
Challenges and Opportunities in Software 
& Computing for Future Colliders 

Heather M. Gray



Introduction
• Software and computing are used ever increasingly in high-energy physics 

during every step of the data processing chain
• From detector control, through trigger, to reconstruction and analysis

• The (offline) code base is enormous

• ~50M lines of C++

• Also large (but size unknown) python code base
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How may Future Colliders Differ

• Can group future colliders into two groups

• Near-term: LHC upgrades (including HL-LHC)

• Long-term:  Future lepton colliders, potential hadron and muon colliders

• A number of features of these colliders induce challenges and 
opportunities for software and computing

• Backgrounds: Increased pile up, beam-induced background

• Increasingly sophisticated detectors

• More channels, additional information

• Higher data rates: better triggers (or no triggers)

• Increasing demands in physics precision

• Need to explore unconventional signatures
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8 lhc llp community

detector or muon spectrometer; and disappearing, appearing, and
kinked tracks.
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so where do we start?
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Figure 1.2: Schematic of the variety of challenging, atypical experi-
mental signatures that can result from BSM LLPs in the detectors at
the LHC. Shown is a cross-sectional plane in azimuthal angle, f, of
a general purpose detector such as ATLAS or CMS. From Ref. [3].

Because the long-lived particles of the SM have masses . 5 GeV
and have well-understood experimental signatures, the unusual sig-
natures of BSM LLPs offer excellent prospects for the discovery of
new physics at particle colliders. At the same time, standard recon-
struction algorithms may reject events or objects containing LLPs
precisely because of their unusual nature, and dedicated searches
are needed to uncover LLP signals. These atypical signatures can
also resemble noise, pile-up, or mis-reconstructed objects in the de-
tector; due to the rarity of such mis-reconstructions, Monte Carlo
(MC) simulations may not accurately model backgrounds for LLP
searches, and dedicated methods are needed to do so.

Although small compared to the large number of searches for
prompt decays of new particles, many searches for LLPs at the
ATLAS, CMS, and LHCb experiments at the Large Hadron Col-
lider (LHC) have already been performed; we refer the reader to
Chapter 3 for descriptions of and references to these searches. Ex-
isting LLP searches have necessitated the development of novel
methods for identifying signals of LLPs, and measuring and sup-
pressing the relevant backgrounds. Indeed, in several scenarios
searches for LLPs have sensitivities that greatly exceed the search
for similar, promptly decaying new particles (as is true, for ex-
ample, for directly produced staus in supersymmetry [4]). The
excellent sensitivity of these searches, together with the lack of a
definitive signal in any prompt channels at the LHC, have focused
attention on other types of LLP signatures that are not currently
covered. These include low-mass LLPs that do not pass trigger or
selection thresholds of current searches, high multiplicities of LLPs

H. Russell

https://indico.cern.ch/event/607314/contributions/2542309/attachments/1447873/2231444/20170424_LLPs.pdf
https://indico.cern.ch/event/607314/contributions/2542309/attachments/1447873/2231444/20170424_LLPs.pdf


Challenges and Opportunities
• Computing technology evolution

• Increased concurrency 

• Increasingly diverse architectures

• Machine learning

• Data science, including python for scientific computing

• Open Source Software

• Funding constraints
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The goal of this talk is to explain the impact on these factors 
on software and computing to highlight the challenges and 

also provide some ideas about the opportunities

https://indico.cern.ch/event/607314/contributions/2542309/attachments/1447873/2231444/20170424_LLPs.pdf
https://indico.cern.ch/event/607314/contributions/2542309/attachments/1447873/2231444/20170424_LLPs.pdf


Characteristics
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Backgrounds: Additional Interactions
• At hadron colliders, each time two bunches of cross (or collide), multiple 

pairs of protons undergo inelastic collisions

• Mean number of interactions per bunch crossing or pile up ( ) is given by 
the following formula

•

• Track reconstruction algorithms scale quadratically with pile up

μ

⟨μ⟩ =
L ⋅ σinel

Nbunch ⋅ facc
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depends linearly on the luminosity
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The goals of Run 4 are:
• Doubling the luminosity integrated 

after Run 3: 450 fb-1➔ 1200 fb-1

• Remove or at least identify any 
potential bottleneck to reach nominal 
parameters for Run 5

Run 3 and LS3 should remove 
any potential limitation for a 

successful Run 4!



Tracking is a CPU Hog
• CPU demands of tracking are 

significant
• Largest component of 

reconstruction

• Largest component of CPU 
needs 

• One component of the so-called 
“LHC Computing Challenge”

• Mismatch between computing 
needs and resources

• Depends strongly on 
assumptions

• Target of aggressive 
software developments
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CMS O&C Public Results Similar results for ATLAS

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/


Beam-induced Background at Muon Colliders

• Muon colliders are susceptible to the background from the secondary and 
tertiary muon decay products

• Reduced several orders of magnitude by the Machine Detector Interface 
(MDI)

• 10x hit density from BIB at muon colliders in tracking detectors 
compared to pile-up at the HL-LHC

• Similar impact on algorithms as from pile up
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Fig. 3: Kinematic properties of BIB particles entering the detector region: momentum (left), position
along the beam line (middle) and arrival time with respect to the bunch crossing (right).

to mitigate the negative effects of the BIB, as demonstrated in the later sections of this paper.

2.2 Simulation in FLUKA
We report in this section the most relevant BIB features computed at

p
s = 1.5 TeV by the Monte Carlo

multi-particle transport code FLUKA [57,58]. The complex FLUKA geometry is assembled by means of
the LineBuilder [59] using the optics file provided by the MAP collaboration. The accelerator elements
have been defined in Fluka Elements Database following the information contained in this file and in
MAP publications [60,61]. The results obtained by FLUKA are benchmarked against those provided by
the MAP collaboration and the detailed comparison is described in Ref. [53].

The results presented below are computed for one beam, given the symmetric nature of the µ
+
µ
�

collider. In particular, the primary µ
� beam is simulated according to parameters reported in Table 1

travelling counterclockwise starting 200m away from the IP.
The major contributors to BIB are photons, neutrons and electrons/positrons. The time at which

BIB exits the machine in the IR is spread over a wide range but the major part is concentrated around the
beam crossing time (t = 0), as shown by the top panel of Fig. 4.

The bottom panel of Fig. 4 reports the longitudinal distribution of primary µ
� decays generating

the most relevant BIB families: the cumulative function shows it is enough to consider decays within
⇠ 25m from the IP. On the contrary, simulations show that to correctly account for the secondary µ

±, it
is necessary to consider primary decays up ⇠ 100m from the IP.

The kinetic energy distribution of most relevant BIB particle types is reported in Fig. 5. Energy
cutoffs have been applied in the simulation at 100 keV for �, e±, µ±, charged hadrons and at 10�14 GeV
for neutrons. The nozzles act in a very significant way in cutting out the high energy BIB component:
as we can notice the BIB particles entering the detector hall have kinetic energy below few GeVs. Only
charged hadrons and secondary muons can reach much higher energies but their number is quite low, in
the order of 104 and 103, with respect to 107 photons, neutrons and 105 electrons, positrons.

Most of the BIB exits the machine in the region around the IP and by considering a time cut within
-1 and 15 ns, which is the most relevant for the detector measures, a big portion of photons and neutrons
is removed, as displayed by the left panel of Fig. 5.

