TOTEM status report

K. Österberg,
University of Helsinki &
Helsinki Institute of Physics
on behalf of TOTEM
collaboration

- analysis of 2010 data
- shutdown activities
- 2011 data taking
Detector setup at 2010 data taking

$3.1 \leq |\eta| \leq 4.7$

$5.3 \leq |\eta| \leq 6.5$

T1
T2

RP 147
Near
Top
Bottom
Far

BPM
BLM

RP 220
Near
Top
Bottom
Far

BPM
BLM

Horizontal Pot
Vertical Pots
BPM

K. Österberg

Page 2
Elastic pp scattering – event topology

- one single track coincidence on each side of IP5 in a diagonal configuration

- single track coincidence in near-far top or near-far bottom pots on same side of IP5

2 diagonals: top 45 – bottom 56
bottom 45 – top 56
Low ξ requirement

\(x \approx 0 \), compatible with $\xi = 0$
Collinearity requirement

scattering angle θ^* left = scattering angle θ^* right
(within spread due to beam divergence)

$\theta_{x,45}^* \text{ vs } \theta_{x,56}^*$

$\theta_{y,45}^* \text{ vs } \theta_{y,56}^*$

minimize optics dependence:
θ_y^* from y^{RP} (trigger)
θ_x^* from θ_x^{RP}

K. Österberg
Elastic pp scattering dN/dt

Excellent optics understanding: agreement of 2 diagonals with different optics !!

Diagonals:
- Top 45 bottom 56
- Bottom 45 top 56

RPs @ $7\sigma_{beam}$
All requirements

K. Österberg
Elastic pp scattering dN/dt

TOTEM preliminary

$\sqrt{s} = 7$ TeV,
$\int L dt = 6.5$ nb$^{-1}$

RPs @ $7\sigma_{\text{beam}}$

62k events

$+ \sim 10k$ elastic candidates in $|t| > 2.2$ GeV2

(good $|t|$ overlap)

$\int L dt = 3.9$ pb$^{-1}$

with RPs @ $18\sigma_{\text{beam}}$

K. Österberg
7 sigma, fill 1455

<table>
<thead>
<tr>
<th>run</th>
<th>start time</th>
<th>run time [s]</th>
<th>files</th>
<th>events</th>
<th>IntegL [nb⁻¹]</th>
<th>DAQ eff</th>
<th>Trigger eff 45_bot_56_top</th>
<th>Trigger eff 45_bot_56_top</th>
<th>prescaler</th>
<th>skipped bunches, files, events, etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>3717</td>
<td>Sat Oct 30 01:18:49 2010</td>
<td>538</td>
<td>16</td>
<td>4.09E+005</td>
<td>0.34</td>
<td>0.96</td>
<td>0.9847</td>
<td>0.9947</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>3719</td>
<td>Sat Oct 30 01:29:11 2010</td>
<td>3499</td>
<td>81</td>
<td>2.13E+006</td>
<td>2.1</td>
<td>0.98</td>
<td>0.9847</td>
<td>0.9947</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>3720</td>
<td>Sat Oct 30 02:30:02 2010</td>
<td>5529</td>
<td>88</td>
<td>2.32E+006</td>
<td>3.1</td>
<td>0.99</td>
<td>0.9847</td>
<td>0.9947</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>3721</td>
<td>Sat Oct 30 04:03:46 2010</td>
<td>513</td>
<td>8</td>
<td>1.94E+005</td>
<td>0.27</td>
<td>0.99</td>
<td>0.9847</td>
<td>0.9947</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td>3722</td>
<td>Sat Oct 30 04:14:02 2010</td>
<td>1127</td>
<td>16</td>
<td>4.22E+005</td>
<td>0.59</td>
<td>0.99</td>
<td>0.9847</td>
<td>0.9947</td>
<td>1</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Sum of all runs</td>
<td>11206</td>
<td>209</td>
<td>5.48E+006</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Elastic pp scattering $d\sigma/dt$...

