to Triple Gauge Couplings
 - Important test of SM

<table>
<thead>
<tr>
<th>Process</th>
<th>$\sigma^{\text{total}}\text{pb}$</th>
<th>$\sigma^{\text{total}}\text{pb}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$pp \rightarrow e\nu\gamma$</td>
<td>$73.9 \pm 10.5(\text{stat}) \pm 14.6(\text{syst}) \pm 8.1(\text{lumi})$</td>
<td>$69.0 \pm 4.6(\text{syst})$</td>
</tr>
<tr>
<td>$pp \rightarrow \mu\nu\gamma$</td>
<td>$58.6 \pm 8.2(\text{stat}) \pm 11.3(\text{syst}) \pm 6.4(\text{lumi})$</td>
<td>$69.0 \pm 4.6(\text{syst})$</td>
</tr>
<tr>
<td>$pp \rightarrow e^+e^-\gamma$</td>
<td>$16.4 \pm 4.5(\text{stat}) \pm 4.3(\text{syst}) \pm 1.8(\text{lumi})$</td>
<td>$13.8 \pm 0.9(\text{syst})$</td>
</tr>
<tr>
<td>$pp \rightarrow \mu^+\mu^-\gamma$</td>
<td>$10.6 \pm 2.6(\text{stat}) \pm 2.5(\text{syst}) \pm 1.2(\text{lumi})$</td>
<td>$13.8 \pm 0.9(\text{syst})$</td>
</tr>
</tbody>
</table>
SM Higgs \rightarrow W W* \rightarrow lν lν (l = e, μ)

- Strong sensitivity in $120 < m(H_{SM}) < 200$ GeV
- Cut-based analysis
- Combining H + 0 jet, H + 1 jet and H + 2 jet

... will be catching up with the Tevatron very soon.

Upper limit on $\sigma \times BR(H \rightarrow WW^*)$
- $m_H=120$ GeV : 54 pb
- $m_H=160$ GeV : 11 pb
- $m_H=200$ GeV : 71 pb

Data-driven estimation
- WW, tt, W+jets, Z+jets backgrounds

ATLAS Preliminary

Transverse mass (H+0 jets)

- ATLAS Preliminary
- Data
- H→WW ($m_H=170$ GeV)
- W+jets
- top
- WW
- Z+jets
- WZ/ZZ/Wγ

Integral $L dt = 35$ pb$^{-1}$
- $\sqrt{s} = 7$ TeV

95% CL Limit on σ/σ_{SM}
- $\int L dt = 35$ pb$^{-1}$
- $\sqrt{s} = 7$ TeV
- Transverse mass (H+0 jets)

Tevatron $<L> = 5.9$ fb$^{-1}$
- 2010 Tevatron Exclusion
- Observed CLs
- Expected CLs
SM: $H \rightarrow \gamma\gamma$

- Mass range: 110 GeV - 140 GeV
- Data-driven estimation of all background components
 - $\gamma\gamma$, γj, jj
- Inclusive
 - only discriminant diphoton inv. mass

Sensitivity close to Tevatron
Exploring new mass reach! $H \rightarrow ZZ \rightarrow lll\ell$, llqq, llνν

ATLAS - CONF - 2011 - 026

ATLAS Preliminary
$H \rightarrow llqq$ ($m_H = 400$ GeV)

ATLAS Preliminary
$H \rightarrow llνν$ ($m_H = 400$ GeV)

ATLAS Preliminary
$H \rightarrow ZZ \rightarrow lll\ell$

ATLAS Preliminary
$\int L dt = 35$ pb$^{-1}$, $\sqrt{s} = 7$ TeV

ATLAS Preliminary
$\int L dt = 40$ pb$^{-1}$, $\sqrt{s} = 7$ TeV

95% C.L. limit on σ/σ_{SM}

Observed (PCL)
Expected (PCL)
$\pm 1\sigma$
$+ 2\sigma$
Observed CLs
Expected CLs