8

Credit

Table 4: Comparison of the hit density in the tracking detector between the ATLAS ITk upgrade for
HL-LHC and the MCD with full BIB overlay. The hit densities for layers at equivalent radii are shown.
The MCD numbers are after timing cuts.

ATLAS ITk Layer ITk Hit Density [mm2] MCD Equiv. Hit Density [mm2]
Pixel Layer 0 0.643 3.68
Pixel Layer 1 0.022 0.51
Strips Layer 1 0.003 0.03

Fig. 9: Hit density in the different layers of the tracking detectors in a single event with full BIB overlay.
The density before (blue) and after (yellow) applying the timing cut is shown.

Pile-up hits come from real charged particle tracks originating from multiple vertices in the collision
region. On the other hand, BIB-hits come from a diffuse shower of soft particles originating from the
nozzles. The compatibility of a track with a trajectory originating from the luminous region provides an
important handle for differentiating "real" tracks of charged particles produced in the primary collision
and "fake" tracks generated from random combinations of BIB-hits.

The remainder of this section describes three approaches that were studied for track reconstruc-
tion at the MCD. The first two use the Conformal Tracking (CT) algorithm developed for the clean
environment of the electron-positron colliders [71]. However in the presence of BIB, the CT algorithm
takes weeks to reconstruct a single event and is impractical for large-scale production of simulated data.
To ease the computational effort, the input hits are first reduced by either defining a Region of Interest
(Section 5.1) or by exploiting the double-layered Vertex Detector to select only hit pairs pointing to the
collision region (section 5.2). The third approach (Section 5.3) uses the Combinatorial Kalman Filter
(CKF) [72–74] algorithm developed for the busy environment of hadron colliders. It can perform track
reconstruction in a reasonable time without requiring any additional filtering of input hits.

It should be noted that the CT and CKF algorithms have very different software implementations
that are responsible for much of the difference in their performance. The CKF algorithm is implemented
using the A Common Tracking Software (ACTS) [75] library that is heavily optimized for efficient com-
puting. The same is not true for the CT algorithm implemented directly in iLCSoft with less emphasis
on computational efficiency. It is possible that part of the computational improvements come from code
quality alone. For example, the ACTS Kalman Filter implementation is a factor 200 faster than the de-
fault iLCSoft implementation given the same inputs. This demonstrates the advantage of an experiment-
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https://indico.cern.ch/event/1130036/attachments/2404077/4112661/2203.07964.pdf
https://indico.cern.ch/event/1130036/attachments/2404077/4112661/2203.07964.pdf


BIB drives MC Resource Needs
9
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Disk Resources

Disk resources for detector and accelerator studies mostly driven by large BIB

“Shared” resources available

Wish-list:
● some storage easily accessible by newcomers, input BIB for productions
● large storage where CPU is or easily reachable for large MC campaigns

○ output data should also be easily accessible

Approximate Size / Event [MB]

heavily-filtered trimmed full truth full truth
(low threshold)

80 400 8,400 36,000

Site Disk Space [TB] Notes

CERN 100 EOS

INFN-CNAF Tier-1 150 Grid Storage Element

CloudVeneto 90 + 70 INFN-based cloud storage

Snowmass.io ?? “Local” (network mounted) disk on cluster

CPU

4

CPU Resources

CPU requirements for full simulation studies are the main driver
● BIB production and simulation

○ varying detector geometry, accelerator 
lattice, nozzle configuration, …

● performance and physics studies

“Shared” resources available

Wish-list
● relatively homogeneous computing setup to ease using multiple resources
● ratio of CPU/memory a concern currently, since reconstruction jobs around 

8GB of RAM in processing one event
○ especially problematic for HPC centers
○ strong motivation for intra-event parallelization (multi-threading software)

Full simulation Approximate 
time/event [min]

Physics + BIB 
Overlay

1-2

BIB simulation 1500

Site # CPUs Notes

CERN > 150 Condor Cluster, priority-based (~4GB memory / CPU)

INFN-CNAF Tier-1 6  CE Condor Cluster

CloudVeneto 200 ~4GB memory / CPU

Snowmass.io ?? Condor Cluster

Disk

Slide Credit

https://agenda.hep.wisc.edu/event/2140/contributions/30217/attachments/9576/11832/2024-02-23_MuC-Princeton-S%26C%20(1).pdf
https://agenda.hep.wisc.edu/event/2140/contributions/30217/attachments/9576/11832/2024-02-23_MuC-Princeton-S%26C%20(1).pdf


Sophisticated Tracking Detectors
• We’ll discuss Moore’s Law later, but one 

result is the increasing miniaturization of 
silicon components

• Up 65x increase channels in silicon 
detectors when controlling for size

• More precise measurements, but larger 
data volume

• Timing adds extra dimension
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Image Source

Image Source

ATLAS Inner Detector

ATLAS ITk

LHC HL-LHC

ATLAS 
Pixel

80 (92) 
million

6 billion

ATLAS 
Strips 6 million 60 million

180 m2 of silicon

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/
https://cds.cern.ch/record/1095926
https://cds.cern.ch/record/1095926


Detailed Shower Reconstruction
• Another innovative use of silicon is in the CMS High 

Granularity Calorimeter (HGCAL) end-cap: high 
readout and high granularity

• 47 layer sampling calorimeter: silicon (26)/plastic 
scintillator

• 6M silicon channels; 620m2 silicon sensors

• Requires new reconstruction algorithms for 
reasonable computing resources requirement
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04 August 2020 Lindsey Gray | Using Next-Generation Detectors with Graph Neural Networks

Modern detectors are significantly more complex

• Detectors are changing, they’re becoming more larger, more granular 
- DUNE, the CMS High Granularity Calorimeter (HGCAL)
- HL-LHC Trackers + Timing Detectors
• They’re aiming for high performance in strenuous environments
- ILD aiming for electron positron collider, HGCAL for HL-LHC
- Readouts include precision timing information, but have to correlate x,y,z,t & E
- Detector performance depends much more on algorithmic physics performance 

2

ILD Event Display (whole detector) HGCAL Event Display (one endcap)

04 August 2020 Lindsey Gray | Using Next-Generation Detectors with Graph Neural Networks

Imaging Calorimetry With HGCal

• Rough 6 million channels individually read out
- Provides sampling calorimetry with 50 instrumented readout planes
- Can capture the evolution of EM and hadron showers in space as well as time
• Dedicated timing readout with excellent precision for large energy deposits
- Higher-dimensional data leads to more easily discernible patterns
• Multiple reconstruction algorithms efforts ongoing to use this device
3

GEANT Track
s

Calorimeter clusters

Image Source

Figure 4. Example of clustering result from previous algorithm in CMSSW_10_6_X (left) and CLUE-
CPU (middle) and CLUE-GPU (right). The example shows a small region on the 12th layer of a simu-
lated of tt̄ event.

