

Version 11.1

Physics Lists

Gunter Folger (CERN) Geant4 Advanced Course

Acknowledgement

 This lecture is by large taken from a lecture of a previous tutorials prepared by originally by Dennis Wright (SLAC), with contributions from Mihaly Novak (CERN, EP-SFT) and Vladimir Ivantchenko (CERN & Tomsk State University, Russia)

Outline

GEANT4

Introduction

- What is a Physics List? Why do we need it?

The Geant4 Physics List interface

- G4VUserPhysicsListPhysics
- ListsModular Physics List
 - A more convenient way to go...

Pre-packaged Physics Lists

- Provided by the toolkit.
- Reference physics lists and naming conventions
- Extend a pre-packaged physics list

How to choose a Physics List

- Validation
- Examples

What is a Physics List

- Physics List is an object that is responsible to:
 - specify all the particles that will be used in the simulation application
 - specify physics processes assigned to each individual particle
- One out of the 3 mandatory objects the user must provide to the G4RunManager in all Geant4 applications:
 - it provides the information to the run-manager when, how and what set of physics needs to be invoked
- Provides a very flexible way to set up the physics environment:
 - the user can choose and specify the particles that they want to be used
 - the user can choose the physics (processes) assigned to each particle
- BUT, the user must have a good understanding of the physics required to describe properly the given problem:
 - omission of relevant particles and/or physics interactions will lead to poor modelling results !!

GFANT

Why is a Physics List needed (1)

- Physics is physics shouldn't Geant4 provide, as default, a complete set of physics that everyone can use?
- We believe NO:
 - Geant4 is used in different domains with different requirements on simulation
 - We offer different approximations and models to describe the same interaction:
 - very much the case for hadronic but also true for electromagnetic physics
 - No simulation application will require all the particles, all their possible interactions over all the energy range that Geant4 can provide, e.g.:
 - Most of the medical applications are not interested in multi-GeV physics
 - Few applications will require transport of thermal neutrons
 - Computation time is an issue:
 - some users may want a less accurate but significantly faster model for a given interaction while others need the most accurate description
 - Make it easy to extend physics, like add new particles, processes, or models

Why is a Physics List needed (2)

- Flexibility
 - Choose physics best adapted to a given use case
 - Choice of process, model and cross-section per particle
- Extendability
 - Allow users to provide new, or more precise, or faster, or ... physics
 - Allow the use of new, or more precise, cross section data sets or parameterizations
- Consistency with toolkit nature of Geant4
- For these reasons, Geant4 supports both,
 - an atomistic approach
 - providing many independent (for the most part) physics components, i.e. physics processes or models
 - the equivalent of an integral approach to physics,
 - Keeping both flexibility and extendability
 - users may select a set of components
 - In selecting a pre-defined physics list
 - With the possibility to add physics not included
 - in their custom-designed physics lists, eventually using pre-defined constructors or 'building blocks' from Geant4

Why is a Physics List needed (3)

- Users need help choosing or constructing a physics list
 - Which physics approximation/model is required or best for a given use case
 - Requires expert knowledge or experience from experts for a given domain
 - Offering packaged physics lists for several different domains, developed and tested by domain experts
 - Offering physics constructors to cover extra needs for packaged physics lists

How to Create a Physics List

Three options to create a physics list

- Create and inherit from G4VUserPhysicsList
 - Atomistic approach
 - Basic interface
 - Specify all particles needed
 - For each particle specify processes
 - including transportation
 - In hadronics a process is constructed from models, and cross sections should be specified – resulting large number of lines of code
 - Difficult to support users having problems
- Create and inherit from G4VModularPhysicsList
 - Improved and extended interface, simpler to use
 - Allows to use exiting physics constructors
 - A large set of physics constructors provided
 - User can create custom physics constructors
- Re-use prepacked physics list directly or via factory, e.g G4PhysListFactory
 - · While allowing users to extend or modify for specific needs

Physics processes provided by Geant4?