TOTEM preliminary
\(\sqrt{s} = 7 \text{ TeV} \)
\(\int \mathcal{L} \, dt = 6.5 \text{ nb}^{-1} \)
RPs @ 7\(\sigma_{\text{beam}} \)

Missing: correction due to t acceptance + RP detector & tracking efficiency
T2 data analysis

- review of material & geometry, understanding of simulation
- tuning of detector performance
data-Monte Carlo agreement
- study of trigger and tracking efficiency

...
Reconstructed $dN/d\eta$ (Not unfolded)

$\frac{dN_{ch}}{d\eta}$ analysis with T2

keypoint: primary-secondary separation

unfold for efficiency, bin migration & secondaries

data from collisions with low pileup rate

systematics:
– vary input momentum distribution of primaries & number of neutrals in MC ("green band") – no significant difference Pythia/Phojet
– more conservative also vary analysis cuts ("yellow band")
Detector installation shutdown 2010/11

3.1 \leq \eta \leq 4.7

5.3 \leq \eta \leq 6.5

T1

RP147

K. Österberg
RP147 installation

- All 12 silicon detector packages for RPs at 147 m installed.
- All services connected & tested, all sensors cooled down.

- Sensors & front-end electronics powered up & tested
- Integrated into DAQ, DCS & trigger
- In progress: interlock tests
- To be done: collimator-based alignment
T1 telescope installation

- All 4 T1 quarters installed in CMS endcap.
- All services connected & tested.
- CSC chambers & front-end electronics powered up & tested.
- Integrated in DAQ & DCS.
- First proton proton collision data taken March 13th.

Installation support of CMS much appreciated !!

K. Österberg
First T1 data

pp collisions at $\sqrt{s} = 2.38$ TeV with T2 MB trigger.

data taking settings, reconstruction algorithms & selection to be optimized.

$V(x) = 3 \text{ cm}$

$V(y) = 3 \text{ cm}$

$V(z) = 1.4 \text{ m}$

$\sigma(z) \sim 1.4 \text{ m}$

$\sigma(x) & \sigma(y) \sim 3 \text{ cm}$

T1 acceptance: $3.1 \leq |\eta| \leq 4.7$

CSC inefficiency (solvable via SW)

K. Österberg
T2 shutdown activities

- Change one 11th card
- Addition of HV filters \Rightarrow reduced noise
- Change of 3 chambers partially broken GEM chambers on minus side

More uniform detector behaviour & reduced noise
Running strategy

RP alignment at nominal conditions after each optics change
... some data taking close to beam directly after
1 nominal bunch plus a few minibunches (1-2 x10^{10} p/b)

- Special runs with low intensity & normal optics:
 - approach RP to ~5 \sigma to reach lowest |t| around 0.2 GeV^2
 - pileup-free data for T2 and T1 (~ 10^{-2}) \Rightarrow
diffractive physics with T1, T2, RP \Rightarrow increase statistics for DPE
several (20) pilots (1-2 x10^{10} p/b)

- Constant running at ~14 \sigma in normal runs
 - improve statistics at large |t/-values
 - 50 ns operation should be OK for RP

- Prepare \beta^* = 90 m optics \Rightarrow
 measure \sigma_{tot} and L in special runs
Conclusions

- Finalizing medium & high |t| elastic dσ/dt measurement
- Good progress on understanding of T2 data & dN_{ch}/dη analysis
- TOTEM detector setup completed !!
- First data with T1 very promising
- Eagerly waiting higher β* to make σ_{tot}
The End
$dN/d\eta$ comparison

$p_T > 100$ MeV, $|\eta| < 2.5$, $n_{ch} \geq 2$

$\sqrt{s} = 7$ TeV

ATLAS Preliminary

Corrected data and Phojet/Pythia comparison

TOTEM preliminary

$\sqrt{s} = 7$ TeV
Low ξ requirement

\[x_{RP,56} \leftrightarrow \theta_x, \text{RP}56 \]

\[y_{RP \text{ near,45}} \leftrightarrow y_{RP \text{ far,45}} \]
\[(y_{RP \text{ near,45}} \leftrightarrow \theta_y, \text{RP45}) \]

Low $\Delta p/p$ protons

\[\sigma(\Delta y) \approx 20\mu m \]

Inelastic & background
Elastic analysis

Good understanding of optics crucial!!
detailed analysis: good optics precision (<10%) & good agreement with data.

Elastic selection:

- **Topological requirements**
 - Tracks in both RPs/arm + diagonal configuration

- **Collinearity requirements**
 - θ_{45}^* vs θ_{56}^* compatible within beam divergence
 To minimize dependence on optics uncertainties:
 θ_x^* reconstructed from θ_x^{RP} and θ_y^* from y^{RP}

- **Low ξ requirements**
 - Elastic-like dependence between position & angle in each RP arm