

FASER and the Forward Physics Facility

Eric Torrence

University of Oregon for the FASER Collaboration

28 March, 2024

Future of HEP: A New Generation, a New Vision Aspen Center for Physics

FASER Physics Concept

- Use massive rate of forward mesons to search for light longlived weakly interacting particles
- Exploit huge rate in collimated beam
 - Inelastic pp cross-section: ~100 mb, N ~ 10¹⁶ at Run3
 - Very forward production: $\theta \sim \Lambda_{qcd} / E \sim mRad$
 - Decay length: ~100 m for m ~ 10-100 MeV, ε ~ 10^{-5}
- Put small detector on line-of-sight collision axis, probe unexplored territory!

Letter of Intent: <u>CERN-LHCC-2018-030</u>

R Physics Concept

Light LLPs come out here!

- Use massive constant sons to search for light longlived weakly controles
- Exploit huge
 Collimated beam
 - Inelastic pp cross-section: ~100 mb, N ~ 10¹⁶ at Run3
 - Very forward production: $\theta \sim \Lambda_{qcd} / E \sim mRad$
 - Decay length: ~100 m for m ~ 10-100 MeV, ε ~ 10^{-5}
- Put small detector on line-of-sight collision axis, probe unexplored territory!

Letter of Intent: <u>CERN-LHCC-2018-030</u>

- FASER is 480m away from IP1 on the collision axis
 - 100m of rock shielding before detector
- Designed for a variety of long-lived, weakly interacting particles
 - New physics: Dark Photons, Axion-like particles, ...
 - Neutrinos: ν_e, ν_µ, ν_τ
 - Also observe SM muons
- Demonstrates small and cheap experiment
 - Proposed in 2017, installed and taking data in 2021!
 - Currently 96 members, 26 institutions, 10 countries

Tech Proposal: <u>CERN-LHCC-2018-036</u> Physics Prospects: <u>PRD99 095011 (2019</u>)

FASER Detector

- Detector design constrained by cost, space, and time
- Scintillators w/ PMT readout for veto, trigger, and preshower (particle ID)
- 96 ATLAS SCT modules + 0.6T dipole magnets, r = 10 cm aperture
- 4 LHCb calorimeter modules
- 1.1 Ton Tungsten-emulsion target for additional neutrino sensitivity

Installed in TI12 tunnel Detector Paper: <u>arXiv: 2207.11427</u>

2t

FASER Luminosity

- 4 years from idea to realization
- Installed and commissioned in time for Run3 startup
- Have recorded Run3 data with 97% efficiency

Muons

- ~250 Hz of muons from IP1 through r=10 cm dipole aperture (total trigger rate ~1 kHz)
- Rate highly correlated with luminosity (i.e. collisions)
- Important for tracker alignment/performance, calorimeter stability, veto station efficiency measurements, overall monitoring

FASER BSM Results

Dark Photons

- U(1) gauge boson, could provide portal to dark sector
 - Produced mainly by light mesons (π⁰,η) via kinetic mixing

- Observed as A → e⁺e⁻ pair appearing from 'nothing' with ~TeV of energy
 - Must decay in 1.5m decay volume defines acceptance

Dark Photon Selection

- Selection
 - 2 opposite-sign tracks within fiducial r < 95 mm
 - > 500 GeV in calorimeter
 - Nothing in all 5 veto counters
 - Something in downstream scintillators
 - In time with LHC collision
- Backgrounds Considered
 - Veto inefficiency
 - Neutrino interactions
 - Neutral hadrons
 - Large-angle muons
- Non-collision / cosmics All backgrounds found to be very small

- Observed no events in 27 fb⁻¹ from 2022,
 (2.3 ± 2.3) x 10⁻³ background expected → place limits
 - Dark photon and B-L gauge boson models

• Same dataset as shown last year,

updated and published: PLB 848 (2024) 138378 28 March 2024

- Observed no events in 27 fb⁻¹ from 2022,
 (2.3 ± 2.3) x 10⁻³ background expected → place limits
 - Dark photon and B-L gauge boson models

Axion-like Particles - NEW!