Figure 5. Average execution time of HGCAL clustering for PU200 events. The testing platform is
based on Intel i7-4770K CPU and NVIDIA GTX 1080 GPU. Blue, orange and green bars represent ex-
ecution time of CMSSW_10_6_X, CLUE-CPU and CLUE-GPU respectively. Both CMSSW_10_6_X
and CLUE-CPU use a single CPU thread. Three green bars are three evolving versions of CLUE-GPU
and the most updated one is version 3 with 32 ms execution time, shown as the bottom-most green bar.

thread CPU, producing almost the same result but 30x faster. The GPU implementation
in CMSSW includes three versions. The first version is a plain CUDA implementation of
CLUE-CPU and average execution time is 159 ms. The second version combines the data of
all hits in the entire HGCAL as a single Structure of Array (SoA) to improve access to global
memory and to allow parallelization of hits on di↵erent layers. The average execution time
of the second version is reduced to 50 ms. The third version uses one-time GPU memory
allocation and memory release before and after processing all events respectively. It further
reduces execution time to 32 ms, which is decomposed into 6 ms for kernel execution, 20
ms for host-device data transportation and 6 ms for SoA conversion. The 6 ms total kernel
execution time is comparable with that in [7]. The speedup factor of CLUE-GPU over CLUE-
CPU is about 6x.

In the future, the latency due to data tra�c and SoA conversion can be shared with other
reconstruction processes if more processes are also o✏oaded to GPU. Such latency can also

5

EPJ Web of Conferences 245, 05005 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505005

Image Credit

https://indico.slac.stanford.edu/event/429/attachments/601/967/SLACML4RECO_LindseyGray_04082020.pdf
https://indico.slac.stanford.edu/event/429/attachments/601/967/SLACML4RECO_LindseyGray_04082020.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf


Triggers
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after A. Cerri

Trigger rate increases by more than an order of magnitude for ALICE 
and LHCb for Run 3

Trigger rate increase by an order of magnitude for ATLAS and CMS 
for Run 4 

Even larger event sizes for DUNE but lower rate

Not shown, 
potential 

LHCb and 
ALICE 

upgrades



Trigger Evolution

• Triggers have extremely low latency requirements

• Track reconstruction can be a challenge

• Algorithms are evolving in two primary directions

• More computation and more complex algorithms (close to offline 
physics performance) for the hardware trigger

• Triggerless read-out: no hardware trigger and the software trigger 
processes all events 

• Can mix approaches hardware accelerators in the software trigger

• We can expect these trends to accelerate for future accelerators
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Source

https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf


Physics Precision
• Future colliders aim to make 

increasingly precise measurements

• e.g. W mass measurements today

• Extremely high precision for 
future lepton colliders

• Require:

• precise theory

• precise calibration

• Result in large computational 
needs

14

M. Schott

Janusz Gluza

Image Source

Dr Sarah Williams: Future circular e+e- machines

Why do we need tera-Z?

• Significantly higher statistics at Z-pole (~ 
5×10#$ Z-bosons) generates ultimate precision 
for EWPO, and best sensitivity for BSM 
searches (i.e. HNLs).

• Unprecedented flavour opportunities- 10x 
more bb/cc pairs than final Belle-II statistics.

• Exciting physics potential with boosted b/&, 
and opportunities to probe LFV/LFU in & 
decays.
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background [192, 149]. Nevertheless, subsequent FCC-ee studies [193] suggested that the
2 ⇥ 10�9 sensitivity may be a conservative estimate, thus bringing FCC-ee and Belle II
sensitivities closer.

A number of other CLFV tau decays can be studied at FCC-ee, similar to what has been
achieved by the B factories. Particle identification, which will be available in the FCC-ee
detectors, should make these measurements highly competitive with the ultimate precision
achievable in Belle II.

8.3.4 Other measurements with tau leptons

Finally, the large ⌧ samples expected at FCC-ee, should allow to measure the ⌧ lepton
lifetime to an absolute precision of 0.04 fs (10�4 relative precision) and leptonic branching
fractions to an absolute precision of 3 ⇥ 10�5 (2 ⇥ 10�4 relative precision) [188]. This
would allow to measure the Fermi constant in ⌧ decays to a similar or even higher precision
(potentially as good as 10�5 if the systematic uncertainties can be kept at the same level
as the statistical ones). Comparing this number with the canonical GF measurement based
on the muon lifetime [2], o↵ers another way of probing new physics possibly responsible for
non-flavor-universal couplings, as shown in Fig. 16 [188].

SciPost Physics Proceedings Submission

Figure 2: Branching fraction of ⌧ ! e⌫̄⌫ versus ⌧ lifetime. The current world averages of
the direct measurements are indicated with the blue ellipse. Suggested FCC-ee precisions
are provided with the small yellow ellipse (central values have been arbitratily set to todays
values). The Standard Model functional dependence of the two quantities, depending on the
⌧ mass, is displayed by the red band.

FCC-ee, as discussed below. At this level of precision, the universality test would be limited
by the mass measurement, if no new measurements would be available. While FCC-ee may
possibly be able to improve the m⌧ measurement by a small factor, substantial improvements
are more likely to come from a next generation of ⌧ -factory experiments at the production
threshold.

3.1 Lifetime

The world-average value of the ⌧ -lepton lifetime is ⌧⌧ = 290.3 ± 0.5 fs [6]. Precision measure-
ments were pioneered by the LEP experiments in the early 1990’ies following the deployment
of their precise silicon vertex detectors [7–10]. More recently, Belle, with its O(103) times
larger statistics, has improved on these measurements [11].

The single most precise measurement from LEP, ⌧⌧ = 290.0 ± 1.4 (stat.) ± 1.0 (syst.) fs,
was provided by DELPHI [8]. The analysis employed several complementary methods. The
method with the smallest systematic uncertainty (1.3 fs) was the so-called decay vertex
method, where the flight-distance was measured for ⌧ decays to three charged particles. Here,
the largest systematic uncertainty (1.0 fs) came from the 7.5 �m accuracy of the vertex de-
tector alignment. This was estimated from samples of hadronic Z decays with three tracks in
one hemisphere, and its value resulted from the (limited) statistical power of the test samples.

The Belle measurement, ⌧⌧ = 290.17 ± 0.53 (stat.) ± 0.33 (syst.) fs, was based on events
in which both ⌧s decayed to three charged particles. In these events, the constrained kine-
matics combined with the longitudinal boost of the ⌧⌧ system provided by the asymmentric
KEKB collider allowed Belle to reconstruct the two secondary vertices as well as the primary
vertex and this way to extract the flight distances. As for DELPHI, the dominant systematic

5

Figure 16: Branching fraction of ⌧ ! e⌫e⌫⌧ vs. ⌧ lepton lifetime. The current world averages
of the direct measurements are indicated with the blue ellipse, while the projected FCC-ee
accuracy is given by the yellow ellipse (from Ref. [188]). The red line corresponds to the
prediction based on lepton universality given the present world-average value ⌧ lepton mass,
which may be further improved by the current and proposed charm factories in the future.

