

The University of Manchester

Long Baseline Neutrinos*

Dr. Elena Gramellini, The Future of HEP, March 27th 2024, Aspen

The University of Manchester

v physics: ...and what we don't!

Experimentally, neutrinos are difficult

Neutrinos are the most abundant massive particle in the universe, and one of the least understood. They are neutral: we can't directly detect them. We can study them only if they interact, but...

Experimentally, neutrinos are difficult

Neutrinos are the most abundant massive particle in the universe, and one of the least understood. They are neutral: we can't directly detect them. We can study them only if they interact, but...

Experimentally, neutrinos are difficult

Neutrinos are the most abundant massive particle in the universe, and one of the least understood. They are neutral: we can't directly detect them. We can study them only if they interact, but...

Neutrino Oscillations and CP violation

Flavor

$$\begin{pmatrix}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{pmatrix} = \begin{pmatrix}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta} & 0 & c_{13}
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix} \begin{pmatrix}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{pmatrix}$$
CP violation
$$c_{ij} = \cos \theta_{ij}; s_{ij} = \sin \theta_{ij}$$

$$\stackrel{\theta_{12}}{\longrightarrow} \theta_{13}, \theta_{23}$$

$$\stackrel{\Lambda_{\nu}}{\longrightarrow}$$

$$P(\hat{\nu}_{\mu} \rightarrow \hat{\nu}_{e}) \simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Lambda m_{32}^{2} L}{4E}$$

$$(+) - \left[\sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \\
\times \sin \frac{\Lambda m_{21}^{2} L}{4E} \sin^{2} \frac{\Lambda m_{32}^{2} L}{4E} \sin \delta_{CP}\right]$$

$$+ (CP-even, solar, matter effect terms)$$

Neutrino Oscillations and CP violation

We try to tease out the asymmetry in oscillation probability for the appearance channel: <u>highly degenerate problem</u> w/ other free parameters

$$\mathcal{A}_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}$$

$$\begin{split} P(\stackrel{(\leftarrow)}{\nu_{\mu}} \rightarrow \stackrel{(\leftarrow)}{\nu_{e}}) &\simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{32}^{2} L}{4E} \\ (+) - \left[\sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \right] \\ &\times \sin \frac{\Delta m_{21}^{2} L}{4E} \sin^{2} \frac{\Delta m_{32}^{2} L}{4E} \sin \delta_{CP} \right] \\ &+ (\text{CP-even, solar, matter effect terms}) \end{split}$$

MANCHESTER 1824

CP violation 101 via v-oscillations

STEP 1: Making a beam

An intense muon neutrino beam

ν.

Vµ

v

2D

V

CP violation 101 via v-oscillations

VI

STEP 1: Making a beam **STEP 2**: Checking twice

Vµ

2D

CP violation 101 via v-oscillations

STEP 1: Making a beam **STEP 2**: Checking twice

STEP 1: Making a beam **STEP 2**: Checking twice

12

STEP 1: Making a beam
 STEP 2: Checking twice
 STEP 3: Gonna find out if ν_e & ν_e
 oscillate differently

vu

2

12

A timeline of long baseline accelerator neutrinos

Courtesy of Z. Vallari

A timeline of long baseline accelerator neutrinos

Courtesy of Z. Vallari

Current Big Players: T2K & NOvA

T2K

- □ Water Cherenkov 55 kton (FD), several ND
- \Box L = 295 km, E = 0.6 GeV
- □ Shorter baseline \rightarrow greater impact on δ_{CP} (30%)
- \square "Low energy" \rightarrow mainly QE interactions

NOvA

- Mineral Oil Scintillator both ND and FD
- \Box L = 810 km, E = 2 GeV
- □ Longer baseline → greater impact on mass ordering due to bigger matter effect (19%)
- $\Box \quad \text{Mixture of } QE + 2p2h + RES + DIS$

Oscillations and CP violation: T2K

Eur.Phys.J.C 83 (2023) 9, 782 *Nature* 580, 339–344 (2020)

New updated result! 3.6 E21 POT

- \Box World-leading constraints on δ_{CP}
- \Box O(100) v_e events in FD
- Improvements: new selections and more data from ND, improved flux prediction through hadron production; bayesian and frequentist inference.
- Given Favor: NO and UP, ~maximally CP violating phase. Excludes delta $\delta_{CP}=0$, π >than 90% CL.
- $\theta_{13} \text{ consistent with the reactor}$ experiments.

