Axions in Astrophysics

Samuel J. Witte

EuCAPT Virtual Colloquium April, 2024

THE ROYAL SOCIETY

Axions: the motivation

Axions as dark matter

Motivation #1: The strong CP problem

Why does QCD seem to conserve charge-parity (CP) symmetry?

Current limit: $\theta \leq$

Samuel J. Witte (University of Oxford)

CP violating term in QCD Lagrangian:

$$\overline{\theta} \; \frac{g_s^2}{32\pi^2} \; G \, \tilde{G}$$

Neutron electric dipole moment (eDM) $\propto \theta$

$$5 \times 10^{-11}$$

Abel et al (2020)

Motivation #2: Dark matter

Galaxy rotation curves

Merging galaxy clusters

Requirements:

- Production mechanism
- Cosmologically long-lived
- Feeble interactions

[Requirement of generic new light physics]

Samuel J. Witte (University of Oxford)

 $\lambda \propto f_a^{-1}$

Large scale structure

Cosmic microwave background

 $\tau \propto m_a^{-3}$

Natural for light axions from high energy scale

Axions from the misalignment mechanism

Equation of motion: $\ddot{\theta} + 3H\dot{\theta} + m_a^2\theta = 0$

 $\Omega_{\rm DM} h^2 \sim 0.05 \, \left(\frac{\tilde{\theta}_i}{1}\right)^2 \, \left(\frac{f_a}{10^{17}\,{\rm GeV}}\right)^2 \left(\frac{10^{17}\,{\rm GeV}}{10^{17}\,{\rm GeV}}\right)^2 \, \left(\frac{10^{17}\,{\rm GeV}}{10^{17}\,{\rm GeV$

Samuel J. Witt

Axions from topological defects

Cosmic strings network in the early Universe

Image credit: Bernabou et al (2023)

Grilla di Cortana, Hardy, Pardo Vega, Villadoro (2016), Ghorgetto, Hardy, Villadoro (2018, 2021), Bushmann et al (2022), Saikawa et al (2024)

Strings/walls dominate for QCD axion with high inflationary scale

Image credit: Ellis et al (2022)

Collapse leads to "axion miniclusters" and "axion stars"

For some recent examples see e.g.: Agrawal & Platschorre (2023), Gendler, Marsh, McAllister, Moritz (2023), Agrawal, Nee, Reig (2022), Agrawal, Hook, Huang (2020)...

Example: axions as a probe of GUTs

Detection of axion here implies:

- QCD axion is tuned light OR
- no GUT

Astrophysics as a laboratory

White dwarf

Can we use Nature's laboratories to search for axions?

Samuel J. Witte (University of Oxford)

Pulsar

Black hole

Parameter space overvie

$$\mathscr{L} \supset -\frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$
 $\int_{0}^{10^{-1}} \int_{0}^{10^{-1}} \int_{0}^{10$

https://cajohare.github.io/AxionLimits/

2W

Axion decay

Samuel J. Witte (University of Oxford)

https://cajohare.github.io/AxionLimits/

Simulating axion decay 1

$$\tau_a \propto \frac{g_{a\gamma\gamma}^2}{m_a^3} \left(1 + 2f_\gamma\right)^{-1}$$

Tkachev (1987, 2015), Kephart & Weiler (1995), Caputo, Peña-Garay, SJW (2018), Caputo, Regis, Taoso, **SJW** (2018), Azra & Skive (2019), Battye et al (2019), Sigl & Trivedi (2019), Carenza, Mirizzi, Sigl (2020), Ghosh, Savlado, Miranda (2020), Arza, Schwetz, Todarello (2020), Sun et al (2022, 2023), Buen-Abad, Fan, Sun (2022), Escudero et al (2023).....

Caputo, Regis, Taoso, SJW (2018)

Simulating axion decay $\tau_a \propto \frac{g_{a\gamma\gamma}^2}{m_a^3} \left(1 + 2f_\gamma\right)^{-1}$ **Photon background** $E_{\gamma} \sim m_a/2$ Axions

Samuel J. Witte (University of Oxford)

Tkachev (1987, 2015), Kephart & Weiler (1995), Caputo, Peña-Garay, SJW (2018), Caputo, Regis, Taoso, **SJW** (2018), Azra & Skive (2019), Battye et al (2019), Sigl & Trivedi (2019), Carenza, Mirizzi, Sigl (2020), Ghosh, Savlado, Miranda (2020), Arza, Schwetz, Todarello (2020), Sun et al (2022, 2023), Buen-Abad, Fan, Sun (2022), Escudero et al (2023).....

X-ray / Gamma-ray searches for axions

X-ray / Gamma-ray searches for axions

Astrophysical source of x-rays / gammarays

High-Energy Photons

X-ray / Gamma-ray searches for axions

$$\int \left\{ \begin{array}{ll} \text{Length of magnetic field} & (m_a \to 0) \\ (k_{\gamma} - k_a)^{-1} \sim 2E_{\gamma}/m_a^2 & (\text{Largential}) \end{array} \right\}$$

Magnetic fields, ugh....