• EM physics:

- the "standard" i.e. default processes are valid between ~keV to PeV
- the "low energy" processes can be used from $\sim 100 \text{ eV}$ to PeV
- Geant4-DNA: valid down to $\sim eV$ (only for liquid water)
- optical photons

Weak interaction physics:

- decay of subatomic particles
- radioactive decay of nuclei
- Recent addition of neutrino-nuclear interactions

Hadronic physics:

- pure strong interaction physics valid from 0 to 100 TeV
- lepto- and gamma-nuclear interactions from ~ 100 / 1 MeV to 100 TeV
- high-precision package for n, p, d,..., alpha from thermal energies to \sim 20 MeV
- Parameterized or "fast-simulation" physics
- Biasing methods

G4VUserPhysicsList

Interface to Define Physics List (1 of 3)

- **G4WUserPhysicsList** is the basic Geant4 physics list interface
 - All physics lists must be derived from this base class
 - user **must** implement the 2 pure virtual methods
 - ConstructParticle()
 - Create all particles needed in simulation, including secondary particles possibly created in simulation
 - ConstructProcess()
 - Assign specific processes to each particle
 - User can implement the SetCuts() method (optional)
 - UI: /run/setCut preferred

4	<pre>class YourPhysicsList: public G4VUserPhysicsList {</pre>
5	public:
6	// CTR
7	YourPhysicsList();
8	// DTR
9	<pre>virtual ~YourPhysicsList();</pre>
10	
11	<pre>// pure virtual => needs to be implemented</pre>
12	<pre>virtual void ConstructParticle();</pre>
13	<pre>// pure virtual => needs to be implemented</pre>
14	<pre>virtual void ConstructProcess();</pre>
15	
16	// virtual method
17	<pre>virtual void SetCuts();</pre>
18	
19	
20	};

GEANT4

G4VUserPhysicsList: CreateParticles()

26

28

Construct particles individually one by one

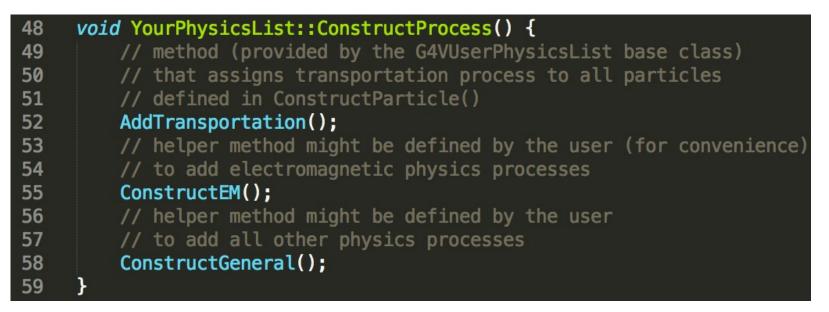
- Many particles in G4,
- Particle classes
 - gluons, quarks, di-quarks
 - Leptons
 - Mesons
 - Baryons
 - lons
 - Other

• Construct particles by using helpers

- 'Constructors' are under particles
 - Lepton
 - Baryon
 - Meson
 - Ion
 - ShortLived
 - Excited Nucleon, Meson, Baryon, etc

<pre>void YourPhysicsList::ConstructParticle() G4Electron::Definition(); G4Gamma::Definition(); G4Proton::Definition(); G4Neutron::Definition(); // other particle definitions </pre>	{

35 void YourPhysicsList::ConstructParticle() { 36 // construct barvons 37 G4BaryonConstructor baryonConstructor; 38 baryonConstructor.ConstructParticle(); 39 // construct bosons 40 G4BosonConstructor bosonConstructor; 41 bosonConstructor.ConstructParticle(); 42 // more particle definitions 43 44



19-October-2023, G4 Advanced Tutorial @ CERN, Physics Lists Gunter Folger

45

G4VUserPhysicsList: ConstructProcess()

- A process in Geant4 describes reaction probability (cross section) and it models the interaction, i.e. creates final state of interaction
- ConstructProcess() method general split into components for EM, hadronics, etc.
- Transportation must be added

Sketch of ConstructEM()

```
void YourPhysicsList::ConstructEM() {
62
63
       // get the physics list helper
64
       // it will be used to assign processes to particles
       G4PhysicsListHelper* ph = G4PhysicsListHelper::GetPhysicsListHelper();
65
       auto particleIterator = GetParticleIterator();
66
       particleIterator->reset();
67
       // iterate over the list of particles constructed in ConstructParticle()
68
       while( (*particleIterator)() ) {
69
70
         // get the current particle definition
         G4ParticleDefinition* particleDef = particleIterator->value();
71
         // if the current particle is the appropriate one => add EM processes
72
         if ( particleDef == G4Gamma::Definition() ) {
73
           // add physics processes to gamma particle here
74
           ph->RegisterProcess(new G4GammaConversion(), particleDef);
75
76
           . . .
77
           . . .
         } else if ( particleDef == G4Electron::Definition() ) {
78
           // add physics processes to electron here
79
           ph->RegisterProcess(new G4eBremsstrahlung(), particleDef);
80
81
           . . .
82
           . . .
         } else if (...) {
83
           // do the same for all other particles like e+, mu+, mu-, etc.
84
85
86
87
88
```