Oscillations and CP violation: T2K

Eur.Phys.J.C 83 (2023) 9, 782 *Nature* 580, 339–344 (2020)

New updated result! 3.6 E21 POT

- □ World-leading constraints on δ_{CP}
- \Box O(100) v_e events in FD
- Improvements: new selections and more data from ND, improved flux prediction through hadron production; bayesian and frequentist inference.
- Favor: NO and UP, ~maxii
 violating phase. Excludes
 π >than 90% CL.
- $\ \, \Theta_{13} \text{ consistent with the reader experiments.}$

Oscillations and CP violation: NOvA

- Weak preference for NO, UO
- θ_{23} still consistent with 45°
- $O(70) v_{o}$ events in FD
- New Bayesian analysis: improved statistical interpretations of the results. Consistent w/ frequentist fit.

0.15

0.05

Bavesian Cred.

0.4

0.45 0.5 0.55 0.6

 $\sin^2(\theta_{22})$

 $\sin^2(2\theta_{13})$ 0.1 Reactor

0.005

- 1σ -- 2σ --- 3σ

Reactor

 $\sin^2(2\theta_{13}) = 0.085 + 0.020 - 0.016$ good agreement with the reactor experiments

PRD 106.032004, Arxiv 2311.07835

Joining forces: the NOvA-T2K joint fit

Scope: resolving degeneracies This is a preliminary result

- □ The experiments have different analysis approaches driven by contrasting detector designs
 → combination is far from trivial
- Challenge: When? What? How? to correlate common physics parameters between the two experiments.
 - Flux & detector models \rightarrow uncorrelated
 - XS model \rightarrow there will be dragons:

even if energy is different and model used

- are different, the underlying processes are the same.
- Post-hoc strategy: we can learn from this!

Paper in preparation, material from <u>FNAL W&C</u>.

Joining forces: the NOvA-T2K joint fit

Scope: resolving degeneracies This is a preliminary result

- □ Simultaneous compatibility of NOvA and T2K datasets.
- □ Very strong constraint on |∆m₃₂|
 Mass Ordering preference remains inconclusive.
 - \rightarrow Individual experiments prefer Normal Ordering
 - \rightarrow Small preference for the Inverted Ordering in the joint fit
 - \rightarrow Reverts to a weak NO preference when adding Daya Bay
- δ_{CP} = π/2 lies outside 3-sigma credible interval for both MO.
 NO permits a wide range of permissible δ_{CP}, while CP conserving values for the IO falls outside the 3-sigma range.

Paper in preparation, material from <u>FNAL W&C</u>.

Where we are: a snapshot of current results (w/o atmo constraints)

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 2.7)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
atmospheric data	$\sin^2 heta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	0.269 ightarrow 0.343	
	$ heta_{12}/^{\circ}$	$33.44\substack{+0.78\\-0.75}$	$31.27 \rightarrow 35.86$	$33.45\substack{+0.78 \\ -0.75}$	$31.27 \rightarrow 35.87$	
	$\sin^2 heta_{23}$	$0.570\substack{+0.018\\-0.024}$	$0.407 \rightarrow 0.618$	$0.575\substack{+0.017\\-0.021}$	$0.411 \rightarrow 0.621$	
	$ heta_{23}/^{\circ}$	$49.0^{+1.1}_{-1.4}$	$39.6 \rightarrow 51.8$	$49.3^{+1.0}_{-1.2}$	$39.9 \rightarrow 52.0$	
	$\sin^2 heta_{13}$	$0.02221\substack{+0.00068\\-0.00062}$	$0.02034 \rightarrow 0.02430$	$0.02240\substack{+0.00062\\-0.00062}$	0.02053 o 0.02436	
	$ heta_{13}/^{\circ}$	$8.57\substack{+0.13 \\ -0.12}$	$8.20 \rightarrow 8.97$	$8.61\substack{+0.12 \\ -0.12}$	$8.24 \rightarrow 8.98$	
SK	$\delta_{ m CP}/^{\circ}$	$195\substack{+51 \\ -25}$	107 ightarrow 403	286^{+27}_{-32}	$192 \rightarrow 360$	
hout	${\Delta m^2_{21}\over 10^{-5}~{ m eV}^2}$	$7.42\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.04$	$7.42\substack{+0.21 \\ -0.20}$	$6.82 \rightarrow 8.04$	
wit	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.514\substack{+0.028\\-0.027}$	$+2.431 \rightarrow +2.598$	$-2.497\substack{+0.028\\-0.028}$	$-2.583 \rightarrow -2.412$	