Upside: Reasonably straight-forward physics **Difficulty:** Large-scale magnetic fields (*progress limited by finding idealised systems that we understand*)

Axions & Gravity

https://cajohare.github.io/AxionLimits/

Samuel J. Witte (University of Oxford)

The gravitational footprint of ultralight axions

Samuel J. Witte (University of Oxford)

Gravitational evolution of classical field

 $\ddot{\delta}_k + 2H\dot{\delta}_k + \left(\frac{k^4}{4m^2a^2} - 4\pi G\bar{\rho}\right)\delta_k = 0$

Gradient ("quantum") pressure

Quantum mechanics limits "packing" of low mass particles

 $\delta x \times \delta v \gtrsim m^{-1}$

The gravitational footprint of ultralight axions

Image credit: Dalal & Kravtsov (2022)

See e.g. reviews by Hui (2014), Niemeyer (2020), Ferreira (2021), O'Hare (2024)

Samuel J. Witte (University of Oxford)

Density profile ultra-faint dwarf

Implications:

- Soliton core at center
- Heat stellar orbits

150

Upside: Purely gravitational **Difficulty:** Modelling small scales / feebly bound objects

Axions near extreme compact objects

https://cajohare.github.io/AxionLimits/

Axions near extreme compact objects

Enhancing axion-photon transitions

Samuel J. Witte (University of Oxford)

 $\begin{cases} \text{Length of magnetic field} \\ (k_{\gamma} - k_{a})^{-1} \sim 2E_{\gamma}/m_{a}^{2} \end{cases}$ $(m_a \rightarrow 0)$ (Large m_a)

Limitation: Strength of **B** and $(k_{\gamma} - k_{a})$

Enhancing axion-photon transitions

Limitation: Strength of **B** and $(k_{\gamma} - k_{a})$

Modify photon dispersion relation

(E.g. in a cold plasma $k_{\gamma} =$

Compact Objects

►
$$\begin{cases} \text{Length of magnetic field} & (m_a \to 0) \\ (k_{\gamma} - k_a)^{-1} \sim 2E_{\gamma}/m_a^2 & (\text{Large } m_a) \end{cases}$$

$$\sqrt{\omega^2 - \omega_p^2}$$
, and $k_a \sim k_\gamma$ possible)

Resonant axion transitions in radio

Samuel J. Witte (University of Oxford)

See e.g.: Pshirkov & Popov (2009), Hook et al. (2018), Safdi et al. (2018), Battye et al. (2019, 2021, 2023), **SJW** et al. (2021, 2022), Foster, **SJW** et al (2022), ...

Resonant axion transitions in radio

Samuel J. Witte (University of Oxford)

See e.g.: Pshirkov & Popov (2009), Hook et al. (2018), Safdi et al. (2018), Battye et al. (2019, 2021, 2023), **SJW** et al. (2021, 2022), Foster, **SJW** et al (2022), ...

Radio lines near neutron stars

See e.g.: Pshirkov & Popov (2009), Hook et al. (2018), Safdi et al. (2018), Battye et al. (2019, 2021, 2023), **SJW** et al. (2021, 2022), Foster, **SJW** et al (2022), ...

Resonant photon production from locally sourced axions

Noordhuis, Prabhu, SJW, Cruz, Chen, Weniger (2022)

Upside: No assumption of dark matter **Difficulty:** Modelling more difficult **Difficulty/Upside:** Emission scales like $g_{a\gamma\gamma}^4$

Axion clouds around pulsars

Noordhuis, Prabhu, Weniger, SJW (2023), Caputo, SJW, Philippov, Jacobson (2023)

Sensitivity to axion clouds

Axion Back-Reaction

Noordhuis, Prabhu, Weniger, SJW (2023) Caputo, SJW, Philippov, Jacobson (2023)

Radio Emission 10^{-10}

Black hole superradiance

Zeldovich (1972) Press & Teukolsky (1972), Arvanitaki, Dimopoulos, Dubovsky. Kaloper, J. March-Russell (2010), Arvanitaki & Dubovsky (2011), Brito, Cardoso, Pani (2015)

Black hole superradiance

Zeldovich (1972) Press & Teukolsky (1972), Arvanitaki, Dimopoulos, Dubovsky. Kaloper, J. March-Russell (2010), Arvanitaki & Dubovsky (2011), Brito, Cardoso, Pani (2015)

Axion superradiance

Black hole spin distributions

Samuel J. Witte (University of Oxford)

Image credit: Brito & Pani (2022)

Superradiance in the non-interacting limit $(\Box + \mu^2) a = 0$

Bound states form discrete hydrogen-like energy spectrum: $|nlm\rangle$

 $\omega_{nlm} = E_{nlm} + i\Gamma_{nlm}$

Superradiance in the non-interacting limit $(\Box + \mu^2) a = 0$

Bound states form discrete hydrogen-like energy spectrum: $|nlm\rangle$

1.0Black hole spin \widetilde{a} 0.5 10^{0} $\Omega \sim \omega$ 10^{-3} Normalized 10^{-6} ϵ_x occupation numbers 10^{-9} $|211\rangle$ 10^{-12} 10^{-15} 10^{-3} 10^{-2} 10^{-1} 10^{0}

Samuel J. Witte (University of Oxford)

Self-interactions in superradiance

Arvanitaki & Dubovsky (2011), Gruzinov (2016), Baryakhtar et al (2021)

Large self couplings dramatically slow spin extraction!

Arvanitaki & Dubovsky (2011), Gruzinov (2016), Baryakhtar et al (2021)

Self-interactions in superradiance

n = 4 is a mess....

Baryakhtar et al (2021), **SJW** & Mummery (To appear)

Samuel J. Witte (University of Oxford)

Superradiance limits

Conclusions

Samuel J. Witte (University of Oxford)

