

Institute for Research and Innovation in Software for High Energy Physics (IRIS-HEP)

Sudhir Malik (UPRM)

OAC-1836650 Proposal 2323298

http://iris-hep.org

Context

Location

The tools to achieve the mission to find new physics

LHC is one of the largest and truly global scientific projects ever, is a turning point in modern physics, big bang machine

Like a 14,000 tonne 3D camera with ~75megapixels taking 40 million photos per second! And it is 100m beneath us!

Crowning Achievement

The Nobel Prize in Physics 2013 François Englert, Peter Higgs

The Nobel Prize in Physics 2013

Photo: A. Mahmoud François Englert Prize share: 1/2

Photo: A. Mahmoud Peter W. Higgs Prize share: 1/2

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

HL-LHC Future

LHC / HL-LHC Plan

Science Driver: Discoveries beyond the Standard Model of Particle Physics

From "Building for Discovery - Strategic Plan for U.S. Particle Physics in the Global Context" - Report of the Particle Physics Project Prioritization Panel (P5):

- 1) Use the Higgs boson as a new tool for discovery
- 2) Pursue the physics associated with neutrino mass
- 3) Identify the new physics of dark matter
- 4) Understand cosmic acceleration: dark energy and inflation
- 5) Explore the unknown: new particles, interactions, and physical principles

Computational and Data Science Challenges of the High Luminosity Large Hadron Collider (HL-LHC) and other HEP experiments in the 2020s

HIGGS BOSO

The HL-LHC will produce exabytes of science data per year, with increased complexity: an average of 200 overlapping proton-proton collisions per event.

During the HL-LHC era, the ATLAS and CMS experiments will record ~10 times as much data from ~100 times as many collisions as were used to discover the Higgs boson (and at twice the energy).

Birth of IRIS-HEP

Community White Paper

January 2017 UCSD

Many workshops, involving a diverse group

- International participants
- Computing Management from the **Experiments and Labs**
- Individuals interested in the problems
- Members of other compute intensive scientific endeavors
- Members of Industry
- http://s2i2-hep.org/
- https://hepsoftwarefoundation.org/

rXiv.org > physics > arXiv:1712.06982	Search	All fields 💙
	Help Advanced S	Search
Physics > Computational Physics		Download:
A Roadmap for HEP Software and Computing R&D for the 2020s		PDF
Johannes Albrecht, Antonio Augusto Alves Jr. Guilherme Amadio, Giuseppe Andronico, Nguven Anh-Ky.	Laurent n	Other formats
Aphecetche, John Apostolakis, Makoto Asai, Luca Atzori, Marian Babik, Giuseppe Bagliesi, Marilena Bandieramonte,		Surrent browne center
Sunanda Banerjee, Martin Barisits, Lothar A.T. Bauerdick, Stefano Belforte, Douglas Benjamin, Catrin Be	ernius, Wahid	hysics.comp.ph
3himji, Riccardo Maria Bianchi, Ian Bird, Catherine Biscarat, Jakob Blomer, Kenneth Bloom, Tommaso B	loccali, Brian	<pre> next ></pre>
Bockelman, Tomasz Bold, Daniele Bonacorsi, Antonio Boveia, Concezio Bozzi, Marko Bracko, David Brit	tton, Andy n	ew recent 1712
Buckley, Predrag Buncic, Paolo Calafiura, Simone Campana, Philippe Canal, Luca Canali, Gianpaolo Ca	arlino, Nuno C	change to browse by:
Castro, Marco Cattaneo, Gianluca Cerminara, Javier Cervantes Villanueva, Philip Chang, John Chapma Terles Okilders, Deter Olectic, Marco Olectores, Esis Oceanes, Javers, Oceanes, Philip Chang, John Chapma	n, Gang Chen, h	ep-ex hysics
laylor Childers, Peter Clarke, Marco Clemencic, Eric Cogneras, Jeremy Coles, Ian Collier, David Colling Pabriele Cosmo, Davide Costanzo, Rop Couturier, Kyle Crapmor, Jack Crapchaw, Leopardo Cristella, D	, Gioria Corti,	oforoncos & Citation
Sabine Créné-Renaudin, Robert Currie, Sünie Dallmeier-Tiessen, Kaushik De, Michel De Cian, Albert Dr	P Roeck	INSPIRE HEP
Antonio Delgado Peris. Frédéric Derue, Alessandro Di Girolamo, Salvatore Di Guida, Gancho Dimitrov, C	Caterina	(refers to cited by)
Doglioni, Andrea Dotti, Dirk Duellmann, Laurent Duflot, Dave Dykstra, Katarzyna Dziedziniewicz-Wojcik,	Agnieszka	Export citation
Dziurda, Ulrik Egede, Peter Elmer, Johannes Elmsheuser, V. Daniel Elvira, Giulio Eulisse, Steven Farrell, Torben	, Torben	Google Scholar
Ferber, Andrej Filipcic, Ian Fisk, Conor Fitzpatrick, José Flix, Andrea Formica, Alessandra Forti, Giovanni	i Franzoni, E	lookmark
lames Frost, Stu Fuess, Frank Gaede, Gerardo Ganis, Robert Gardner, Vincent Garonne, Andreas Gellr	rich et al. (210	K 💶 🗭 🔤
additional authors not shown)		
Submitted on 18 Dec 2017 (v1), last revised 19 Dec 2018 (this version, v5))		
Particle physics has an ambitious and broad experimental programme for the coming decades. This programme require	es large	
investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it	t requires	

recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals

and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to

Individual Papers on the arXiv:

prepare for this software upgrade

arXiv 1712.06982

Careers & Training, Conditions Data, DOMA, Data Analysis & Interpretation, Data and Software Preservation, Detector Simulation, Event/Data Processing Frameworks, Facilities and Distributed Computing, Machine Learning, Physics Generators, Security, Software Development, Deployment, Validation, Software Trigger and Event Reconstruction, Visualization

<u>Community White Paper</u> & the <u>Strategic Plan</u>

arXiv 1712.06592

IRIS-HEP

Why an Institute?

Software, System View & Computing Models

We aim to deliver more than software. Big (Team) Science projects need "Computing Models".

https://iris-hep.org/

Institute for Research and for High Energy Ph

Analysis Systems **Blueprint Activity** Data Organization, Management and Access (DOMA)

Innovative Algorithms

OSG-LHC

QuarkNet

Presentations

Publications Projects

- Scalable Systems Laboratory
- Training, Education and Outreach

Grand Challenges Impact Beyond HEP

Computational and data science research to enable d fundamental physics

IRIS-HEP is a software institute funded by the National Science Foundation. It state-of-the-art software cyberinfrastructure required for the challenges of da research at the High Luminosity Large Hadron Collider (HL-LHC) at CERN, and experiments of the 2020's. These facilities are discovery machines which aim fundamental building blocks of nature and their interactions. Full Overview

News and Featured Stories:

Spotlight: IRIS-HEP Fellows

Some recent IRIS-HEP fellows on what they learned during their time with the software collaboration, what they're up to now, and why they'd recommend the IRIS-HEP fellowship to other up and coming researchers in the field.

IRIS-HEP: Training a new generation of computational and data science researchers in high energy physics

Overview of IRIS-HEP efforts to train future generations of physicists to have proficiency in software.

Read more

Read more

٢ /	271	1.1011	
		MIL	
\leq			
1		891	
		U.	

Virtu
sis Training
Virtu
Training
ceton Universit
 bne leno

al and CUDAS-TEP 2025 - CUMputatio Data Science Training for High Energy Physics

Jul 24–26, 2023	Princeton University		
3rd MODE Workshop on Differential			
Programming for Experiment Design			
Jul 25–28, 2023	Princeton University		
PyHEP.dev 2023 Developers Workshop			
Sep 11–13, 2023	University of Wisconsin		
IRIS-HEP All Hands Meeting 2023			

Upcoming Topical Meetings:

Jul 12, 2023 **IRIS-HEP Fellows Introductory** Presentations

View all · Indico (recordings)

Related projects:

ATLAS · CMS · LHCb · USATLAS · U.S. ATLAS Operations Program • USCMS • U.S. CMS Operations Program • OSG • PATh · SOTERIA · SciAuth · EWMS ·

Virtual ining

View all past events

Education & Training

Challenges and **Opportunities**

Democratize science by making software

prerequisites accessible to everyone

Not all HEP students can attend university-offered software courses No standard curricula for HEP students exists Experiments need Cyberinfrastructure professionals and lifelong learners