- Currently sensitive to axion-like particles (ALPs) coupling to SU(2)_L gauge bosons
 - Mainly produced in B meson decays in our sensitivity range

- Observed as a → γγ appearing from 'nothing' with ~TeV of EM energy (can't separate photons)
 - Can decay anywhere in FASER spectrometer volume

ALPs Selection

- Significant backgrounds from neutrinos interacting near the calorimeter
 - Require > 1.5 TeV in calorimeter
 - Use control regions to validate neutrino modeling

Neutrino control regions

- Observed 1 event in 58 fb⁻¹ after unblinding
- Expecting 0.4 ± 0.4 from CC v interactions

First preliminary result on Axion-like Particles

Documentation here next week:

https://faser.web.cern.ch/physics/publications

FASER Neutrino Results

Neutrinos

- Copious production of neutrinos in forward region
- All species produced at ~TeV energy range
- Allows first direct observation of v from collider

R3: 250 fb ⁻¹	Vμ	Ve	ντ
Primary Source	Pions	Kaons/ Charm	Charm
Traversing FASER	~10 ¹²	~ 10 ¹¹	~10 ⁹
Interacting in FASERnu	8,500	1,700	30

Spectrum of interacting v

- Measure cross-section in uncovered TeV energy range
 - Highest man-made source, currently unconstrained
- Production rate measures forward hadron production
 - Novel input for PDFs, charm (ve) poorly constrained

Considerable interest for Neutrino telescopes, cosmic ray observatories, QCD, and measuring neutrino properties

- Emulsion detector FASERnu
 - Sensitive to all 3 species, no charge information
 - 1.1 Ton Tungsten target w/ 730 emulsion planes
 - Exquisite ~300 nm hit resolution

- Electronic detector FASER
 - Sensitive to muon neutrinos, can separate v_{μ} from \overline{v}_{μ}

CC Neutrino Observation

 Small background from neutral hadrons and large-angle muons
 Stay tu

28 March 2024

Stay tuned for update! 21

PRL 131, 031801 (2023)

CC Emulsion Analysis - NEW!

Neutral Hadrons

- Analyzed fraction of 1 exposure in 2022 (9.5 fb⁻¹)
- Candidate vertices reconstructed and selected from scanning emulsion films (slow)
 - Energy (e) from shower multiplicity
 - Momentum (µ) from multiple scattering RMS
- Backgrounds primarily from neutral hadrons produced in muon interactions is surrounding rock, NC background also evaluated (small)

Neutrino Candidates

Ve

Vμ

Emulsion Results

Sig

5.2 σ

5.7 σ

0

500

After all vertex selection requirements:

Exp

1.1-3.3

6.5-12.4

Obs

4

8

1000

1500

2000

Bgd

 0.025 ± 0.012

 0.22 ± 0.08

Future Plans

Near Future Plans

- FASER Preshower upgrade
 - 6 layers of high-granularity
 Si pixels with W absorber
 - Separate photons at ~200 µm
 - Installed before 2025 (Run3)
- Improve ability to identify 2γ, reject v backgrounds
- FASER approved for Run4
 - Will record large dataset with upgraded FASER at HL-LHC

28 March 2024 Preshower: CERN-LHCC-2022-006

Run4: <u>CERN-LHCC-2023-009</u> ²⁶

Forward Physics Facility

- FPF is a planned project at CERN to build a cavern to house experiments at HL-LHC
- Physics Goals similar to FASER but much improved reach and varied detectors
- Currently Proposed Detectors
 - FASER2 / FASERnu2
 - AdvancedSND off-axis v
 - FLARE LAR TPC for v
 - FORMOSA millicharge det.
- Community
 - Supported by CERN <u>Physics Beyond Collider</u> group, <u>latest PBC Workshop</u> this week
 - fpf.web.cern.ch, latest meeting Feb: <u>7th FPF Meeting</u>