G4VModularPhysicsList

Interface to Define Physics List (2 of 3)

- G4VModularPhysicsList extends G4VUserPhysicsList
 - Adding several methods:
 - RegisterPhysics(G4VPhysicsConstructor *)
 - GetPhysics(....), by index, name, or type
 - ReplacePhysics(G4VPhysicsConstructor *)
 - RemovePhysics(...), by index, name, or type
 - Provides a more convenient way to create a physics list
 - Transportation is automatically added to all constructed particles
 - G4VPhysicsConstructor classes are physics modules handling a well defined defined category of physics (e.g. EM physics, hadronic physics, decay, etc.)
 - An extensive set is provided in the physics list category.
 - User is free to add his physics constructor or to modify existing constructors.

Sketch of YourModularPhysicsList()

145	<pre>class YourModularPhysicsList : public G4VModularPhysicsList {</pre>		
146	public:		
147	// CTR		
148	YourModularPhysicsList();		
149			
150	};		
151			
152	// CTR implementation		
153	YourModularPhysicsList::YourModularPhysicsList()		
154	: G4VModularPhysicsList() {		
155	<pre>// set default cut value (optional)</pre>		
156	<pre>defaultCutValue = 0.7*CLHEP::mm;</pre>		
157	<pre>// use pre-defined physics constructors</pre>		
158	<pre>// e.g. register standard EM physics using the pre-defined constructor</pre>		
159	<pre>// (includes constructions of all EM processes as well as the</pre>		
160	<pre>// corresponding particles)</pre>		
161	<pre>RegisterPhysics(new G4EmStandardPhysics());</pre>		
162	<pre>// user might create their own constructor and register it</pre>		
163	<pre>// e.g. all physics processes having to do with protons (see below)</pre>		
164	RegisterPhysics(new YourProtonPhysics());		
165	<pre>// add more constructors to complete the physics</pre>		
166			
167	}		

Modular Physics Lists Constructors

Grouped in categories

- Electromagnetic, hadron_(in)elastic, decay, ions, gamma_lepto_nuclear, stopping, decay, limiters
- Some "standard" EM physics constructors (> 30) :
 - G4EmStandardPhysics default
 - G4EmStandardPhysics_option1 for HEP, fast but not precise settings
 - G4EmStandardPhysics_option2 for HEP, experimental
 - G4EmStandardPhysics_option3 for medical and space science applications
 - G4EmStandardPhysics_option4 most accurate EM models and settings

• Some hadronic physics constructors

- G4HadronElasticPhysics default for hadron nuclear elastic for all hadrons
- G4HadronElasticPhysicsHP as above, but use HP for neutrons below 20 MeV
- G4HadronPhysicsFTFP_BERT hadron nucleus inelastic physics for all hadrons
- G4IonPhysics interactions of Ions
- The complete list of constructors can be found in your toolkit:
 - geant4/source/physics_lists/constructors/...
- More information at:
 - README files in geant4/source/physics_lists/constructors/..../README
 - <u>http://cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/index.html</u>

Types of Physics Constructors

• Physics constructors construct a specific subset of processes

- e.g. all the G4EmStandardPhysics_* physics constructors construct the EM physics processes
- Care must be taken not to add any physics process twice

• Physics constructors have a type

- Type is used to check that only one physics constructor of a given type is added
- Existing types (defined in G4BuilderType.hh)
 - bUnknown
 - bTransportation
 - bElectromagnetic
 - bEmExtra
 - bDecay
 - bHadronElastic
 - bHadronInelastic
 - bStopping
 - blons
- These types can be used to retrieve, replace, or delete a physics constructor from a physics list

Pre-packaged Physics Lists

20

Interface to Define Physics List (3 of 3)