95% C.L. limit on σ/σ_{SM}

Observed
Expected
$\pm 1\sigma$
$+ 2\sigma$

$\int L dt = 35$ pb$^{-1}$, $\sqrt{s} = 7$ TeV

$\int L dt = 40$ pb$^{-1}$, $\sqrt{s} = 7$ TeV

$H \rightarrow ZZ \rightarrow lll\ell$, llqq, llνν
First step to $H \to \tau\tau$

- $\mu + \text{had}$, 22.5%
- $\text{had} + \text{had}$, 42.0%
- $e + \text{had}$, 23.1%
- $e + \mu$, 6.2%
- $\text{had} + \text{had}$, 42.0%
- ee, 3.2%
- emu, 3.0%
- $\mu\mu$, 6.2%

Events / 5 GeV

- $m_{\text{vis}}(\mu, \tau_h)$ [GeV]
- $m_{\text{vis}}(e, \tau_h)$ [GeV]
Neutral MSSM Higgs: $A/H/h \to \tau_\ell \tau_h$

- **Inclusive cut based search** (semi-leptonic decay channel only)
 - no jet or b-jet multiplicities requirements
 - Data-driven background estimation for Z+jets, QCD, W+jets

Exclusion reach better than at Tevatron
Extra Gauge Bosons (l\(l\) + l\(\nu\))

ATLAS
- **W' \rightarrow ev**
- \(\sqrt{s} = 7\) TeV
- \(\int L dt = 36\) pb\(^{-1}\)

Tevatron Limit:
- \(M(W') > 1.490\) (1.450) TeV
- \(M(Z') > 1.048\) (1.084) TeV

Submitted to PLB; arXiv:1103.1391
Searches with Di-Photons

Diphoton Resonance Search (36pb⁻¹)

LIMITS 95% C.L:
- \(M(G) > 545 \text{ GeV} \) (\(k/MPL = 0.02\))
- \(M(G) > 920 \text{ GeV} \) (\(k/MPL = 0.1\))

Previous Tevatron limit (D0):
- \(M(G) > 1.050 \text{ GeV} \) (\(k/MPL=0.1\))

NEW

Diphoton + Met Search (3 pb⁻¹)

Universal Extra Dimension
- KK-\(g/q\rightarrow \gamma^* \rightarrow \gamma + G \) (x2 per event)
 - observe: \(\gamma\gamma + \text{ETmiss} (+ \text{other SM})\)

Limit: \(1/R > 728 \text{ GeV} \) (95% C.L.)

Previous Tevatron limit (D0): \(1/R > 477 \text{ GeV} \)

Most stringent limits to date

ATLAS-CONF-2011-044
Highest-mass dijet event recorded in 2010

\[m_{jj} = 4.0 \text{ TeV} \]
\[(p_T^1, y^1) = (510 \text{ GeV}, -1.9) \]
\[(p_T^2, y^2) = (510 \text{ GeV}, 2.2) \]
Jet Energy Scale

Evaluated up to 3.5 TeV in energy and $|\eta|<4.5$

<table>
<thead>
<tr>
<th>η region</th>
<th>Maximal relative JES uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>\eta</td>
</tr>
<tr>
<td></td>
<td>4.6%</td>
</tr>
<tr>
<td>2.1<</td>
<td>η</td>
</tr>
<tr>
<td>3.6<</td>
<td>η</td>
</tr>
</tbody>
</table>

Improved by factor of 2

ATLAS Preliminary

In-situ calibrations
Jet Energy and Etmiss Resolutions

Advanced calibrations → improve resolution by 10-30%

Monte Carlo agrees with data within 10%

PbPb data only sample reaching this high in ΣE_T
Inclusive Jet Differential Cross Sections

Our first measurement Sep 2010

\[\frac{d\sigma}{dp_T} \quad \text{[pb/GeV]} \]

\[|y| < 2.8 \]

\[\int L \, dt = 17 \text{ nb}^{-1} \quad (\sqrt{s} = 7 \text{ TeV}) \]

\[\text{ATLAS} \]

Data/Theory

\[p_T \quad \text{[GeV]} \]

\[0 \quad 100 \quad 200 \quad 300 \quad 400 \quad 500 \quad 600 \]

\[0 \quad 0.5 \quad 1 \quad 1.5 \quad 2 \]

\[\text{Systematic Uncertainties} \]

\[\text{NLO pQCD (CTEQ 6.6) x Non-pert. corr.} \]

\[\text{anti-}k_T \text{ jets, } R=0.6 \]