FPF Layout

Dedicated ~65m cavern, 620m from IP1, on the French side

28 March 2024

FPF Detectors

FASER2 Spectrometer - 2-4 Tm field, 3m² aperture

FPF Detectors

FASER2 Spectrometer - 2-4 Tm field, 3m² aperture

FPF Physics Snapshot

28 March 2024

FPF Snowmass report: arXiv:2203.05090 31

CERN FPF Design Study

Proposed Civil Engineering Schedule

and a start of a start to the start of the start	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Civil engineering FPF Indicative Schedule	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
LHC Operation Period	LS2			LHC run 3								LHC	run 4	
HL-LHC Operation												HL	LHC	
Further Infrastructure (Internation studies		Feasibility wor	rk and Concept											
Further Intrastructure/ Integration studies		De	sign											
			,	•										
Site Investigation				51										
and intestigation				-										
						\times								
												1		
Technical design stage						Techr	nical design							
Detailed design							Detaile	al alexanders						
							Detaile	u design						
Procurement of design consultants														
Detailed design														
Tender specifications and drawings														
Environmental permits and consents														
	-											,		
Construction Contracts								Constr	uction Contracts					
construction contracts														
Market survey														
Tender and award														
Mobilisation														
	-													
Construction Works										c	onstruction wor	ks		
Site installation and enabling works														
Shaft								1						
Tunneling and caverns								1						
Surface works														

NB Very early stage estimate for schedule

Design must be frozen before technical design can begin

- CERN
 - Con
- Constr HL-LH
- Caverrexperire

dy for 1 (mid-Run4)

Core samples

- FPF Snowmass report: <u>arXiv:2203.05090</u>
 - ~200 authors, > 400 pages, 18 working groups
- P5 report did not recommend FPF per-se, but...
 - # Can be considered as part of ASTAE (small expt program) with reduced scope
- Most expensive detector is FLArE
 - Investigating cheaper options, could be built by non-U.S.

Figure 2 – Construction in Various Budget Scenarios

- · We believe small experiments are important
 - Need discussion with US agencies, ASTAE does not exist yet

P5 Report

Index: N: No Y: Yes R&D	: Recommend Ra	&D but no funding f	or project C: Cond	ditional yes	s based	on revi	ew P:	Primary	S: Se	condary
Delayed: Recommend cons	truction but dela	yed to the next dea	cade							
# Can be considered as pa	rt of ASTAE with	reduced scope		Neutrino	Higg Boso	Dar Matte	Cosmi Evolutio	Direc Evidenci	Quantur Imprint	Astronor Astrophy
Construction Cost	>\$3B	Pagalina	Moro	0	D O			0 14	s D	ny 8 /sica
Scenarios	Less	Daseinie	NOTE			Science	Diver	5		0, 20
on-shore Higgs factory	N	N	N		Р	S		P	P	
\$60-100M										
SURF Expansion	Ν	Y	Y	Р		Р				
DUNE MCND	N	Y	Y	Р				S	S	
MATHUSLA #	N	N	N			Р		Р		
FPF #	N	N	N	Р		Р		Р		

Draft

- FPF Snowmass report: <u>arXiv:2203.05090</u>
 - ~200 authors, > 400 pages, 18 working groups
- P5 report did not recommend FPF per-se, but...

Can be considered as part of ASTAE (small expt program)

5.1.5 – 20-Year Vision & Future Opportunities

The program described in this section consists of a combination of large and small projects and holds great promise for discovery. By the end of this 20-year period we will have ultimate LHC results from the general purpose experiments and a constellation of agile auxiliary experiments. We will also be in the final stages of construction of a Higgs

											D
Universe <u>P5 Report</u>	US Construction Cost >\$3B					s (er rk	ic n	ĕ¢	ts B	ys
	Scenarios	Scenarios Less Baseline		More	Science Drivers					CS Q	
	on-shore Higgs factory	N	N	N		Р	S		Р	Р	
	\$60-100M										
	SURF Expansion	Ν	Y	Y	Р		Р				
	DUNE MCND	Ν	Y	Y	Р				S	S	
	MATHUSLA #	Ν	N	N			Р		Ρ		
	FPF #	Ν	N	N	Р		Р		Р		

FPF experiments aim to be part of this future!