Another direct test of lepton favor universality can be achieved at FCC-ee by the precision
simultaneous measurement of the branching fractions of the ⌧ ! µ⌫µ⌫⌧ and ⌧ ! e⌫e⌫⌧

decays. The present 2 ⇥ 10�3 precision [2] in these branching fractions is still unchallenged
since the LEP times, where it was possible to control the systematic uncertainties very well.
The FCC-ee will be able to achieve the statistical precision of ⇠ 10�5 in these branching

47

For flavour, see slides by Jernej. F. Kamenik at London FCC week

https://indico.cern.ch/event/1202105/contributions/5396848/attachments/2659045/4606389/FCC_Week_London_2023.pdf
https://indico.cern.ch/event/1202105/contributions/5396848/attachments/2659045/4606389/FCC_Week_London_2023.pdf


Example: FCC-ee

• Z-pole running requirements driving computing needs

• Multiple ways of event reconstruction and simulation to address systematic

• Current LHC-scale computing is sufficient for simulation needed
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Current results suggest this is not insurmountable

Using LHC-scale computing is nearly sufficient (eg, within 10x) for all
the simulation needed for the Z-pole run of a FCC-ee detector

7

Events simulated  
per day  using the
equivalent of the
ATLAS computing 
facilities 

Ganis, Helsens:
https://arxiv.org/abs/2111.10094

Analysis level data similar to LHC Run 2RAW storage similar to the full HL-LHC

Slide Credit

https://indico.cern.ch/event/1066234/contributions/4708135/attachments/2389973/4085450/fcc_220209.pdf
https://indico.cern.ch/event/1066234/contributions/4708135/attachments/2389973/4085450/fcc_220209.pdf


Unconventional Signatures

• As we’ve discovered the Higgs boson at the LHC with no signs of new 
physics

• Important to ask if there could be signs of new physics that we just don’t see

• Weak (or no) interaction

• Long lifetimes

• High mass

• ‘Long-lived particles’ have become an are of focus 

• Requires new algorithms and additional computing resources

• e.g. more track reconstruction algorithms
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detector or muon spectrometer; and disappearing, appearing, and
kinked tracks.
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so where do we start?
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Figure 1.2: Schematic of the variety of challenging, atypical experi-
mental signatures that can result from BSM LLPs in the detectors at
the LHC. Shown is a cross-sectional plane in azimuthal angle, f, of
a general purpose detector such as ATLAS or CMS. From Ref. [3].

Because the long-lived particles of the SM have masses . 5 GeV
and have well-understood experimental signatures, the unusual sig-
natures of BSM LLPs offer excellent prospects for the discovery of
new physics at particle colliders. At the same time, standard recon-
struction algorithms may reject events or objects containing LLPs
precisely because of their unusual nature, and dedicated searches
are needed to uncover LLP signals. These atypical signatures can
also resemble noise, pile-up, or mis-reconstructed objects in the de-
tector; due to the rarity of such mis-reconstructions, Monte Carlo
(MC) simulations may not accurately model backgrounds for LLP
searches, and dedicated methods are needed to do so.

Although small compared to the large number of searches for
prompt decays of new particles, many searches for LLPs at the
ATLAS, CMS, and LHCb experiments at the Large Hadron Col-
lider (LHC) have already been performed; we refer the reader to
Chapter 3 for descriptions of and references to these searches. Ex-
isting LLP searches have necessitated the development of novel
methods for identifying signals of LLPs, and measuring and sup-
pressing the relevant backgrounds. Indeed, in several scenarios
searches for LLPs have sensitivities that greatly exceed the search
for similar, promptly decaying new particles (as is true, for ex-
ample, for directly produced staus in supersymmetry [4]). The
excellent sensitivity of these searches, together with the lack of a
definitive signal in any prompt channels at the LHC, have focused
attention on other types of LLP signatures that are not currently
covered. These include low-mass LLPs that do not pass trigger or
selection thresholds of current searches, high multiplicities of LLPs

H. Russell

https://indico.cern.ch/event/607314/contributions/2542309/attachments/1447873/2231444/20170424_LLPs.pdf
https://indico.cern.ch/event/607314/contributions/2542309/attachments/1447873/2231444/20170424_LLPs.pdf


Challenges and Opportunities
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Moore’s Law
18

Image Credit

Moore’s Law

Vectorization

“Free Lunch”

Parallelization

• Number of transistors in an integrated circuit doubles approximately every two 
years

SourceSlides after

https://github.com/karlrupp/microprocessor-trend-data?tab=readme-ov-file
https://github.com/karlrupp/microprocessor-trend-data?tab=readme-ov-file
https://web.archive.org/web/20211221191553/http://www.monolithic3d.com/uploads/6/0/5/5/6055488/gordon_moore_1965_article.pdf
https://web.archive.org/web/20211221191553/http://www.monolithic3d.com/uploads/6/0/5/5/6055488/gordon_moore_1965_article.pdf
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf


Beyond CPUs

• Hardware accelerators are custom-made hardware designed to 
perform specific functions more efficiently than CPUs

• Wide variety of hardware accelerators depending on the application

• e.g GPU, FPGA, TPU ….

• We use hardware accelerators frequently in our daily lives

• e.g. graphics acceleration, encryption, machine learning, decoding video 
streams

• A large fraction of the power in High Performance Centers (HPCs) comes 
from GPUs

• Can also consider “New” computing paradigms

• Neuromorphic computing, quantum computing….

• Hardware accelerators are significantly more challenging to program than 
CPUs
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Machine Learning
• Machine learning methods have been used in 

HEP since the1990s [see Bhat, 2011 for a 
review]

• Recent advent of deep learning has 
boosted performance

• Classification and regression used in all 
steps of the HEP software pipeline

• Developments in machine learning are often 
driven by industry
• HEP benefits through the application of 

these techniques

• In most cases, aim for improved physics 
performance rather than improved speed

• Covered in far more detail in Javier’s talk, 
but has transformed the software landscape

• Also good use case for hardware acc
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The extreme rate at which the LHC collides protons, along with the 
size and complexity of the LHC detectors, results in the production of 
enormous data samples.

Real-time analysis
The LHC experiments use data-reduction schemes executed in real 
time, referred to as triggers, to identify which data to retain for future 
analysis and which to permanently discard. For example, the ATLAS 
and CMS experiments each keep only about 1 in every 100,000 events. 
Despite this, their data samples are each still about 20 petabytes per 
year. The first step in deciding which events to keep relies on logic that 
is encoded directly into the hardware to enable the fastest possible deci-
sions, such as into devices known as field-programmable gate arrays 
(FPGAs). Machine learning is already used in this environment; for 
example, CMS uses machine learning in its trigger hardware to better 
estimate the momentum of muons28, with the inputs to the algorithm 
discretized to enable the machine-learning response to be encoded in 
a large look-up table that is easily programmed into the FPGAs.

In addition, the LHC experiments use huge computing farms to pro-
cess the extreme volumes of data and search for interesting signatures. 
In the case of the LHCb experiment, many of the reactions of greatest 
interest do not produce striking signatures in the detector, making it 
necessary to thoroughly analyse high-dimensional feature spaces in 
real time to efficiently classify events29. Since the first year of LHCb 
data collection, the primary algorithm used for such classification has 
been machine-learning-based; specifically, a BDT was used for the 
first two years30, which has since been replaced by a MatrixNet algo-
rithm31. The use of machine learning is now ubiquitous, which has 
greatly improved performance while satisfying the stringent robustness 
requirements of a system that makes irreversible decisions. Currently, 
70% of all data retained are classified by machine-learning algorithms 
and all charged-particle tracks are vetted by neural networks32. As an 
example of the effect of these machine-learning methods, achieving the 
same sensitivity as a recent LHCb search for the dark-matter analogue 
of the photon, which was performed using data collected in 201633, 
would have required 10 years of data collection without the use of 
machine learning.

Actionable insights from computing metadata
Processing of the industrial-scale data samples collected by the LHC 
experiments is performed using the computing resources of the LHC 
Computing Grid, which are distributed across dozens of centres world-
wide. The massive volumes of data moved between grid centres, and 
the large number of CPU processing jobs used to access and analyse 
these data, generate an enormous amount of metadata information 
from which actionable insights can be extracted. Machine-learning 
techniques have recently begun to play a crucial part in increasing the 
efficiency of computing-resource usage at the LHC34–36. One example 
is predicting which data will be accessed the most, as currently mon-
itored by CMS37 and LHCb38, so that it becomes possible to optimize 
data storage at the grid centres. Another example involves monitoring 
data-transfer latencies over complex network topologies at CMS39, 
using machine learning to identify problematic nodes and to predict 
likely congestions. Currently, machine learning informs the choices of 
the computing-operations teams, but in the future it form the basis of 
fully automatic and adaptive models.