We need a unified, scalable, and sustainable software training framework powered by the entire community

IRIS-HEP is leading training efforts and powered the HSF Training WG

Challenges and **Opportunities**

We need a unified, scalable, and sustainable software training framework

Material and events should be centrally listed and discoverable

- Concentrate efforts by prioritizing cross-experiment content
- A community must guide, support, and coordinate

• The training initiatives need to reach O(1000) students/year

- \Rightarrow material must be teachable by multiple instructors
- **Self-study** must not be an afterthought

Sustainable

- Material must be open source and maintained collaboratively
- Incentives & recognition important motivators

A unified Training Center for HEP

Basics

The UNIX Shell	Version controlling with git	Programming with python
A guide through the basics of the file systems and the shell.	Track code changes, undo mistakes, collaborate. This module is a must.	Get started with an incredibly popular programming language.
Start learning now!	Start learning now!	Start learning now!
⊁ Contribute!	✗ Contribute!	✗ Contribute!
SSH	Machine learning	Matplotlib for HEP
Introduction to the Secure Shell (SSH)	Get behind the buzzword and teach machines to work for you intelligently!	Make science prettier with beautiful plots!
▲ Status: Early development	Start learning now!	* Status: Beta testing
Start learning now!	H Watch the videos!	Start learning now!
F Contribute!	≁ Contribute!	F Contribute!
ROOT		
The most famous data analysis		

framework used in HEP.

Start learning now!

Software Development and Deployment

Version controlling with git	Advanced git	CI/CD (gitlab)
Track code changes, undo mistakes, collaborate. This module is a must.	Learn to work with branches and more with this interactive webpage.	Continuous integration and deployment with gitlab.
Start learning now!	Start learning now!	Start learning now! Uwtch the videos!
✤ Contribute!	✗ Contribute!	✤ Contribute!
CI/CD (github)	Docker	Singularity
Continuous integration and deployment with github actions.	Introduction to the docker container image system.	Introduction to containerization with Singularity/Apptainer.
Start learning now!	Start learning now!	 Status: Beta testing Start learning now! Watch the videos!
✤ Contribute!	(truncated)	F Contribute!

- <u>Training Center</u> currently lists 21 training modules (including material developed by IRIS-HEP/HSF, The Carpentries, and individual authors)
- Goal: Training Center as a focal point for HEP Training activities

Central list of training events

Current and Upcoming Training Events

- 17 Jul 21 Jul 2023 CODAS-HEP 2023 Deadline: 26 Apr 2023
- 7 Aug 11 Aug 2023 Open Science Grid User School 2023 Deadline: 17 Apr 2023

Past Events

- 6 Mar 10 Mar 2023 6th HEP C++ Course and Hands-on Training The Essentials (HSF)
- 16 Jan 20 Jan 2023 Analysis Preservation Workshop HSF
- 11 Oct 13 Oct 2022 5th HEP C++ Course and Hands-on Training Advanced C++ (HSF)
- 3 Oct 8 Oct 2022 ESC22 EFFICIENT SCIENTIFIC COMPUTING
- 28 Sep 30 Sep 2022 HSF/IRIS-HEP Software Basics Training HSF
- 4 Sep 17 Sep 2022 CERN School of Computing 2022
- 13 Jul 15 Jul 2022 Software Carpentry (Virtual) (HSF
- 19 Jun 25 Jun 2022 Thematic CERN School of Computing on "Security of Research Computing Infrastructures"
- 1 May 7 May 2022 Thematic CERN School of Computing on "Scientific Software for Heterogeneous Architectures"

17

- 21 Apr 22 Apr 2022 Matplotlib Training (Virtual) (HSF)
- 28 Mar 30 Mar 2022 Software Carpentry (Virtual) (HSF
- 15 Mar 17 Mar 2022 4th HEP C++ Course and Hands-on Training The Essentials
- 13 Dec 15 Dec 2021 Software Carpentry (Virtual) (HSF)
- 10 Oct 16 Oct 2021 Thematic CERN School of Computing (tCSC autumn 2021)
- 25 Aug 27 Aug 2021 Software Carpentry (Virtual) HSF
- 17 Jul 22 Jul 2021 2021 Intensity Frontier Computing Summer School
- 14 Jun 18 Jun 2021 Thematic CERN School of Computing (tCSC spring 2021 online)

Scale and sustain

Most training modules are website built from easy-to-read source files (Markdown)

This tutorial explores Machine Learning using GPU-enabled PyTorch for applications in high energy physics.