Pre-packaged physics lists

- Geant4 toolkit provides a large number of pre-packaged physics lists
- "ready-to-use", complete lists specialized/targeted for various use cases
- Created and maintained by experts, often in collaboration with users
- Provided to help users, but we cannot warrant that a given list is 'correct' or best for a given use case
- **User is responsible** to validate the physics list of his choice.
- Not all receive the same amount of attention see later.
- build upon physics constructors
- Created to help users
 - Examples/code snippets above were using EM, but hadronics is more complicate
 - Eg. Within the hadron inelastic process several, at least two, different models must be combined. No single hadronic model in Geant4 covers the full range in energy \Rightarrow see lectures on hadronic physics
 - Choice of models to combine requires expertise and validation against experimental data
 - Models often have strong and less strong points \Rightarrow need to evaluate and choose
- **Better support:** pre-packaged physics lists help to re-produce problems

Physics Lists naming conventions

- Name of most physics list follows name of physics constructor for hadronic inelastic, optionally followed by EM option
- Name of this hadronic physics constructor indicates models in use from high to low energies
 - High energy string model: QGS or FTF, used above few (tens) of GeV
 - Extension P in QGSP/FTFP: Precompound & De-excitation model used to deexite remnant nucleus
 - Intermediate energies: BERT, BIC, INCLXX, used up to O(10) GeV
 - Low energy neutron/particle transport: HP,
 - Various shortcuts to indicate special variants, like TRV or LEND
- Option of electromagnetic physics:
 - EMV –use Opt1 EM physics
 - EMX -use Opt2 EM physics
 - EMY –use Opt3 EM physics
 - EMZ –use Opt4 EM physics
 - Plus specific DNA, GS, Liv, Pen, LE, WVI, SS
- Exceptions to naming scheme are QBBC, Shielding, LBE, and NuBeam physics lists

Reference physics lists

- All hadronic combinations × all EM options ⇒ very large number of physics lists to implement and maintain
- Implement a subset, all with the default EM settings: reference physics lists
- G4PhysListFactory provides physics lists with all EM options (EMX, EMZ, EMY, ...), including the default
 - UI command allows to add optical or radioactive decay /physics_lists/factory/

222	
223	<pre>// create a physics list factory object that knows</pre>
224	<pre>// everything about the available reference physics lists</pre>
225	<pre>// and can replace their default EM option</pre>
226	G4PhysListFactory physListFactory;
227	<pre>// obtain the QGSP_BIC_HP_EMZ reference physics lists</pre>
228	<pre>// which is the QGSP_BIC_HP refrence list with opt4 EM</pre>
229	<pre>const G4String plName = "QGSP_BIC_HP_EMZ";</pre>
230	G4VModularPhysicsList* pList = physListFactory.GetReferencePhysList(plName);
231	<pre>// (check that pList is not nullptr, that I skipp now)</pre>
232	<pre>// register your physics list in the run manager</pre>
233	runManager->SetUserInitialization(pList);
234	<pre>// register further mandatory objects i.e. Detector and Primary-generator</pre>
235	••••

19-October-2023, G4 Advanced Tutorial @ CERN, Physics Lists Gunter Folger

FTFP BERT FTFP BERT ATL FTFP BERT HP FTFP BERT TRV FTFP INCLXX FTFOGSP BERT FTF BIC QBBC **QGSP BERT** QGSP BERT HP OGSP BIC QGSP BIC AIIHP QGSP BIC HP OGSP FTFP BERT OGSP INCLXX OGS BIC Shielding ShieldinaLEND I BF NuBeam

GFANT

Production physics lists

- These select physics lists are better documented, maintained, and validated compared to other lists
- Used by large user groups, like LHC experiments, medical users, etc.
- These lists are more reliable, changes are done conservatively, less frequent
- These currently are: (concentrating on hadronic content, ignoring EM variants)

FTFP_BERT	the current G4 default, used in HEP collider experiments
QBBC	space physics and medical applications
QGSP_BERT	An early G4 default, was used by LHC experiments
QGSP_BIC	medical/hadrontherapy, normally used with option3 or option4 electromagnetic physics
Shielding	deep shielding applications, uses HP low energy neutron transport

- Production physics lists are documented in the Physics List Guide
 - <u>http://cern.ch/geant4-userdoc/UsersGuides/PhysicsListGuide/html/index.html</u>

GFANT

Extending/modifying a physics list

- For a G4VModularPhysicsList object
 - Add the physics using the physics constructor, e.g.
 - pList->RegisterPhysics(new G4RadioactiveDecayPhysics)
 - To replace/modify, delete part of the physics, use the methods corresponding methods of *G4VModularPhysicsList*
 - Select existing physics constructor by name or type
- All prepackaged physics lists are of type