Machine learning as an established tool
After identifying and recording the most interesting LHC events and 
processing them on the Computing Grid—two vital tasks supported 
by machine learning—the data are ready for exploration. The first step 
in interpreting these data involves grouping the signals recorded by 
various sensor elements according to which particle created them. 
The types and properties of the particles can then be inferred from the 
subsets of event information associated with them. Finally, after recon-
structing all detected particles in the event, the data are analysed to 
determine the underlying physical processes that created the particles. 

Interpreting such complex data samples is an extremely challenging 
task, which has been revolutionized by the use of machine-learning 
techniques. About 2,000 journal articles have been produced by the 
LHC experiments to date, providing a large library of examples of the 
use of machine learning with these types of complex dataset. In this sec-
tion we discuss a few highlights, including the role of machine learning 
in the discovery of the Higgs boson23,24.

Determining particle properties
The use of machine learning to improve the determination of particle 
properties is now commonplace at all of the LHC experiments. For 
example, BDTs are used to increase the resolution of the CMS electro-
magnetic calorimeter40. When an electron or photon enters such a 
detector, it rapidly loses its energy, which is subsequently collected and 
measured by the calorimeter. This deposited energy is often recorded 
by many different sensors and the readings from these sensors must 
be clustered together to recover the original energy of the particle. 
Multivariate regression is used by CMS to train BDTs to provide cor-
rections to these inferred energies on the basis of all of the information 
contained in each calorimeter sensor. Applying these energy correc-
tions to the decay of a Z boson into an electron–positron pair results 
in a substantial improvement in mass resolution compared to the tra-
ditional clustering approach (see Fig. 1).

Discovery of the Higgs boson
As stated above, a Higgs boson is produced only once every few billion 
proton–proton collisions at the LHC; however, the Higgs boson usually 
decays in ways that mimic much more copiously produced processes. 
The cleanest experimental signature of the Higgs boson involves its 
decay into two muon–antimuon pairs, which occurs roughly once every 
10 trillion proton–proton collisions. This and a few other processes 
were used in the Higgs discovery analyses. Most were selected owing to 
their striking experimental signatures, which made it possible to obtain 
pure signals using relatively simple analyses. An important exception 
was the analysis of the Higgs boson decaying into two photons by the 
CMS experiment.

Fig. 1 | Machine learning for calorimetry at CMS. The mass distribution 
of Z bosons that decay to electron–positron pairs (Z → e+e−), as measured 
in the central part of the CMS detector and binned into 1-GeV bins, is 
shown for three cases: using only the raw information from the detector 
(orange), after clustering the data (green) and after applying the machine-
learning-based corrections discussed in the text (blue). The true position 
of the peak for this decay is 91 GeV. Image adapted from ref. 101 under a 
CC BY 4.0 license, copyright CERN, reused with permission.
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learning would have required the collection of about four times as much 
data. This is just one of many examples of high-precision tests of the 
standard model at the LHC for which machine learning has markedly 
increased the power of the measurement.

The emergence of deep learning
Machine learning in particle physics, including the examples presented 
in the previous two sections, has traditionally involved the use of 
field-specific knowledge to engineer tools to extract the features of the 
data that are expected to be the most useful for a given measurement. 
This enables the incredibly rich initial data to be interpreted using 
only a small number of features. For example, in the aforementioned 
Bs decay, a human-designed tracking algorithm first reconstructs the 
paths taken by the muon and the antimuon in a magnetized parti-
cle-physics detector, and from these paths the momenta of the particles 
are inferred. However, only the dimuon mass and the angle between 
them are used in the BDT. The rest of the kinematic information is 
discarded.

For many tasks, information can be lost when these human- 
designed tools are used to extract features that fail to fully capture the 
complexity of the problem. As in the fields of computer vision and 
natural language processing26,47, there is a growing effort in particle 
physics to skip the feature-engineering step and instead use the full 
high-dimensional feature space to train cutting-edge machine-learning 
algorithms, such as deep neural networks48. In this approach, domain 
expertise is used to design neural-network architectures that are best 
suited to the specific problem. Studies of such applications have grown 
substantially in number and complexity within the past several years, 
beginning around 2014 with applications of deep neural networks to 
data analysis49, quickly expanding to the first applications of computer 
vision50–52 and to the current broad study of deep learning throughout 
the field of particle physics53–56.

In this section we highlight a few recent applications of two types 
of deep learning algorithm in particle physics: convolutional and 
recurrent neural networks (CNNs and RNNs, respectively)57,58. The 
outputs of many particle-physics detectors can be viewed as images, 
and the application of computer-vision techniques is being explored in  
simplified settings by the LHC community59–65 and with initial studies 
on ATLAS and CMS simulations66,67. However, such techniques are 
more naturally applicable in the area of neutrino physics, for which 
reason we focus our discussion of CNNs to neutrino experiments. 
Similarly, there are many applications of RNNs, but for brevity we 
discuss only their use for the study of high-energy beauty quarks at 
ATLAS and CMS.

Computer vision for neutrino experiments
Loosely inspired by the structure of the visual cortex, CNNs use a strategy  
that decreases their sensitivity to the absolute position of elements in an 
image and that makes them more robust to noise. Deep CNNs are able 
to extract complex features from images and now outperform humans 
in certain image-classification tasks. Another strength of CNNs is their 
ability to identify objects in an image, as demonstrated for example 
by their use in self-driving cars, owing to translation-invariant feature 
learning. This translational invariance presents a challenge for the LHC 
experiments, whose detectors consist of layers of distinct detector tech-
nologies moving out from the proton–proton collision region. These 
detectors provide rich information in the absolute reference frame of 
the detector, which is transformed into a more natural format for a 
CNN-based approach. By contrast, this characteristic of CNNs is par-
ticularly useful for neutrino experiments, which necessarily use large 
homogeneous detectors owing to the incredibly small probability that 
a neutrino will interact within a small volume of material. A neutrino 
interaction can take place anywhere within these detectors and locating 
them is a critical part of neutrino-physics analyses.

The detectors of the NOvA experiment68 are filled with scintillating 
mineral oil, which emits light when a charged particle passes through 
it. Each NOvA event consists of two images: one taken from the top 
and the other from the side. The NOvA collaboration has developed 
a machine-learning algorithm52 composed of two parallel networks 
inspired by the GoogleNet69 architecture. The NOvA CNN extracts 
features from both views simultaneously and combines them to cat-
egorize neutrino interactions in the detector. This network, which 
improves the efficiency of selecting electron neutrinos by 40% with 
no loss in purity, has served as the event classifier in searches both for 
the appearance of electron neutrinos70 and for a new type of particle 
called a sterile neutrino71.

