

First results for a compact ICS source based on the electron gun at CTF2

Vlad Musat, Andrea Latina

11/07/2023

Contents

- 1. Introduction
- 2. Optimisation of the CTF2 gun
- 3. Tolerance study
- 4. Conclusions

CTF2 gun

- S-band standing wave 1.5 cell RF-gun intended for the new AWAKE injector.
- Prototype constructed by INFN-Frascati and commissioned at CTF2.
- Fabricated with brazing free technology [1].

Gun parameter	Value
1.5 cell	S-band SW
F _{res} [GHz]	2.99855
Q ₀	13,800
E _{acc} [MV/m]	120
Rep rate [Hz]	10
Working temperature	30 [°C]

[1] D. Alesini, et al. "Design, Realization, and High Power Test of High Gradient, High Repetition Rate Brazing-Free S-Band Photogun", Physical Review Accelerators and Beams, vol. 21, n. 11, November 2018

Vlad Musat | CLIC beam physics meeting

Inverse Compton scattering

= The scattering of a low energy photon from an EM field to a high-energy photon (X-ray or gamma ray) during the interaction with a charged particle.

Optimisation of CTF2 injector for CBS experiment

- A model of the CTF2 gun was implemented and ۲ optimised in RFT. The model comprised the cathode, gun, and solenoid.
- Optimisation goal: allow for the *maximum flux* at the ٠ gun exit and *minimal losses* in the beam pipe.

0.15

0.1

0.05

0

10.6mm/c

•

Beam focusing at the IP

Options for focusing:

- 1. Quadrupoles
- 2. Focusing solenoid
- 3. Focusing solenoid + Quadrupoles
- 4. Gun Solenoid

Focusing with the gun solenoid:

- No other focusing required.
- Get the smallest beam size at the IP
- Optimum solution for electron beam under space charge effects.

Х

Х

X

 \checkmark

Interaction set-up

Set-up for Cu / CsTe cathodes

- Differences in the scattered photon parameters were mainly attributed to the lasers used for injection / interaction.
- Current set-up has a Copper cathode.
- PHAROS: large pulse energy & small pulse length
 → very good for single bunch interaction.
- PHIN can drive multi-bunch beams \rightarrow comparable total flux (ph/s) for both Cu and CsTe
- PHIN can also be used to feed a Fabry-Perot cavity, to increase the total flux by 5 orders of magnitude.

Parameter	Copper	Cs ₂ Te
Injection laser	PHAROS	PHIN
IP laser	PHAROS	PHIN
Wavelength (on cathode)	1030 nm (257 nm)	1047 nm (262 nm)
Photon energy	4.824 eV	4.732 eV
Work function	4.7 eV	4.31 eV
Pulse energy	2 mJ	10 µJ
Burst energy (max)	2 mJ	1 J
Pulse length	0.17 ps	4 ps
Quantum efficiency	$\sim 9 \times 10^{-4}$	~ 0.1

Evolution of beam parameters with Cu cathode

Setup	Unit	100 pC	200 pC	300 pC	400 pC
Gun phase (RFT)	Deg	93.47	93.96	93.96	93.59
Gun gradient	MV/m	120	120	120	120
Max B field	Т	0.2899	0.2895	0.2896	0.2892
Laser RMS size	mm	0.483	0.615	0.879	0.553
Distance cathode to IP	m	0.936	0.939	0.933	0.937
Parameter	Unit	100 pC	200 pC	300 pC	400 pC
at IP					
at IP Beam energy	MeV	5.728	5.733	5.723	5.722
at IP Beam energy ϵ_x^n	MeV mm mrad	5.728 1.57	5.733 3.32	5.723 5.03	5.722 8.38
at IP Beam energy ϵ_x^n $\sigma_{el, \max}$	MeV mm mrad mm	5.728 1.57 1.86	5.733 3.32 2.27	5.723 5.03 2.52	5.722 8.38 2.84
at IP Beam energy ϵ_x^n $\sigma_{el, \max}$ $\sigma_{x,el}$	MeV mm mrad mm µm	5.728 1.57 1.86 60	5.733 3.32 2.27 105	5.723 5.03 2.52 142	5.722 8.38 2.84 202
at IP Beam energy ϵ_x^n $\sigma_{el, \max}$ $\sigma_{x,el}^*$ $\sigma_{z,el}^*$	MeV mm mrad mm µm ps	5.728 1.57 1.86 60 0.70	5.733 3.32 2.27 105 0.84	5.723 5.03 2.52 142 0.92	5.722 8.38 2.84 202 1.10
at IPBeam energy ϵ_x^n $\sigma_{el, \max}$ $\sigma_{x,el}^*$ $\sigma_{z,el}^*$ Photons per bunch	MeV mm mrad mm µm ps Ph/bx	5.728 1.57 1.86 60 0.70 13,000	5.733 3.32 2.27 105 0.84 16,000	5.723 5.03 2.52 142 0.92 15,000	5.722 8.38 2.84 202 1.10 18,000
at IPBeam energy ϵ_x^n $\sigma_{el, \max}$ $\sigma_{x,el}^*$ $\sigma_{z,el}^*$ Photons per bunchTotal flux	MeV mm mrad mm µm ps Ph/bx Ph/bs	5.728 1.57 1.86 60 0.70 13,000 130,000	5.733 3.32 2.27 105 0.84 16,000 160,000	5.723 5.03 2.52 142 0.92 15,000 150,000	5.722 8.38 2.84 202 1.10 18,000 180,000

Rep rate = 10 Hz

Evolution of beam parameters with Cu cathode

High number of photons generated per bunch.