It follows directly from the Introduction to Machine Learning lesson written by Meirin Evans.

Prerequisites

- A Kaggle account. Click here to create an account
- Basic Python knowledge, e.g. through the Software Carpentry Programming with Python lesson
- Basic ML knowledge, e.g. through the Introduction to Machine Learning lesson

^ Lessons build on each other

Introduction

For physicists working on analysis in data-intensive fields such as particle physics, it's quite common these days to start developing new machine learning applications. But many machine learning applications run more efficiently on GPU.

The aim of this lesson is to:

- demonstrate how to move an existing machine learning model onto a GPU
- discuss some of the common issues that come up when using machine learning applications on GPUs

C The skills we'll focus on:

1. Understanding a bit about GPUs

2. Using Python & PyTorch to discover what kind of GPU is available to you

Moving a machine learning model onto the GPU

4. Comparing the performance of the machine learning model between the CPU and the GPU

^ Enough verbosity for self-study 18

Scale and sustain

Mentoring and developer training

Fellowship program: 3 months remote program for undergraduates

- More than 100 fellows trained!
- Fellows work on software projects together with mentor
- IRIS-HEP serves as organizing entity; students supported by a variety of funding sources

CoDaS-HEP: One week intensive in-person developer training

- Co-funded by CyberTraining grant
- Open to Ph.D. students and Postdocs
- 2017, 2018, 2019, 2022

Going **beyond**

🖌 Basic-intermediate training

- Unified community of educators
- 100% of basic prerequisites,
 50% of intermediate topics
- Demonstrated sustainable scale out using training modules ("Carpentry Style")
- Successful in-person training and hands-on experience program

Scalable intermediate- advanced training

- Plan: Apply similar "Carpentry-style" paradigms; seed small working groups; strengthen collaborations with training groups beyond HEP
- Challenging: Fewer experts, fewer students, more mentoring required
- Rewarding: This trains the Cyberinfrastructure Professionals who drive software development!
- Our strong suit: Unify efforts, leverage existing community, use experience in creating sustainable & scalable material

The Training Grand Challenge

Outreach

Overview

Vision: - IRIS-HEP workforce development activities contribute to the preparation of a highly qualified STEM workforce Activities: In the current phase of IRIS-HEP we built a set of core software training curriculum for teachers

 13 software training workshops (some overlapped with COVID era)

Impact

• Over 100 teachers software trained

Activities

Year	Month	Name	Participants/Tutors	
2023	June/July	5 Coding Camps (Rice, Alabama, Washington, Fermilab, Puerto Rico)		1.
2022	July	Coding Camp at Fermilab (1 week) with quarknet	21/5	
2022	Mar	Data Analysis for Lab Research (Virtual) (1 day)	20/3	
2021	Aug	<u>Arduino Micro Controller and C++ programming</u> (STEM Teachers) (In person) (2 days)	9/3	
	Feb	Machine Learning Basics for STEM teachers (Virtual) (2 days)	8/3	Y
2020	July	Data Analysis for STEM teachers (Virtual) (2 days)	16/3	
	June	Data Camp for STEM teachers (Virtual) (1 day)	11/3	
2019	June	An introduction to programming for STEM teachers (2 days)	16/1	
	April	Machine Learning Workshop/Hackathon (3 days)	25/1	Guerrero