The detector at the MicroBooNE experiment72, which contains 90 
tonnes of liquid argon, detects neutrinos sent from the booster neu-
trino beamline at Fermilab. Each MircoBooNE event corresponds to a 
33-megapixel image that probably contains background tracks caused 
by cosmic rays. Identifying signals of neutrino interactions in such 
events, in which both the signal and background tracks vary in size 
from a few centimetres to metres, is one of the most challenging tasks 
of the experiment. MicroBooNE recently demonstrated the ability to 
detect neutrino interactions using a CNN73. Specifically, an algorithm 
called Faster-RCNN74 uses spatially sensitive information from inter-
mediate convolution layers to predict a bounding box that contains the 
secondary particles produced in a neutrino interaction. In Fig. 3 we 
show an example output in which the network successfully localized a 
neutrino interaction with high confidence. Finally, by taking advantage 
of accelerated computing on GPUs, these CNNs can run much faster 
than the conventional algorithms used by previous neutrino experi-
ments. This makes them ideally suited to the task of real-time image 
classification and object detection.

RNNs for beauty-quark identification
The study of high-energy beauty quarks is of great interest at the LHC 
because these particles are frequently produced in the decays of Higgs 
bosons and top quarks and are predicted to be important components 
of the decays of super-symmetric and other hypothetical particles. A 
high-energy beauty quark radiates a substantial fraction of its energy in 
the form of a collimated stream of particles, called a jet, before forming 
a bound state with an antiquark or two additional quarks. This radiation 
is emitted over a distance comparable to the size of a proton, making it 
impossible to observe the emission process directly. The beauty-quark 
bound states live for only a picosecond, corresponding to millimetre-  
to centimetre-scale flight distances at the LHC, before randomly 
decaying into one of a thousand possible sets of commonly produced 
particles. Therefore, to identify jets that originate from high-energy 
beauty quarks, it is necessary to be able to determine whether parti-
cles were produced directly in the proton–proton collision or in the 
subsequent decay of a long-lived bound state at a location displaced  

Table 1 | Effect of machine learning on the discovery and study of 
the Higgs boson

Analysis
Years of data 
collection

Sensitivity  
without machine  
learning

Sensitivity 
with machine 
learning

Ratio 
of P 
values

Additional 
data  
required

CMS24 
H → γγ

2011–2012 2.2σ,  
P = 0.014

2.7σ, 
P = 0.0035

4.0 51%

ATLAS43 
H → τ+τ−

2011–2012 2.5σ,  
P = 0.0062

3.4σ, 
P = 0.00034

18 85%

ATLAS99 
VH → bb

2011–2012 1.9σ,  
P = 0.029

2.5σ, 
P = 0.0062

4.7 73%

ATLAS41 
VH → bb

2015–2016 2.8σ,  
P = 0.0026

3.0σ, 
P = 0.00135

1.9 15%

CMS100 
VH → bb

2011–2012 1.4σ,  
P = 0.081

2.1σ, 
P = 0.018

4.5 125%

Five key measurements of three decay modes of the Higgs boson H for which machine learning 
greatly increased the sensitivity of the LHC experiments, where V denotes a W or Z boson, γ 
denotes a photon and b a beauty quark. For each analysis, the sensitivity without and with 
machine learning is given, in terms of both the P values and the equivalent number of Gaussian 
standard deviations σ. (We present only analyses that provided both machine-learning-based and 
non-machine-learning-based results; the more recent analyses report only the machine-learning-
based results.) The increase in sensitivity achieved by using machine learning, as measured by 
the ratio of P values, ranges roughly from 2 to 20. An alternative "gure of merit is the minimal 
amount of additional data that would need to be collected to reach the machine-learning-based 
sensitivity without using machine learning, which varies from 15% to 125%.
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One Example: Flavor tagging
21

8

Detector performance

• Extensive (and exclusive) use of ML for flavor tagging for many years

• Example: Improvement in light jet rejection for ATLAS over the years

• Large improvement by the use of deep learning and GNNs

• Unclear what the limit is here (GN2 under development)

ATLAS

M. Kado



Open [Software, Data]
• Open source philosophy has long played an important role in software 

development

• At the LHC, first the results, then the software, then data and most 
recently the likelihoods of the LHC experiments have become open

• Reinterpretation can probe additional models

• However: can be challenging to use our software/data if you don’t have 
direct access to experts and significant hardware resources

• CERN Open Data Policy
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https://reanahub.io/

https://www.hepdata.net/
https://github.com/cms-sw/cmssw
https://gitlab.cern.ch/atlas/athena
https://github.com/alisw/AliRoot
https://gitlab.cern.ch/lhcb
http://opendata.cern.ch/
https://atlas.cern/updates/news/new-open-likelihoods
https://cds.cern.ch/record/2745133
https://www.hepdata.net/
https://github.com/cms-sw/cmssw
https://gitlab.cern.ch/atlas/athena
https://github.com/alisw/AliRoot
https://gitlab.cern.ch/lhcb
http://opendata.cern.ch/
https://atlas.cern/updates/news/new-open-likelihoods
https://cds.cern.ch/record/2745133


Common Software R&D Institutes
• HEP experiments at the LHC and in the future face similar changes

• Formation of the HEP Software Foundation (HSF) in 2015

• Provides a common forum for software for HEP experiments

• Funded R&D efforts in common software in a number of countries

• Activity encouraged by the European Strategy

• “[…] vigorously pursue common, coordinated R&D efforts […], to 
develop software […] that exploit the recent advances in information 
technology and data science […]”

• Common projects can aid software maintainability

• More likely to have a pool of people available for maintenance

• Can also be challenging to fund in the long term once beyond the R&D 
stage

23

http://hepsoftwarefoundation.org/
http://hepsoftwarefoundation.org/


Examples of Software Institutes
24

• IRIS-HEP, NSF, 2018

• Analysis systems, innovative algorithms, 
DOMA, training

• ErUM-DATA, Helmholtz Institute, 
Germany

• Heterogeneous computing and 
virtualized environments, machine 
learning for reconstruction and 
simulation 

• EP R&D, CERN, Switzerland, 2020

• Turnkey software systems, faster 
simulation, track and calo 
reconstruction, efficient analysis 

• HEP-CCE, DOE, USA, 2019

• Portable Parallelization Strategies, I/O 
Strategy on HPC, Event generators 

• AIDAInnova, European 
Commission EU, 2021 

• Turnkey software, track reconstruction, 
particle flow, ML simulation 

• SWIFT-HEP STFC, 2021 and 
ExCALIBUR-HEP, 2020, UKRI UK

• Exascale data management, Event 
generators, detector simulation on 
GPUs, FPGA tracking for HLT 

Slide Credit: G. Stewart

https://iris-hep.org/
https://www.erum-data-idt.de/
https://ep-rnd.web.cern.ch/topic/software
https://www.anl.gov/hep-cce
https://aidainnova.web.cern.ch/
http://swift.hep.ac.uk/
https://excalibur.ac.uk/projects/excalibur-hep/
https://iris-hep.org/
https://www.erum-data-idt.de/
https://ep-rnd.web.cern.ch/topic/software
https://www.anl.gov/hep-cce
https://aidainnova.web.cern.ch/
http://swift.hep.ac.uk/
https://excalibur.ac.uk/projects/excalibur-hep/


Implementation of ACTS into sPHENIX Track Reconstruction 5

sPHENIX Object sPHENIX-ACTS Module ACTS Tool

ACTS info

Update

Call tool

ACTS result

Fig. 4 A flow chart demonstrating the sPHENIX-ACTS implementation. Objects within the sPHENIX framework carry raw
measurement information, such as the two-dimensional local position of the measured cluster. An sPHENIX-ACTS module
serves as a wrapper that interfaces with the ACTS tool, converting and updating the relevant sPHENIX object.