26 July 2023

- 1. PHAROS injection allows for single bunch operation only.
- 2. Set limit on flux.
- 3. Consider the placement of a CsTe cathode.

Setup	Unit	100 pC	200 pC	300 pC	400 pC
Gun phase (RFT)	Deg	93.47	93.96	93.96	93.59
Gun gradient	MV/m	120	120	120	120
Max B field	т	0.2899	0.2895	0.2896	0.2892
Laser RMS size	mm	0.483	0.615	0.879	0.553
Distance cathode to IP	m	0.936	0.939	0.933	0.937
Parameter	Unit	100 pC	200 pC	300 pC	400 pC
at IP	Onic	100 po	200 00	000 po	100 pc
at IP Beam energy	MeV	5.728	5.733	5.723	5.722
at IP Beam energy ϵ_x^n	MeV mm mrad	5.728 1.57	5.733 3.32	5.723 5.03	5.722 8.38
at IP Beam energy ϵ_x^n $\sigma_{el, \max}$	MeV mm mrad mm	5.728 1.57 1.86	5.733 3.32 2.27	5.723 5.03 2.52	5.722 8.38 2.84
at IP Beam energy ϵ_x^n $\sigma_{el, \max}$ $\sigma_{x,el}^*$	MeV mm mrad mm μm	5.728 1.57 1.86 60	5.733 3.32 2.27 105	5.723 5.03 2.52 142	5.722 8.38 2.84 202
at IPBeam energy ϵ_x^n $\sigma_{el, \max}$ $\sigma_{x,el}^*$ $\sigma_{z,el}^*$	MeV mm mrad mm µm ps	5.728 1.57 1.86 60 0.70	5.733 3.32 2.27 105 0.84	5.723 5.03 2.52 142 0.92	5.722 8.38 2.84 202 1.10
at IPBeam energy ϵ_x^n $\sigma_{el, \max}$ $\sigma_{x,el}^*$ $\sigma_{z,el}^*$ Photons per bunch	MeV mm mrad mm µm ps Ph/bx	5.728 1.57 1.86 60 0.70 13,000	5.733 3.32 2.27 105 0.84 16,000	5.723 5.03 2.52 142 0.92 15,000	5.722 8.38 2.84 202 1.10 18,000

Rep rate = 10 Hz

Evolution of beam parameters with Cs₂Te cathode

1

Setup	Unit	100 pC	200 pC	300 pC	400 pC
Gun phase (RFT)	Deg	120.00	119.00	118.89	119.85
Gun gradient	MV/m	120	120	120	120
Max B field	т	0.3035	0.3028	0.3023	0.3027
Laser RMS size	mm	0.100	0.143	0.189	0.229
Distance cathode to IP	m	0.920	0.923	0.926	0.922

Parameter at IP	Unit	100 pC	200 pC	300 pC	400 pC
Beam energy	MeV	5.90	5.90	5.90	5.90
ϵ_{χ}^{n}	mm mrad	1.55	3.14	4.55	5.75
$\sigma_{el, \max}$	mm	1.77	2.32	2.57	2.72
$\sigma^*_{x,el}$	μm	48.5	76.0	100	121
$\sigma^*_{z,el}$	ps	3.06	3.12	3.17	3.26
Photons per bunch	Ph/bx	158	191	210	235
Total flux	Ph/s	126,400	152,800	168,000	188,000
	40.11-	· · · · · · · · · · · · · · · · · · ·			

Rep rate = $10 \text{ Hz} \times 80 \text{ bunches/train}$

Evolution of beam parameters with Cs₂Te cathode

Small number of photons scattered per bunch.

- 1. CsTe cathode allows for multi-bunch operation.
- 2. Over 1e5 further increase in flux by installing a burst-mode operated Fabry-Perot cavity.
- 3. Would constitute the first test of flux enhancement with a burst mode FPC in a linac-based source.
- 4. Great potential for R&D in linac-based CBS sources.