Α

Isabel Melendez

Software Training

Brings software experience to high school science teachers

	Module	s in GitHub	
🕀 GL	uillermoFidalgo / Python-for-STEM-Teach e	rs-Workshop Public	💿 Watch (1
⇔ c	ade 💿 Issues 🏗 Pull requests 💿 Actions 👔	∃ Projects ⑦ Security ⊭ Insights o / notebooks /	
0	GuillermoFidalgo update Covid notebook		
	.solutions	update Covid notebook	
C	1-Introduction_to_Markdown_and_Python.ipynb	Added Credits on Intro notebook	
C	10-Introduction_to_Machine_Learning.ipynb	Add credits to all of Guillermo's notebooks	
C	11-ML_Breast_Cancer.ipynb	Add credits to all of Guillermo's notebooks	
	12-Intro_Esp.ipynb	Rename 12-Intro_Esp.ipynb to notebooks/12-Intro_Esp.ip	ynb
	13-Gravitación_universal.ipynb	Add credits to all of Guillermo's notebooks	
D	14-PhysicsLab_Results.ipynb	Add credits to all of Guillermo's notebooks	
C	15-Intro to Data_Visualization.ipynb	Add credits to all of Guillermo's notebooks	
C	2-barometer_col_de_la_fausille.ipynb	Add credits to all of Guillermo's notebooks	
n	3-Maps_example.ipvnb	unnecesarry commit	
a	💧 Copy of 1. Probability 🚓		
-			
=	+ Code + Text		
۹	 Step 5: Extension Tasks 		
(*)	Try modifying your code for these new scenarios:		
D	 What happens to the shape of the histogram if you increase the Rather than a pair of 6 saided dice (66), instead simulate rolling a How does the appearance of the histogram change if a person in Pretend that one of the dice is damaged, and produces the num shape change? 	number of throws to a very large number (perhaps one million throws)? pair of 10 sided (dit)) doel oils three dice at once rather than two? What about four dice? ber 5 slightly more often than the other numbers. How will the histogram	
	<pre>[] # create a histogram plt.hist(roll, bins = [2,3,4,5,6,7,8,9,10,11,12,13], color-</pre>	'lightgrosn', edgecolor - 'black')	
•	(eng({1, 5, 7, 10, 11, 7, 13, 15, 18, 9, 9, 4, eng({1, 5, 4, 5, 5, 7, 16, 11, 12, 13, 11, citin of 11 nets doints)		

"student hat" Engage, explore, cexplain

- Teachers work in groups
- Running Python code
- Using pre-Jupyter
 notebook
- Review basic coding
- Use CMS data

"**teacher hat**" Elaborate and Evaluate

- Teachers develop implementation plans for their own classroom Writing Jupyter notebook
- Adapt and apply appropriately to their classroom

Workshop Example

Higgs hunting - an example of scientific research

plt.figure(figsize = (15,5))

ttbar

DY

ZZ

HZZ

hzz_bar = plt.bar(center, hzz, align = 'center', width = width, color = 'w', linewidth = 1, edgecolor = 'r', bottom = ttbar+dy+zz, label = '\$m_{H}\$ = 125 GeV')

Measured data

plt.title('\$ \sqrt{s} = 75 TeV, L = 2.3 \$fb^{-1}\$; \$\sqrt{s} = 8\$ TeV, L = 11.6 \$fb^{-1}\$ \n', fontsize = 12)
plt.xlabe('\$m_{4}\$ (GeV)', fontsize = 15)
plt.ylabe(['Events / 3 GeV\n', fontsize = 15)
plt.xlim(min,rmax)
plt.klend(fortsize = 15)

- Introduction to Programming
- Python, Jupyter notebooks, Colab
- Hands-on Data analysis
- HEP data preview with CMS Open Data Examples

[] # Let's set some values here in regards to the region we're looking at.

rmin = 70
rmax = 181
nbins = 37

M_hist = np.histogram(fourlep['M'], bins = nbins, range = (rmin,rmax))

hist, bins = M_hist #hist=frecuency ; bins=Mass values width = 1.0*(bins[1] - bins[0]) center = (bins[:-1] + bins[1:]) / 2

Let's look at some simulations from other processes there. Here are some <u>Monte Carlo</u>-simulated values for such events that have already been weighted by luminosity, cross-section and number of events. Basically we create a set of values that have some randomness in them, just like a real measurement would have but which follows the distribution that has been observed in those processes.