Fig. 5 The workflow for track reconstruction in sPHENIX is
shown. The workflow flows from top to bottom, starting with
clustering in each subsystem and finishing with reconstructed
tracks and vertices.
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Fig. 6 The ACTS seeding e�ciency as implemented in the
sPHENIX MVTX. The e�ciency is defined in the text.

the e�ciency of the cellular automaton seeding algo-
rithm, where the e�ciency is defined as the fraction
of truth tracks for which there is at least one recon-
structed seed within the azimuthal and pseudorapidity
ranges �� < 0.02 rad and �⌘ < 0.006, respectively.

These seeds are then connected to the silicon track
seeds with azimuthal and pseudorapidity matching cri-
teria. If more than one silicon seed is found to match
a TPC seed, the TPC seed is duplicated and a com-
bined full track seed is made for every matched silicon
seed. These assembled tracks are provided to the ACTS
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Fig. 7 The e�ciency of the cellular automaton seeding algo-
rithm as implemented in the sPHENIX TPC. The e�ciency
is defined in the text.

Kalman Filter track fitting tool. The ACTS fitter takes
the full track seed, the estimated track parameters from
the seed, and an initial vertex estimate to fit the tracks.
Examples of the current track fitting performance are
shown in Fig. 8 in simulated events where 100 pions
are thrown in the nominal sPHENIX acceptance. The
left panel shows the pT resolution, while the right panel
shows the ⌥ (1S) invariant mass resolution. Both meet
the requirements listed in Section 2 in these low mul-
tiplicity events. We have found that there is not a sig-
nificant degradation in physics performance compared
to previous sPHENIX track reconstruction implemen-
tations. Evaluation of the track reconstruction software
in central HIJING [12] events with 50 kHz pileup is on-
going. These events represent the highest occupancies
that sPHENIX will experience.

3.3 Track Reconstruction Timing

Another important computational performance test of
the ACTS track fitting package is the time spent per
track fit. The nominal computational speed goal is to
be able to run the track reconstruction in an average of
5 seconds or less per minimum bias event on the BNL

Software for Multiple Experiments
• Common packages have been used extensively by 

many experiments over many years including CLHEP, 
ROOT, Geant4, GAUDI

• For Run-3,  ALICE uses ALFA, framework developed 
with GSI (FAIR) as common integration platform for 
online/offline processing

• Online reconstruction using heterogeneous farm

• Enables parallel data processing

• DD4HEP is now used by CMS, LHCb among other 
experiments for the detector description

• ACTS has origins in ATLAS tracking software, but 
currently being explored by different experiments

• LHCb is splitting off Gaussino as experiment-
independent part of Gauss simulation framework (w. 
CERN SFT/FCC)

• Can save resources by non re-inventing the wheel

25

Figure 3. CMS detector model for 2021 built with DD4hep

6 Migration Challenges

The migration presented many challenges. In the evaluation phase, CMS developed a com-
prehensive requirements document that was discussed with the DD4hep and ROOT develop-
ment teams to identify missing features and capabilities. One conclusion of these discussions
was that DD4hep lacked several key features required by CMS. First, CMS required support
for three special shapes: two versions of truncated tubes and a trapezoid combined with a
cylinder. Second, CMSSW required support for Geant4 [5] version 10.4. Third, support for
two di↵erent unit conventions was needed: the Geant4 convention where a millimeter equals
1, and the ROOT convention where a centimeter equals 1. Fourth, the ROOT "TGeo" geom-
etry classes used by DD4hep were not thread-safe. Fifth, CMS uses left-handed coordinate
systems for representing sub-detectors that have two mirror-image sides, but DD4hep did not
support left-handed coordinate systems. Sixth, CMSSW needs to build both dynamic and
static versions of DD4hep libraries, but DD4hep could not be built as a static library.

The solutions in all these cases were that DD4hep was enhanced to support the features
needed by CMS. The DD4hep developers made several of the enhancements, but in some
cases, the issue lay in the underlying ROOT architecture, and in these cases the DD4hep and
ROOT development teams worked together to implement the enhancements. The result was
that both DD4hep and ROOT were improved.

Further challenges were overcome by CMS developers. CMS uses DD4hep as a mediator
between its DD primitives stored in XML files and the simulation and reconstruction appli-
cations. CMS needed to develop a thin layer to handle communication between DD4hep
and CMSSW. CMS required a hierarchical querying and filtering mechanism for navigating
through detector volumes based upon special parameters defined in the XML files, and this
code had to be developed as an extension to the basic DD4hep detector representation. Ad-
ditionally, CMS code was needed to define geometric volumes that act as sensitive detectors
and to set CMS-specific restricted values used in simulating particle interactions with mate-
rials. The old CMS DD allowed reference to undefined geometric objects in XML files as

5
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Python for Analysis

• Ongoing boom in the field of data 
science

• Python has become the language of 
choice for data science applications

• Huge community has developed well-
documented tools

• numpy, matplotlib, pytorch, 
tensorflow, etc

• Balanced against our own designed-to-
purpose and customized tools, in 
particular, ROOT

• Python is becoming increasing 
popular for analysis especially amongst 
the younger members of our 
community
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Analysis Ecosystem (singular!)

• Python is widely viewed as the Analysis Language going forward  
• just started 5 years ago, but now lots of progress (Scikit-HEP, PyHEP, much 

improved “import ROOT”, …) 
• existence proofs of “end-to-end” analyses that use Scikit-HEP tools 

(good to show completeness, but not an end-goal in itself) 
• Other languages interesting (Julia) but not expected to break through (yet?)

[J. Pivarski]

• Moving beyond “X vs ROOT” - should aim for a single, interoperable ecosystem 
of analysis tools. Analyzers should be able to mix & match freely  

• Example: RDF <> Awkward-Array bridge, Stat. Workspace JSON, …

Analysis Ecosystem (singular!)

• Moving beyond “X vs ROOT” - should aim for a single, interoperable ecosystem 
of analysis tools. Analyzers should be able to mix & match freely  

• Example: RDF <> Awkward-Array bridge, Stat. Workspace JSON, …

Analysis Ecosystem (singular!)

J. Pivarski



Conclusion

• A taster of current and future challenges and opportunities in software and 
computing

• A hadron collider would result in significant computational challenges

• Also challenges for electron colliders (precision) and muon colliders (beam 
background)

• At the same time, the field has been evolving rapidly

• Many opportunities to think about doing things in a dramatically different 
way in the future

• No trigger!

• Even more machine learning/AI
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Back up
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Other Challenges
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Trigger

Reconstruction

Analysis

Generation

Simulation

Reconstruction

Data Simulated 
Data

Challenges anticipated at each step of the data processing and simulation 
chain

Image Credit

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
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Table 2: Projected event sizes for pileup levels of 140 and 200 of different tiers, compressed.

Event size [MB]Tier 200 PU 140 PU
RAW 5.9 4.3
AOD 2 1.4
MiniAOD 0.25 0.18
NanoAOD 0.004 0.004

Table 3: RAW event size for the individual CMS detectors [14], for pileup 140 and 200. A reduction of 30% from
RAW data compression is assumed, based on Run 2 experience as well as Run 3 and HL-LHC simulations. RAW
event size for offline is to be further reduced before the start of Run 4 as a result of better understanding of the
new detectors, for example, HGCAL [39]. For reference, the projected RAW event size at 200 pileup considered
in 2020 was 6.5 MB.