FASER Collaboration

The FASER Collaboration has 96 members from 26 institutes in 10 countries

http://faser.web.cern.ch/

FASER Funding

The FASER Collaboration gratefully acknowledges our funding agencies for their support:

erc

Along with the tremendous institutional support from

- FASER was installed in time for Run3
- First results on LLP (dark photons, ALPs)
- First cross-section measurement for v_e and v_{μ}
- More physics to come in Run3, including upgrades
- FASER will continue into Run4, pathfinder for future small forward-physics experiments

Believe future is bright with CERN support of FPF Opportunities for new people to get involved!

Backup

LHC Schedule

Shutdown/Technical stop Protons physics Ions Commissioning with beam Hardware commissioning

Last update: April 2023

TDAQ System

FASER Trigger Rates

- Need to identify nearby, pair-produced tracks
- 4 tracking planes in 4 stations (12 planes in total)
- Use 96 spare ATLAS SCT modules, 8 per layer
 - 80 µm pitch, 40 mRad stereo angle, 24 cm x 24 cm area
 - 17 µm precision in bending (vertical) plane

Preshower Detector

Preshower

- Layers of scintillator, tungsten, and porous graphite
- Provides shower depth information
 - Useful for identifying particles

17

• Produced in meson decays, e.g.:

$$B(\pi^0 \to A'\gamma) = 2\epsilon^2 \left(1 - \frac{m_{A'}^2}{m_{\pi^0}^2}\right)^3 B(\pi^0 \to \gamma\gamma)$$

Other production modes possible

· Long decay length, large boost in forward direction

$$\bar{d} = c \frac{1}{\Gamma_{A'}} \gamma_{A'} \beta_{A'} \approx (80 \text{ m}) B_e \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right]$$

Dark Photon Limit

-II 3*Y*

SHiF

- Produced from photons scattering off TAN
- Observe di-photon final state

ALPs control regions

Preshower Layer 1 nMIP

z [mm]

ALPs limits

Upgrade ALPs projections

Emulsion Processing

Neutrino Energy

dE/E ~ 25% at 200 GeV, up to 40% at higher E

Neutrino Momentum

dE/E ~ 30% at 200 GeV, up to 50% at higher p

FPF Physics

FPF Neutrino Statistics

Numbers from: https://arxiv.org/pdf/2203.05090.pdf

Numbers from 2 generators shown (SIBYLL / DPMJET), typically span the range of other generators.

	D	Detector	Number of CC Interactions					
Name	Mass	Coverage	Luminosity	$\nu_e + \bar{\nu}_e$	$ u_{\mu}\!\!+\!ar{ u}_{\mu}$	$\nu_{\tau} + \bar{\nu}_{\tau}$		
$FASER\nu$	1 ton	$\eta\gtrsim 8.5$	$150 { m fb^{-1}}$	901 / 3.4k	4.7k / 7.1k	15 / 97		
SND@LHC	800kg	$7 < \eta < 8.5$	$150 { m fb^{-1}}$	137 / 395	790 / 1.0k	7.6 / 18.6		
$FASER\nu 2$	20 tons	$\eta\gtrsim 8.5$	$3 \mathrm{~ab^{-1}}$	178k / 668k	943k / 1.4M	2.3k / 20k		
FLArE	10 tons	$\eta\gtrsim7.5$	3 ab^{-1}	36k / 113k	203k / 268k	1.5k / 4k		
AdvSND	2 tons	$7.2 \lesssim \eta \lesssim 9.2$	$3 { m ~ab^{-1}}$	6.5k / 20k	41k / 53k	190 / 754		

Huge increase in number of neutrinos detected with FPF. Enables broad physics programme.

- FPF studied in context of PBC for last 3 years
- Strong physics case built up covering searches for new particles, and physics with high energy neutrinos
- New facility allows x10 bigger neutrino detectors, allowing detection of 10⁵ ν_e , 10⁶ ν_μ , 10⁴ ν_τ at highest energies

Bevond

Colliders

- Ultimate exploitation of LHC neutrino beam