Scale up

- Reach out to US wide community of high school teachers via Quarknet
- Provide software training for science teachers
- Coding Camps with Quarknet

Social Media

Maestros de Fisica de Puerto Rico

Taller de Python 101!!! Pendiente a nuestros próximos talleres... Funded by https://first-hep.org/2018/07/02/first-hep-funded.htm

Communications

Friday Flyer - September

Submitted by kcecire on Fri, 09/09/2022 - 08:17

Welcome back to the new school year and to your Friday Flyer. V

Summer 2020 was the season the pandemic back. Now, in 2022, we are back. How busy h 1 ran online as it was designed, and the new for High Energy Physics (IRIS-HEP) and

Coding Camp

- Funding Support from IRIS-HEP
- Content creation and support
- Access to HEP software community

plt.hist(desk['Absolute field (碌T)'],range=[50,58], bins=50, log=False, color='b', label = 'Inside') # plots a histogram of plt.hist(outside['Absolute field (碌T)'], range=[50,58], bins=50, log=False, color='r', label = 'Outside') plt.vlabel('Count')

plt.xlabel('Absolute Field Strength (mircoT)') plt.title('Absolute Field Strength Measurement')

plt.legend (loc='upper center') # In graph legend NOTE: must define labels as done in the first 2 lines plt.annotate ('Outside', xy=(57, 100)) # In graph text

Building on Success

- Developed Software modules (teachers input involved)
- Software awareness and skill development among high school students via teachers
- Relation with community of teachers to expand and sustain our efforts
- Access to wider community of teachers to get software training
- Breaks barriers and enable diversity

import pandas as pd # Data manipulation import numpy as np # Matrix operations import statsmodels.formula.api as smf # Statistics import matplotlib.pyplot as plt import seaborn as sns import matplotlib.stvle as stvle from pandas.plotting import scatter_matrix # Options for pandas pd.options.display.max columns = 50 pd.options.display.max_rows = 30 # Display all cell outputs from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = 'all' from IPython import get ipython ipython = get_ipython() # autoreload extension if 'autoreload' not in ipython.extension_manager.loaded: %load ext autoreload Sautoreload 2

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pa s in the public API at pandas.testing instead. import pandas.util.testing as tm

Data Wrangling

Data wrangling is the process where you manipulate the data in your favour, without dismissing any value at In this step, you analyze your data to find and replace missing values acording to different techniques, clear

Data Exploratory Analysis

Milestones

End of 2 years

- Modules focussing High School Physics curriculum
- Develop workshops in Spanish language (enables diverse participation)
- 100% Coding Camps run by IRIS-HEP

By 5 years

 100% Software Training across the nations 50 Quarknet Centers and beyond

Intellectual Hub

Leading the Field to Build Consensus

HEP Software Foundation

- <u>Community White Paper Process</u> in 2018-2019
 - Run by NSF funded planning grant that lead to IRIS-HEP
- Needed: Umbrella organization to "facilitate cooperation and common efforts in High Energy Physics software and computing internationally"

Analysis Ecosystem Workshops

- <u>May 2017, May 2022</u>
- First helped shape the Analysis Systems focus area of IRIS-HEP and HSF, and second <u>report provides</u> field's blueprint for next ~5 years

A Coordinated Ecosystem for the HL-LHC Computing R&D

- <u>Oct 2019</u>, <u>Nov 2022</u>
- Bring together institutes and grants working on computing R&D for the HL-LHC
- Groups from NSF & DOE (e.g. A3D3, IAIFI, HEP-CCE)
- Gaps, opportunities, collaborations possible

What Makes IRIS-HEP Successful?

The work we've done

Our Longevity and Scope

Our Connections with the HL-LHC Community

Intellectual Hub

Outreach & Impact on Other Communities

Projects that have **found uses** outside of HEP/LHC:

- Servicex (astro), iDDS (astro and other HEP) ACTS (nuclear physics), uproot/awkward (astro, theory, education/outreach), pyhf (other HEP)
- OSG Consortium (chemistry, bio, etc.) •

Our contributions & Collaborations to OSS enable science and tools beyond HEP

pvbind11

H Schreiner now a key contributor (182 merged PRs) and the release manager. We help build and manage a team including developers from Facebook and Google that are moving pybind11

matpletlib MPL lead T.Caswell participates in IRIS-HEP Slack. Multiple

Directly interacting with Anaconda to add the Awkward Array collection type, which is pushing changes in core Dask. (dask-awkward is the first high-level graph outside of core Dask.)