Up to 2022 published data

IHEP09(2020)178

Where we are: a snapshot of current results (w/ atmo constraints)

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 7.1)$		Up to 2022
with SK atmospheric data		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	published
	$\sin^2 heta_{12}$	$0.304\substack{+0.012\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$	data
	$ heta_{12}/^{\circ}$	$33.44_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.86$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$	
	$\sin^2 heta_{23}$	$0.573\substack{+0.016\\-0.020}$	$0.415 \rightarrow 0.616$	$0.575\substack{+0.016\\-0.019}$	$0.419 \rightarrow 0.617$	
	$ heta_{23}/^{\circ}$	$49.2^{+0.9}_{-1.2}$	$40.1 \rightarrow 51.7$	$49.3_{-1.1}^{+0.9}$	$40.3 \rightarrow 51.8$	
	$\sin^2 heta_{13}$	$0.02219\substack{+0.00062\\-0.00063}$	$0.02032 \rightarrow 0.02410$	$0.02238\substack{+0.00063\\-0.00062}$	$0.02052 \rightarrow 0.02428$	
	$ heta_{13}/^{\circ}$	$8.57\substack{+0.12 \\ -0.12}$	$8.20 \rightarrow 8.93$	$8.60\substack{+0.12\\-0.12}$	$8.24 \rightarrow 8.96$	
	$\delta_{ m CP}/^{\circ}$	197^{+27}_{-24}	$120 \rightarrow 369$	282^{+26}_{-30}	$193 \rightarrow 352$	11
	$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.42_{-0.20}^{+0.21}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	fit
	$\frac{\Delta m_{3\ell}^2}{10^{-3} V^2}$	$+2.517^{+0.026}_{-0.028}$	$+2.435 \rightarrow +2.598$	$-2.498^{+0.028}_{-0.028}$	$-2.581 \rightarrow -2.414$	www.nu-fit.org
	10^{-5} eV^2					<u>JHEP09(2020)178</u>

MANCHESTER 1824

The University of Manchester

Atmospheric Neutrinos: $\theta_{23} \Delta m_{23}^2$

IceCube DeepCore:

Best projected atmospheric neutrino results, current data is consistent with LBL accelerators

SuperK:

Data favors first octant for θ_{23} & NH at ~ 2σ δ_{CP} best fit agrees with that of T2K Constraining power over θ_{13} consistent with LBL results

The University of Manchester

Escaping the 3-neutrino paradigm & hunting down anomalies...

How can anomalies arise?

The existence of a 4th, sterile neutrino would arise as a deviation from the predicted 3-flavor oscillation pattern at a baseline corresponding to the appropriate Δm^2 . $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} + \\ \nu_{\chi} & & \nu_4 \end{pmatrix}$

Recent Results: NOvA sterile searches

Search for 3 + 1 active-to-sterile v oscillation in many channels.

ND and FD searches Neutral Current search: oscillation in ND is governed by sterile parameters.

Oscillations at FD: access to $\theta_{24'} \theta_{34'} \delta_{24}$

NOvA data shows no evidence for sterile neutrinos under 3+1 model.

□ Limits on θ_{24} are competitive around $\Delta m_{41}^2 = 10 \text{ eV}^2$

MANCHESTER 1824 The University of Manchester

A timeline of long baseline accelerator neutrinos

Courtesy of Z. Vallari

Future Big Players: HyperK & DUNE

HyperK

- □ Water Cherenkov 5xSK (FD), upgraded ND
- \Box L = 295 km, E = 0.6 GeV
- \Box Shorter baseline \rightarrow greater impact on δ_{CP}
- \Box "Low energy" \rightarrow mainly QE interactions

DUNE

- Liquid Argon Time Projection Chambers
- \Box L = 1200 km, peak E = 2.5 GeV (broad beam)
- □ Longer baseline → greater impact on mass ordering due to bigger matter effect
- $\Box \quad \text{Mixture of QE} + 2p2h + \text{RES} + \text{DIS}$

Future Big Players: HyperK & DUNE

- □ Water Cherenkov 5xSK (FD), upgraded ND
- \Box L = 295 km, E = 0.6 GeV
- \Box Shorter baseline \rightarrow greater impact on δ_{CP}
- \Box "Low energy" \rightarrow mainly QE interactions