The European Physical Journal

Particles and Fields
Inclusive Jet Cross Section Kinematic Reach

ATLAS Preliminary

Inclusive jet cross section kinematic reach

- Summer 2010, $\int L \, dt = 17 \text{ nb}^{-1}$
- Winter 2011, $\int L \, dt = 37 \text{ pb}^{-1}$

$\sqrt{s} = 7 \text{ TeV}$

anti-k_t jets, $R = 0.6$
Inclusive Single Jet Double-Differential Cross Section

- Full 2010 data: 37 pb⁻¹
- 20 GeV < pₜ < 1500 GeV
- 7 rapidity bins, |y|<4.4
- 10-12 orders of magnitude in cross section
- Total uncertainty 50-10%
 - Dominated by JES

Good agreement btw data and NLO pQCD with various PDFs
Inclusive Double-Differential Di-Jet Cross Section

Inclusive Jet Cross Sections Summary

- Probing truly new, large kin. region
- Expanded to very forward region
 - $|y|$ up to 4.4 (1st time at a hh collider)
- Uncertainty greatly reduced
 - 50% → 20% (central)
- Good agreement btw data and NLO pQCD with various PDFs

Breakthrough: POWHEG comparisons
Many More SM Jet Results

Dijet azimuthal decorrelations: Accepted by PRL; arXiv:1102.2696 [hep-ex]

Multijets: ATLAS-CONF-2011-043

Z+jets: ATLAS-CONF-2011-042

Dijet production with a jet veto: ATLAS-CONF-2011-038
Dijet Resonance Searches in ATLAS

Submitted to NJP; arXiv:1103.3864

Search for a BUMP
Nothing found
p-value = 0.39

95% C.L LIMITS Observed (Expected)

<table>
<thead>
<tr>
<th>Mass (GeV)</th>
<th>0.03</th>
<th>0.05</th>
<th>0.07</th>
<th>0.10</th>
<th>0.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>434</td>
<td>638</td>
<td>849</td>
<td>1300</td>
<td>1990</td>
</tr>
<tr>
<td>700</td>
<td>409</td>
<td>530</td>
<td>789</td>
<td>1092</td>
<td>945</td>
</tr>
<tr>
<td>800</td>
<td>173</td>
<td>194</td>
<td>198</td>
<td>218</td>
<td>231</td>
</tr>
<tr>
<td>900</td>
<td>88</td>
<td>103</td>
<td>123</td>
<td>162</td>
<td>311</td>
</tr>
<tr>
<td>1000</td>
<td>147</td>
<td>179</td>
<td>210</td>
<td>278</td>
<td>391</td>
</tr>
<tr>
<td>1100</td>
<td>143</td>
<td>169</td>
<td>204</td>
<td>263</td>
<td>342</td>
</tr>
<tr>
<td>1200</td>
<td>91</td>
<td>120</td>
<td>168</td>
<td>223</td>
<td>262</td>
</tr>
<tr>
<td>1300</td>
<td>65</td>
<td>80</td>
<td>101</td>
<td>120</td>
<td>122</td>
</tr>
<tr>
<td>1400</td>
<td>35</td>
<td>42</td>
<td>50</td>
<td>61</td>
<td>67</td>
</tr>
<tr>
<td>1500</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>1600</td>
<td>21</td>
<td>25</td>
<td>29</td>
<td>36</td>
<td>40</td>
</tr>
</tbody>
</table>

Excited quarks (q*): M > 2.15 (2.07) TeV
Quantum Black Holes: M > 3.67 (3.64) TeV
Axigluons: **NEW** M > 2.10 (2.01) TeV
Also 1st time more model Independent limits

Lower limits on Nobs (95% C.L.)
Dijet Angular Distribution Searches

Submitted to NJP; arXiv:1103.3864

NEW

Summary of Dijet Search Reach (mass + angular)