We help maintain the CUDA support in CMake, have helped with

CMake for Python (33 merged PRs) and related packages, used

Several points of contact through Numba, Dask, and Pangeo, and ANACONDA, Anaconda employees are active on the IRIS-HEP Slack. We also are heavily involved in conda-forge, including maintaining Numba's

OpenMP, and other performance related areas important to our field and many others, (9 merged PRs) I. Schreiner joined scikit-build, created by kitware, and has been managing releases and fixing long standing issues. This includes

cross the ecosystem

H. Schreiner is a core developer on both build and cibuildwhe 116 merged PRs), key tools in the Python packaging ecosystem Cibuidwheel has over 600 users, including NumPy, scikit-learn, nd more. We have upstreamed parts of our developer guidelines to packaging.python.org documentation, and are helping with many of the pypa projects. We had a well attended talk at PyCon US 2022 over cibuildwheel, build, pybind11, and scikit-build.

ARROW

Helping Pangeo projects adopt Awkward Array, including an analysis of ocean probes at FSU OAC-2126413), refactoring spatialpandas, and selecting Argo data

Awkward Array stresses cutting-edge features in Numba and Awkward Array's tests are now part of Numba's integration testing. We regularly attend Numba developer meetings

We have worked with the Pyodide developers (22 merged PRs) to improve their build system, adapt pypa/build, improve static checks for bugs, update packages, and added one our our packages to

We are always on the lookout for new collaborations.

- We attend conferences like SciPy that reach a broad scientific audience
- Well known in field that researchers from adjacent sciences contact us

International Projects Inspired

SWIFT

HEP Software Foundation

SWIFT-HEP HEP

SIDIS Software Institute for ata-Intensive Sciences

Software Institute For Data Intensive Sciences

HSF-India (spin-off),

Python Tool Ecosystem

The OSS Ecosystems for data

A community-driven and community-oriented project providing Particle Physics at large with a Python package containing core and common tools.

The PyHEP Conference Series

- Brings Developers & Users of the Python Eco-System together
- Future development directions
- Lead by IRIS-HEP members and others
- Sponsored by IRIS-HEP

Growth over the pandemic era

PyHEP.dev - Summer 2023 (link)

2022 (<u>link</u>) > 1000 participants

Intellectual Hub

A large group of people across the spectrum are working to build a **coherent ecosystem**

- Many communication tools are available (Slack, Mattermost, gitter, discourse, etc.)
- Our long-term role as intellectual hub allows it to fill this role.

The IRIS-HEP Slack

Discussion channels on a broad range of topics inside and out of IRIS-HEP

- On packages we are authoring
- On broad experiment-related topics (e.g. systematic error handling)
- Gathering place for those working on related topics (e.g. coffee developers are in many channels)

We will continue to support grass-roots communications in the community.

⁽also email lists, etc.)

Broadening Participation

Direct Efforts built on our well understood summer fellow mentoring program.

- US CMS PURSUE
- Princeton's PACRI

Next step: scaling up our pilot runs to a larger audience.

Both target underrepresented minorities and HBCU's

U.S. CMS - PURSUE (Program for Undergraduate Research SUmmer Experience)

Tulika Bose¹, Sudhir Malik², Meenakshi Narain³

¹Physics Department, University of Wisconsin Madison, Madison, WI 00682, USA
 ²Physics Department, University of Puerto Rico Mayaguez, Mayaguez, PR 00682, USA
 ³Department of Physics, Brown University, Providence, RI 02912, USA

E-mail: sudhir.malik@upr.edu

Tracking Progress

Year 4 Year 5

80% of cross-experiment software topics for Ph.D. S. covered
50% of Ph.D. S. participated in intermediate/advanced training,
20% have helped in event

Outreach

Modules focussing High School Physics curriculum Develop workshops in Spanish language (enables diverse participation)

Coding Camps run at all Quarknet Centers

Conclusions - Broader Impacts and Intellectual Hub

Large proposed program to reach many in the field, and students and STEM teachers:

- Reach 50% of all U.S. Ph.D.'s who have moved beyond beginner training modules
- Reach ~1000 students per year with our training
- Scale out our Coding Camp materials using QuarkNet to reach a larger audience of STEM teachers and students
- Build field-wide consensus around the path towards Analysis at the HL-LHC, a coordinated R&D program for computing at the HL-LHC in the USA, and Translational AI