- Liquid Argon Time Projection Chambers
- \Box L = 1200 km, peak E = 2.5 GeV (broad beam)
- □ Longer baseline → greater impact on mass ordering due to bigger matter effect
- $\Box \quad \text{Mixture of } QE + 2p2h + RES + DIS$

HyperK & DUNE: sensitivity to mass ordering

Status & prospects of HK PoS ICRC2019 (2020) 924

DUNE TDR *JINST* 15 (2020) 08, T08008

HyperK & DUNE: sensitivity to δ_{CP}

HyperK & DUNE: sensitivity to δ_{CP}

The University of Manchester

What do we need to make these experiments successful (& better)?

- To know how neutrinos interact
- To know how many neutrinos we get
- Improve our detectors

 \rightarrow the XS problem \rightarrow the flux problem

What do we need to make these experiments successful (& better)?

- To know how neutrinos interact
- To know how many neutrinos we get
- Improve our detectors

 \rightarrow the XS problem \rightarrow the flux problem

This is all you see in your detector: we never see the neutrino directly!

Paris

This is all you see in your detector: we never see the neutrino directly!

You identify the final state particles to **infer neutrino flavor:** count how many ν_e and ν_μ

This is all you see in your detector: we never see the neutrino directly!

You identify the final state particles to **infer neutrino flavor:** count how many v_e and v_{μ}

> From the reconstructed particles' momenta you **infer neutrino energy**: **P(osc) ~ sin²(L / E**)

This is all you see in your detector: we never see the neutrino directly!

What gets in between

You identify the final state particles to **infer neutrino flavor:** count how many ν_e and ν_μ

From the reconstructed particles' momenta you **infer neutrino energy**: **P(osc) ~ sin²(L/E_v)**

Event display courtesy of **µBooNP**

This is all you see in your detector: we never see the neutrino directly!

You identify the final state particles to **infer neutrino flavor:** count how many ν_e and ν_μ

From the reconstructed particles' momenta you **infer neutrino energy:** P(osc) ~ sin²(L/E)

Cross-section models relate measured particles to (un-measurable) neutrinos, need to correctly predict the v-N interaction make-up as a function of energy

How does this feeds back into neutrino "new" physics? CP Violation @ long baseline

Type of Uncertainty	$ u_e/ar{ u}_e $ Candidate Relative Uncertainty (%)
Super-K Detector Model	1.5
Pion Final State Interaction and Rescattering Model	1.6
Neutrino Production and Interaction Model Constrained by ND280 Data	2.7
Electron Neutrino and Antineutrino Interaction Model	3.0
Nucleon Removal Energy in Interaction Model	3.7
Modeling of Neutral Current Interactions with Single γ Production	1.5
Modeling of Other Neutral Current Interactions	0.2
Total Systematic Uncertainty	6.0

- T2K, Nature 2020

"uncertainty on the v_e and \overline{v}_e cross-sections... [is] the 2nd largest single source of systematic uncertainty in the CP asymmetry measurement."

How does this feeds back into neutrino "new" physics? CP Violation @ long baseline

Type of Uncertainty	$ u_e/ar{ u}_e $ Candidate Relative Uncertainty (%)
Super-K Detector Model	1.5
Pion Final State Interaction and Rescattering Model	1.6
Neutrino Production and Interaction Model Constrained by ND280 Data	2.7
Electron Neutrino and Antineutrino Interaction Model	3.0
Nucleon Removal Energy in Interaction Model	3.7
Modeling of Neutral Current Interactions with Single γ Production	1.5
Modeling of Other Neutral Current Interactions	0.2
Total Systematic Uncertainty	6.0

T2K, <u>Nature 2020</u>

"uncertainty on the v_e and \overline{v}_e cross-sections... [is] the 2nd largest single source of systematic uncertainty in the CP asymmetry measurement."

DUNE/HyperK CP violation uncertainty budget is extremely stringent. We need to do better than this!

46

The University of Manchester

MANCHESTEI

Neutrino Interactions: Measurements on Different Nuclei

Neutrino-induced coherent π^+ production in CH, C, Fe, and Pb at <E,>~6GeV A-scaling not known: important for extrapolation to different nuclei.