<table>
<thead>
<tr>
<th>Model and Analysis Strategy</th>
<th>95% C.L. Limits (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>Observed</td>
</tr>
<tr>
<td>Resonance in m_{jj}</td>
<td>2.07</td>
</tr>
<tr>
<td>$F_\chi(m_{jj})$</td>
<td>2.12</td>
</tr>
</tbody>
</table>

Randall-Meade Quantum Black Hole for $n = 6$

Resonance in m_{jj}	3.64	3.67
$F_\chi(m_{jj})$	3.49	3.78
θ_{np} Parameter for $m_{jj} > 2$ TeV	3.37	3.69

11-bin χ Distribution for $m_{jj} > 2$ TeV

| Resonance in m_{jj} | 3.36 | 3.49 |

Axigluon

<table>
<thead>
<tr>
<th>Contact Interaction Λ</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_\chi(m_{jj})$</td>
<td>5.72</td>
<td>9.51</td>
</tr>
<tr>
<td>F_χ for $m_{jj} > 2$ TeV</td>
<td>5.24</td>
<td>6.76</td>
</tr>
</tbody>
</table>

11-bin χ Distribution for $m_{jj} > 2$ TeV

| $F_\chi(m_{jj})$ | 5.40 | 6.58 |

Most stringent limits to date
tt Production Cross Section with 35 pb$^{-1}$

l+jets

l+jets with b-tag

dilepton

\[
\sigma(t\bar{t}) = 180 \pm 9 \pm 15 \pm 6 \text{ pb} \\
[10\% \text{ total uncertainty}]
\]
Top Properties in 35 pb$^{-1}$

- **Top Mass**
 - $m(t) = 169.3 \pm 4.0 \pm 4.9$ GeV
 - Measured in lepton+jets channel
 - Dominant uncertainty due to JES
 - Uses ratio of reconstructed top to W mass

$R_{32} - \mu$+jets channel

- **W helicity in top decays**
 - Sensitive to anomalous couplings
 - $F_L = 0.59 \pm 0.12$
 - $F_0 = 0.41 \pm 0.12$
 - Stat. limited, approaching Tevatron precision

$\cos(\theta^*)$ l+jets channel

- $m(t) = 169.3 \pm 4.0 \pm 4.9$ GeV

Figure: Histograms showing distributions for $m(t)$ and R_{32}. The top panel displays histograms for different templates, while the bottom panel shows a comparison of data with fitted templates and background distributions.
Top Physics with ATLAS

- The era of top physics at the LHC has started
- Pair-production cross-section
 - QCD
 - Study different decay channels
- Single top production
 - EWK
 - s-channel, Wt-channel, t-channel
- Properties:
 - mass, width, charge, spin
- Wtb vertex
 - W helicity, anomalous coupling
- Anomalous production
 - Resonances, modified final state

Statistics limited analysis will become attractive this year
2011: the year of precision top measurements at the LHC
Searches for 4th Generation Quarks in Dilepton Channel, 37 pb⁻¹

ATLAS-CONF-2011-022

First dilepton u₄ search!

\[M(Q_4) = 350 \text{ GeV} \]

NEW

LIMIT 95% C.L. Obs (Exp):
\[M(Q_4) > 270 \ (284) \text{ GeV} \]

Limit with 5.6 fb⁻¹ (CDF): \[M(u_4) > 356 \text{ GeV} \]
Limit with 4.8 fb⁻¹ (CDF): \[M(d_4) > 372 \text{ GeV} \]

(CDFNote CDF/PUB/TOP/PUBLIC/10110, arXiv:1101.5728)
Search for 1st and 2nd gen Leptoquarks

95\% C.L. LIMITS Observed (Expected) [GeV]

1st Generation: $M > 376$ (387) GeV $\beta=1$
$M > 319$ (348) GeV $\beta=0.5$

2nd Generation: $M > 422$ (393) GeV $\beta=1$
$M > 362$ (353) GeV $\beta=0.5$

Significantly extending search reach
Very sensitive to strong production of \(\tilde{q} \) and \(\tilde{g} \)
- SM background from \(W(l\nu)/Z(vv)+jets, \) QCD, top
- 4 signal regions to cover maximum of the phase space
 - See no excess
- Interpret in Phenomenological simplified MSSM
 - If \(m=\tilde{m}(\tilde{q})=\tilde{m}(\tilde{g}) \),
 - exclude \(m<870 \) GeV
 - Exclude \(m(\tilde{g})<500 \) GeV