G4VModularPhysicsList

- When using G4PhysListFactory
 - Add the physics using physics constructor, or
 - Use UI command */physics_lists/factory* to add physics
 - addRadioactiveDecay
 - addOptical

Also: UI to Modify Physics Settings

- UI commands for processes
 - Disable/enable/dump a process: /particle/process/...
- UI kernal to set cuts
 - /run/setCut 0.1 mm
 - /run/setCutForGivenParticle e- 10 um
 - /run/setCutForRegion COIL 1 cm
- UI commands for electromagnetic physics
 - Lecture V.Ivantchenko, Electromagnetic physics (Monday)
 - Macro files in examples/extended/electromagnetic
 - Many commands available under /process/...
- UI commands for some hadronics settings
 - /process/had/verbose
 - /process/had/maxEnergy
- UI for G4PhysListFactory
 - /physics_lists/factory
- Environment variables, e.g. for particle_hp

Extend by new particle and physics

See examples in extended/exoticphysics

monopole

- Defines and implements a class derived from G41/PhysicsConstructor
 - Create new particle
 - Describe physics for new particle
- Insert into prepackaged physics lists

dmparticle

- Create physics list derived from <u>G4VModularPhysicsList</u>
- Use existing physics constructors to register physics
- Add new particle and its process(es)

Choosing a physics list

28

Choosing a Physics List

- Ideal situation: the user(s) have a good understanding of the physics relevant for a given application
- the user can either decide to use a pre-defined physics list or build his own
- the chosen physics list needs to be validated for the given application
- can be done either by the user or by someone else in case of some reference lists
- during the validation procedure, some parts of the physics list might be changed to add physics, remove physics, change settings, etc.
- The given application belongs to a well defined application area (e.g. medical applications)
 - the user can choose the reference physics list recommended for the given application area as a starting point
 - the chosen physics list needs to be validated for the given application (same as above)
- Something that may work (depending on application area)
 - the user can take the most accurate physics settings (e.g. opt4 for EM)
 - In hadronics generally not possible
 - run some simulation with lower statistics to obtain the most accurate result
 - then step by step revise the initial physics list by using the accurate results as reference
 - then the user can take a less accurate but faster physics setting (e.g. opt0 for EM), obtain simulation results, and compare to results for accurate physics

Contacting experts via Geant4 forum for advice

٠

Validating a Physics List

- Validating a physics list for a given use case is the responsibility of the user
 - When using a new release, the physics performance should be rechecked.
- Using Geant4 validation results:
 - Geant4 provides validation, ie. comparison to data, for most of physics codes
 - Validation is an ongoing task, repeated at least for each release
 - Over time, more validation is being added

Geant4 validation results

- Geant-val, started for HEP calorimetry validation, has expanded over the last years to include many validation results from electromagnetic physics and medical applications.
- Physics groups providing additional validation

Examples of Physics Lists

31

Physics Lists Examples

- Under examples/extended/physicslists we have three examples
 - factory: showing how to use G4PhysListFactory
 - genericPL: showing how to use G4GenericPhysicsList, an alternative factory, becoming obsolete
 - Using physics constructors to create physics list
 - extensibleFactory: (g4alt::G4PhysListFactory) a different approach to allow users to create physics lists
 - Can create physics lists by name similar to G4PhysListFactory
 - Allows user to add other physics constructors, including his own.
- Examples in examples/extended/{electromagnetic, hadronic}
 - Demonstrate use of physics lists
- Examples for specific use case will give a starting point for a physics list
 - Extended examples have categories like biasing, exoticphysics, medical, optical,
 - Caveat: examples often include physics list restricted to physics being demonstrated
 - Advanced examples implement complete applications for specific use cases

Summary

- All particles and physics processes needed for the simulation application, must be defined and given in a physics list
- Two kinds of physics list interfaces are available for the users:
 - G4VUserPhysicsList for relatively simple physics environment
 - G4VModularPhysicsList for more complex physics environment
- Reference/Production physics lists are provided by the Geant4 developers
 - G4PhysListFactory provides the physics lists with chosen EM option
 - these can be used as is, or as starting points
 - Addressing different applications areas
- Choosing the appropriate physics for a given application must be done with care
- Validation of a physics list is the responsibility of the user/experiment