MINERVA

Phys.Rev.Lett. 130 (2023) 16, 161801

Simultaneous measurement of muon neutrino quasielastic-like cross sections on CH, C, water, Fe, and Pb as a function of muon kinematics. We need models that can predict cross sections on Argon from wealth of measurements on other nuclei (plastic and iron, especially). See that current models do NOT predict cross section ratios for Lead.

MANCHESTER 1824

Neutrino Interactions: $v_e CC XS$ on Ar

Inclusive XS generally ask for minimal requirements in the final state: just the charged lepton. They are standard candle, a "catch-all" for models.

First measurement of inclusive v_e and anti v_e CC in MicroBooNE

Differential XS measurement of charged current v_e interactions w/ final-state pions.

MANCHESTER 1824

Neutrino Interactions: SBND

Unprecedented understanding of neutrino interactions on argon: 5000 v events per day, 1.2M v_u & 12k v_e CC events per year: vital input to DUNE

A near detector for SBN, broad programme of BSM searches. Installation in the cryostat: April 2023 Physics commissioning: November 2023 \rightarrow **ABOUT TO TURN ON!!**

TPC&PDS Completed December 2022 1. 14 1 Hand States and

The University of Manchester

A Word on Neutrino Generators (the unsung heroes of the neutrino interaction world)

Continuous improvement of our understanding neutrino interactions comes from the interplay between model development and cross section results.

Aim to perform measurements in a form that is useful for generators, and produce predictions easy to translate into usable observables

A Word on Neutrino Generators (the unsung heroes of the neutrino interaction world)

What do we need to make these experiments successful (& better)?

 \rightarrow the XS problem

- To know how neutrinos interact
- To know how many neutrinos we get \rightarrow the flux problem

Disentangling flux & XS effects in situ: the Prism concept

Neutrino beam "off-axis" effect: moving away from the neutrino beam axis, the observed neutrino energy spectrum narrows and peaks at a lower energy \rightarrow a movable detector measures the rate of interactions across a continuous range of off-axis angles, allowing to link the neutrino reconstructed energy and true energy in the oscillation analysis.

POWERFUL NEAR DETECTORS v-Prism @ JPark <u>arxiv.org.1412.3086</u>

Water Cherenkov detector moves through a cylindrical chamber 1 km downstream of the neutrino target Scans upto 4 degrees from the neutrino beam axis

DUNE-Prism arxiv.org.2103.13910

Movable LAr and GAr modules 574 m downstream of the neutrino target Scans upto 3.2 degrees from the neutrino beam axis

Proof of concept in data coming up w/ SBND-Prism

Disentangling flux & XS effects in situ: the Prism concept

Neutrino beam "off-axis" effect: moving away from the neutrino beam axis, the observed neutrino spectrum narrows and peaks at a lower energy \rightarrow a movable detector measures the rate of across a continuous range of off-axis angles, allowing to link the neutrino reconstructed energy in the oscillation analysis.

POWERFUL NEAR DETECTORS
v-Prism @ JPark arxiv.org.1412.3086
Water Cherenkov detector moves through a cylindrical chamber
1 km downstream of the neutrino target
Scans upto 4 degrees from the neutrino beam axis

DUNE-Prism <u>arxiv.org.2103.13910</u>

Movable LAr and GAr modules 574 m downstream of the neutrino target Scans upto 3.2 degrees from the neutrino beam axis

Proof of concept in data coming up w/ SBND-Prism

Constraining neutrino fluxes w/ external data: EMPHATIC

Neutrino flux predictions are constrained w/ hadron production data by experiments measuring the production cross section of the neutrino parents \rightarrow Historically NA61/SHINE.

Increased requirements in precision calls for new experiments:

EMPHATIC targets a factor of 2 reduction in v flux uncertainties. Completed an initial data run with a basic configuration in January, 2022, first HP papers expected soon. Currently done using the NuMI horn... should we do it for DUNE beam too???

MANCHESTER 1824

What do we need to make these experiments successful (& better)?

- To know how neutrinos interact
- To know how many neutrinos we get
- Improve our detectors

 \rightarrow the XS problem \rightarrow the flux problem

LArTPC: "Electronics Bubble Chambers"

Traditional LArTPCs use sets of wire planes at different angles to reconstruct the transverse position

While we get extremely detailed information about neutrino interactions, in 2D projective readouts, the readout space DOES NOT coincide w/ the physical space: highly anisotropic detectors.