Offline RAW event size [MB]Detector 200 PU 140 PU
Inner tracker (Pixel) 1.44 1.01
Outer tracker (Strip) 1.16 0.81
MTD 0.68 0.48
ECAL Barrel 0.60 0.42
HCAL 0.33 0.33
HGCAL 3.20 2.25
Muon system 0.75 0.53
L1 trigger 0.26 0.26
Total uncompressed 8.42 6.09
Total compressed (30% reduction) 5.90 4.26

the tracker clusters are produced, the barycenter and size are calculated, and only those values are stored in the
RAW0 events instead of the full RAW event. This technique has not been put yet in production for proton-proton
collisions and requires studies of potential non-trivial effects. A careful validation of the final physics output will
have to be carried out inspired by the one done for the heavy ion data. This approach shows great promise, with
a reduction of up to about 15% of the whole RAW event, which potentially could be achieved for proton-proton
collisions in the HL-LHC era (cf. Table 4, row 1).

ROOT is the software technology chosen for the persistency of event data. The evolution of the present ROOT
columnar format, TTree, into the new RNtuple aims to combine improved compression algorithms with a more
compression-friendly data layout. Initial tests by the ROOT team hint to a potential size reduction of 20% for
columnar datasets featuring at least several tens of columns holding collections, e.g. properties of certain particles
such as electrons or muons. The usage of RNtuple will have a negligible effect on the size of RAW datasets, given
the way in which RAW data is stored, i.e. in a single column where a single object is streamed per row (cf. Table 4,
row 2). Reductions in the CPU cost of I/O are also expected by the targeted use of CPU-lightweight compression
algorithms for often-read columns or for columns where the compression factor does not suffer much from faster
compression [41]. However, we believe it is early to provide a quantitative estimate of such gains. CMS is already
working, in collaboration with the ROOT team, to integrate the existing RNtuple with CMSSW with the aim to
write NanoAOD datasets directly in the new format [42]. Such integration work will have to be extended in the
future once more data formats can be handled by the new columnar storage.

The largest possible adoption of slim data analysis formats, MiniAOD and NanoAOD, is a strategy to reduce
storage needs already during Run 3 and a requirement for the successful analysis of data in the HL-LHC era.
The objective of CMS is to have half of the analyses adopting NanoAOD at the end of Run 3, with the other
half relying on MiniAOD, or for a very limited number of exceptions on aggressively skimmed AOD or perhaps
RECO samples. The migration of analyses to NanoAOD began already at the end of Run 2. This activity does not
require additional R&D and is already quite advanced. The percentage of analyses which have adopted NanoAOD
is currently 30% (see appendix B). We will consider in the rest of this document, which focuses on Run 4 and Run
5, the objective of having 50% of the analyses relying on NanoAOD as having been achieved by the end of Run 3.

8

Source

Figure 2: CMS transfers and remote reads during the last five years, including transfers within the same site, e.g.
tape to disk at Tier-1’s. The network usage is under control and needs to be closely monitored during Run 3. Data
from WLCG transfer monitoring [56].

7 CPU
The increased granularity of the upgraded CMS detector as well as the instantaneous luminosity delivered by the
HL-LHC will make the recorded events significantly more complex than the ones recorded during Run 3. Such
complexity and the higher physics accuracy required in the simulation have a direct impact on the CPU needed to
process and simulate the data. In this section we review the strategy of CMS to reduce the projected CPU needs
for Phase-2, which focuses on the areas of event reconstruction (currently accountable for the largest share of
projected CPU needs), simulation, and generation (see Table 6).

Table 6: Current processing times per event of the main steps of the CMS chain. No reduction due to R&D work
is included.

Time/evt [HS06s]Processing Step 200 PU 140 PU
Gen+Sim 1900
Digi+PU mix+Reco 5100 3200

The descriptions of these corresponding R&D lines, projected reductions in resource needs, details, and associated
risks are summarized in Table 7.

7.1 Reconstruction
Since Run 1, we have striven continuously to improve the performance of our software, guided by effective perfor-
mance monitoring tools and infrastructure embedded in the development and integration process from the earliest
stages [61, 62]. The core libraries and tools used to build our applications and the foundation libraries they rely
on are kept at the bleeding edge. This includes compilers and optimization flags, memory allocators, mathemat-
ical libraries [63], and threading runtimes. In addition, we plan to continue applying incremental optimizations
and modernizations to the code and algorithms, causing marginal to no impact on the final physics quality but
tangible software performance increases. Based on experience [64] in the reconstruction code development since
startup and continuing improvements of HL-LHC reconstruction software in the recent several years, 10%-per-year
speedup can be anticipated until the beginning of Run 4 (see Table 7, row 1).

With 200 pileup collisions in addition to the hard scattering, the reconstruction time per event is driven by tracking,
which represents about 45% of the total reconstruction time. The strategy of CMS to reduce tracking computing
costs is twofold. The first step is the cost-guided optimization of the cut thresholds of critical quantities for tracking.
Examples of such thresholds are the displacement of tracks or their transverse momentum. This kind of tuning will
also benefit the reconstruction downstream, e.g. Particle Flow [65], as well as event sizes, reducing the multiplicity
of charged particles considered. The new cuts will have to be validated thoroughly and adapted in function of their
impact on physics, e.g. in the B sector (see Table 7, row 2). It should be noted that, at the time of writing, the
minimum value of transverse momentum of tracks reconstructed is 200 MeV/c. The second step is the usage of
a vectorized and parallelized implementation of the combinatorial Kalman filter based track trajectory building
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https://cds.cern.ch/record/2815292/files/NOTE2022_008.pdf
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ATLAS Upgrades
31

3

ATLAS Upgrade Overview

Not covered

in this talk.
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Phase 2 Upgrade Under a 

5

Level 1 Trigger TDR 

• New track trigger at 40 MHz 

• Particle flow selection 

• 750 kHz L1 output 

• 40 MHz data scouting (real time analysis) 

• L1T latency: 12.5 sμ

DAQ & High Level Trigger (HLT) TDR 

• Full optical readout 

• Heterogeneous architecture 

• 60 TB/s event throughput 

• 7.5 kHz HLT output

Barrel Calorimeter TDR 

• ECAL crystal granularity readout at 40 MHz 

with precise timing for e/gamma at 30 GeV 

• New ECAL and HCAL back-end boards 

Muon System TDR 

• New Drift Tubes (DTs) & Cathode Strip 

Chambers (CSCs) FE/BE readout 

• New Resistive Plate Chambers (RPCs) 

BE electronics 

• New Gas Electron Multipliers (GEMs) 

& new iRPCs 1.6 < | | < 2.4 

• Extended coverage to | |~ 3 

η
η

New High-Granularity Endcap 
Calorimeter (HGCAL) TDR 

• Imaging calorimeter 

• Si, Scint+SiPM in Pb/Cu-W/SS 

• 3D showers and precise timing

Beam Radiation Instrumentation and Luminosity (BRIL) TDR 

• Target 1% offline (2% online) luminosity uncertainty

Replaced Tracker TDR 

• Increased granularity 

• Extended coverage to | |~ 4 

• Designed for tracking in L1T

η

New MIP timing detector (MTD) TDR 

• Barrel: LYSO crystals + SiPMs 

• Endcap: Low-gain avalanche diodes 

• 30 ps timing resolution 

• Full coverage to | |~ 3η