Most stringent limits to date
SUSY: 1 lepton + Etmiss + jets

- Robust
- Isolated lepton ease triggering and QCD reduction
- Expect ~4 events and see 2 events
- Interpret in mSUGRA

Reach well beyond LEP and Tevatron
Many More SUSY Searches

2-lepton + Etmiss

Stable Massive Particle
(1103.1984, submitted to PLB)

1bjet + Etmiss; submitted to PLB

\(m_{\tilde{g}} \) [GeV]

\(m_{\tilde{\chi}^0_1} \) = 60 GeV, \(m_{\tilde{\chi}^\pm_1} \) \(\gg m_{\tilde{g}} \)

ATLAS

b-jet channel, 0-lepton, 3 jets

ATLAS

\(\int L dt = 35 \text{ pb}^{-1}, \sqrt{s} = 7 \text{ TeV} \)

Observed limit 95% C.L.

Expected limit 95% C.L.

\(\bar{b} \rightarrow b \tilde{\chi}^0_1 \rightarrow b \tilde{\chi}^\pm_1 \tilde{\chi}^0_2 \)

CDF \(\bar{b} \bar{b} \rightarrow 2.65 \text{ fb}^{-1} \)

D0 \(\bar{b} \bar{b} \rightarrow 5.2 \text{ fb}^{-1} \)

CDF \(\bar{g} \bar{g} \rightarrow 2.5 \text{ fb}^{-1} \)

Reference point

e\mu resonances

ATLAS Preliminary

\(\sqrt{s} = 7 \text{ TeV} \)

\(\int L dt = 35 \text{ pb}^{-1} \)

Theory \(\lambda_{111} = 0.6 \text{ fb}^{-1} \)

Theory \(\lambda_{111} = 0.0 \text{ fb}^{-1} \)

Observed Limit

Expected Limit

Expected Limit \pm 1 \sigma

Expected Limit \pm 2 \sigma
Summary

- Detector performed beautifully
- 2010 work/results foundation for 2011
 - Rediscovered SM and pushing the “precision frontier”
 - Extended the reach in many channels beyond Tevatron
 - 25 papers submitted and 11 in the pipeline
- Great Thank You to the LHC Machine Team

Notes for Winter Conferences

<table>
<thead>
<tr>
<th>Performance Groups</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Preparation</td>
<td>1</td>
</tr>
<tr>
<td>Exotics + SUSY</td>
<td>3</td>
</tr>
<tr>
<td>B-Physics</td>
<td>2</td>
</tr>
<tr>
<td>Standard Model</td>
<td>11</td>
</tr>
<tr>
<td>Top</td>
<td>8</td>
</tr>
<tr>
<td>Higgs</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
</tr>
</tbody>
</table>

ATLAS Online Luminosity $\sqrt{s} = 7$ TeV

- Total Delivered: 20.2 pb$^{-1}$
- Total Recorded: 18.6 pb$^{-1}$
- Efficiency: 91.8%
Backup Slides
First measurements of asymmetric dijets in lead-lead collisions at $\sqrt{s_{NN}}=2.76$ TeV

First measurements of J/ψ and Z yields in lead-lead collisions: systematic suppression of J/ψ, but insufficient statistics for any conclusion on the Z
Dijet Angular Distribution Searches

- Gain sensitivity by looking at rapidity

 \[y^* = \frac{1}{2} \ln\left(\frac{1 + |\cos \theta^*|}{1 - |\cos \theta^*|} \right) \]

- Observables

 \[\chi = \exp\left(|y_1 - y_2| \right) = \exp\left(2 |y^*| \right) \]

 \[F_{\chi}(m_{jj}) = \frac{N_{\text{events}}(|y^*| < 0.6)}{N_{\text{events}}(|y^*| < 1.7)} \]