LArTPC: "Electronics Bubble Chambers"

Traditional LArTPCs use sets of wire planes at different angles to reconstruct the transverse position

While we get extremely detailed information about neutrino interactions, in 2D projective readouts, the readout space DOES NOT coincide w/ the physical space: highly anisotropic detectors.

 \rightarrow automatic plane matching is difficult, especially for complex topologies.

The readout affects the possibility of maintaining the intrinsic 3D quality of the events.

LArTPC: Pixels?!?!?

Constructing anode planes with pixels instead of wires can **solve a number of shortcomings** of 2D projective readouts.

More resilient against single point failure and simpler to construct.

Small pixels sizes (4x4 mm²) provide comparable spatial resolution, but the readout space coincides w/ the physical projected space

"Pixelizing" a 10kTon DUNE module requires O(130.0 million) pixels vs O(1.5 million) wires. Requires innovation in readout electronics to meet the heat load restriction for the increase in the number of channels \rightarrow target 50-100 uW/ch w/ < 100 ENC

LArTPC: Pixels?!?!?

Constructing anode planes with pixels instead of wires can **solve a number of shortcomings** of 2D projective readouts.

More resilient against single point failure and simpler to construct.

Small pixels sizes (4x4 mm²) provide comparable spatial resolution, but the readout space coincides w/ the physical projected space

"Pixelizing" a 10kTon DUNE module requires O(130.0 million) pixels vs O(1.5 million) wires. Requires innovation in readout electronics to meet the heat load restriction for the increase in the number of channels \rightarrow target 50-100 uW/ch w/ < 100 ENC

Q-Pix: an "unorthodox solution" to the immense data rate

Q-Pix is a novel **ionization signal capture** and **waveform digitalization** scheme is based on the "**electronic principle of least action**":

 \rightarrow when there's nothing to do... do nothing!

 \rightarrow (but be ready to respond properly when signal arrives!)

Hardware solution to the immense data-rate:

 \rightarrow Estimated Quiescent Data Rate O(50 Mb/s) {as opposed to 4.6 Tb/s}

 \rightarrow Allows to overcome heatload and to pixelate massive surfaces

Q-Pix offers an innovation in signal capture with a **new approach and measures Time-to-charge:** (Δ **Q**)

- → Keeps detailed the waveform typical of LArTPC, for accurate description of events fundamental to the physics.
- \rightarrow Attempts to exploit 39Ar to provide an automatic charge calibration (heartbeat)

Q-Pix has started to explore its "real life feasibility" <u>arXiv:1809.10213</u>

Charge-Integrate/Reset Circuit, CIR: the heart of Q-Pix

1) The charge sensitive amplifier (CSA) **continuously integrates** incoming signal on a feedback capacitor...

2) ... until a **threshold** (V_{th} = threshold/ C_f) on the Schmitt trigger is met.

3) When Schmitt trigger fires, it initiates the **reset transition** on M_f which rapidly drains C_f .

3.5) The reset pulse is used to register the value of the local clock

4) The circuit is **back to baseline** and ready to repeat *ad infinitum*.

MANCHESTE

The Pixel advantage: on beam neutrino physics

Suitable for DUNE main A first attempt to quantify a comparison between 2D and 3D readouts reconstruction performances as been made in <u>JINST 15 P04009</u>. Event classification for the 3D based readout offers significant improvement in all physics categories!

- \rightarrow ve-CC inclusive: 17% gain in efficiency and 12% gain in purity
- $\rightarrow \nu \mu$ -CC inclusive: 10% gain in efficiency for 99% purity
- \rightarrow NC π^{0} : 13% gain in efficiency and 6% gain in purity

Such improvements can lead to significantly shorter experimental run time required to meet desired physics goals!

The Pixel advantage: low energy

SuperNova Burst: test of low energy events [5-25 MeV]

- → significantly enhanced reconstruction efficiency for low energy supernova neutrino events,
- \rightarrow high purity & efficiency even with radiological backgrounds,
- → the data rate is orders of magnitude (~10⁶) less for the same energy threshold and manageable at lower energy thresholds (5.7 MB/s in 10kTon at 147 keV)
- \rightarrow 3D pixelization: pointing accuracy to < 20 degrees from a single module

The University of Manchester

Summing up

My biased and modest view of the distant future

We are gearing up to measure CP violation in the lepton sector!!!

The next decade will be an exciting time for neutrinos: lots of important measurements and opportunities for innovation:

- Understanding better our neutrino beams & v-nucleus models, with our unsung heroes experiments and theorists.
- 2. Blue skies ideas for new neutrino oscillation experiments \rightarrow "the bigger the better" is not going to fly
- 3. THE TAU NEUTRINOS... a double issue: - no good source - no good detectors FASERv + R&D! R&D! R&D!

MANCHESTER

Thank you!

For your help in preparing this talk, special thanks to: Francesca di Lodovico, Teppei Katori, Anne Norrick, Zoya Vallari

Neutrino Oscillations: T2K test of PNMS matrix

Measurement of electron antineutrino appearance in the antineutrino beam. 15 candidate electron antineutrino events with a background expectation of 9.3 events.

 v_e Bar appearance in a v_μ Bar beam. Two analysis frameworks: compare with no v_e Bar appearance or v_e Bar appearance as expected from the PMNS model prediction. In both frameworks, no discrepancy between data and PMNS predictions is found. No-appearance scenario is disfavored with a significance of 2.4 σ .

MANCHESTER 1824

Recent Results: IceCube

Search for 3 + 1 active-to-sterile v oscillation in many channels.

IceCube: decaying sterile neutrino search

Search for an unstable sterile neutrino by looking for a resonant signal (8 years of atmospheric v_{μ} data).

Do not observe evidence for 3+1 neutrinos with neutrino decay Majority of short-baseline experiment phase space rejected

MANCHESTER 1824

Jarlskog invariant

The Jarlskog invariant, which controls the size of true CP violation in neutrino oscillation appearance experiments and is useful for quantifying CP violation in a parameterization-independent way

$$J = c_{12} s_{12} c_{23} s_{23} c_{13}^2 s_{13} \sin \delta_{13}$$

= $\frac{1}{8} \sin 2\vartheta_{12} \sin 2\vartheta_{23} \cos \vartheta_{13} \sin 2\vartheta_{13} \sin \delta_{13}$

For neutrino propagation in matter, it factorizes into 3 pieces:

the vacuum Jarlskog invariant times two simple two-flavor matter resonance factors that control the matter effects for the solar and atmospheric resonances independently.

Neutrino Interactions: Annie

Study neutrino-nucleus interactions with a special focus: the neutron yield/multiplicity in neutrino interactions. Neutrons are a significant systematic uncertainty in long-baseline experiments (missing energy!)

Neutrino Interactions: Annie

Study neutrino-nucleus interactions with a special focus: the neutron yield/multiplicity in neutrino interactions. Neutrons are a significant systematic uncertainty in long-baseline experiments (missing energy!)

NOvA Simulation

The ANNIE detector is commissioned and taking beam v data! Observed neutrons from calibration and beam, and v on LAPPDs for the first time this year!

The University of Manchester

The octant problem in a snapshot

How are we building this future now?

SuperK Cherenkov detector

Happening now in DUNE/LBNF

ProtoDUNE programmes @ the **CERN neutrino platform** are demonstrating the viability of the technology for the first two FD modules while performing physics measurements of charged particles in argon.

Great space for R&D for future module of opportunity!

Happening now in DUNE ND

UK leadership in: N Physics

- □ Studies for design and development
- Impact of ND on oscillation analyses
- Development of PRISM analyses

Phase I

- □ DAQ support for all detectors
- Reconstruction and simulation
- □ TMS

Phase II

- □ Readout development for gaseous argon detector
- High-pressure GAr TPC test stand construction and operation
- Interest in pursuing further construction opportunities for Phase II

Importance of international partnership! DUNE ND-Phase

SAND · On-axis magnetized detector TMS Reuses KLOE magnet and ECal · Measures beam flux precisely, non Ar targets Magnetized steel range stack Measures muon momentum and sign from muons exiting NDLAr **NDLAr** PRISM · Liquid Argon TPC with high- NDLAr+TMS move off axis up precision pixel readout to 28.5 m 7x5 array of 1x1x3 m³ modules Off-axis movement samples

different beam energies to

disentangle flux and cross-

section uncertainties

 Provides identical material target to FD modules

Happening now in Hyper-K

UK leadership

- gadolinium-loaded water Cherenkov ND (currently tested in SK)

- sensitivity studies for oscillation physics, focus on v-PRISM in HK
- DAQ development
- Water monitoring system
- R&D in the light readout
- deliver the primary calibration system of IWCD: laser diffuser + UniConeEx (a quartz cylinder mimicking the Cherenkov light from a muon).