Setup	Unit	100 pC	200 pC	300 pC	400 pC
Gun phase (RFT)	Deg	120.00	119.00	118.89	119.85
Gun gradient	MV/m	120	120	120	120
Max B field	т	0.3035	0.3028	0.3023	0.3027
Laser RMS size	mm	0.100	0.143	0.189	0.229
Distance cathode to IP	m	0.920	0.923	0.926	0.922

Parameter at IP	Unit	100 pC	200 pC	300 pC	400 pC
Beam energy	MeV	5.90	5.90	5.90	5.90
ϵ_{χ}^{n}	mm mrad	1.55	3.14	4.55	5.75
$\sigma_{el,\mathrm{max}}$	mm	1.77	2.32	2.57	2.72
$\sigma^*_{x,el}$	μm	48.5	76.0	100	121
$\sigma^*_{z,el}$	ps	3.06	3.12	3.17	3.26
Photons per bunch	Ph/bx	158	191	210	235
Total flux	Ph/s	126,400	152,800	168,000	188,000

Rep rate = $10 \text{ Hz} \times 80 \text{ bunches/train}$

CTF2: Copper vs Cs₂Te

Parameter	Unit	CTF2 + PHAROS + Copper	CTF2 + Cs ₂ Te + PHIN
		Single bunch	Multi-bunch
Compton edge	keV	0.57	0.63
X-ray pulse duration	ps	0.7	5
Ph/bunch		2×10^4	2×10^{2}
Bunches		1	80
Total flux	ph/s	$\mathbf{1.8\times 10^5}$	$1.9 imes 10^5$
Parameter	U	nit CTF2 + PHIN -	Cs ₂ Te + FPC
Bunches/train			80
Max Effective g	ain		60
Max Effective energy	J		0.5
Total flux	р	h/s 9.	$5 imes 10^9$

CTF2: Copper vs Cs₂Te

Parameter	Unit	CTF2 + PHAROS + Copper	CTF2 + Cs ₂ Te + PHIN
		Single bunch	Multi-bunch
Compton edge	keV	0.57	0.63
X-ray pulse duration	ps	0.7	5
Ph/bunch		2×10^4	2×10^{2}
Bunches		1	80
Total flux	ph/s	$1.8 imes 10^5$	$1.9 imes 10^5$
Parameter		Unit CTF2 + PHIN	+ Cs ₂ Te + FPC
Bunches/train			80
Max Effective ga	ain		60
Max Effective energy		J	0.5
Total flux		ph/s 9	5×10^9

26 July 2023

Tolerance study (Cathode)

- Determine the impact of offsets in injector parameters on the total flux from CBS.
- Tolerance study done for 200 pC with Copper cathode.

Tolerance study (RF Gun)

- The RF gradient controls the beam energy at the injector exit.
- Difference with respect to nominal energy leads to poor focusing → flux is most sensitive to the gun gradient.

18000

Tolerance study (Gun Solenoid)

 Due to the strong focusing involved, the CBS photon flux is sensitive to offsets of the gun solenoid.

Tolerance study (IP region)

Vlad Musat | CLIC beam physics meeting

Tolerance study CTF2 (Copper, 200 pC)

Tolerance parameter	lerance parameter Tolerance Cu (200 pC)					
	Cathode					
Bunch charge	30 pC	Negligible				
Laser pulse length	Negligible ($\pm 10\%$)	Negligible				
Laser spot size	90 μm (15% <i>σ</i> _x)	62 μm (27% σ _x)				
Laser spot position	20 μm (3.3% σ _x)	26 μm (11.3% σ _x)				
RF gun						
RF gradient	0.3 MV/m (0.25%)	[+ 0.6 / - 0.4] MV/m (0.4%)				
RF phase	1°	10.6°				
	Gun solenoid					
Max solenoid field	0.9 mT (3‰)	2.8 mT (9‰)				
XY solenoid offset	6 µm	8 µm				
Pitch solenoid offset	20 µrad	30 µrad				
Yaw solenoid offset	20 µrad	30 µrad				
	IP region					
Z scan around IP	30 mm	20 mm				
Interaction time	4.5 ps	6 ps				
Laser transverse offset	23 µm (92% $\sigma^*_{ m laser}$)	20 μ m (80% σ^*_{laser})				

Most significant tolerances:

- 1. RF gradient
- 2. Max solenoid B field
- 3. Solenoid offset
- Laser transverse offset is dependent on the laser sigma spot size at the IP (set to 25 μ m).
- Tolerance was computed with respect to a 20% loss in flux.
- The interaction time scan was performed given a crossing angle of 2°

Least significant tolerances:

- 1. Laser pulse length
- 2. RF phase
- 3. Bunch charge

- CTF2 could serve as a test bench for soft X-ray generation with CBS.
- Installing a CsTe cathode would allow for the generation of high intensity bunches and significant R&D in burst-mode operated Fabry-Perot cavities.
- The distance from cathode to IP of ~ 1 m would make the CTF2 source the most compact known ICS source.
- A measurement of the beam size at the IP would be needed to determine the minimum spot size achievable from the gun.

home.cern

Performance of CERN CBS sources by optical enhancement cavities

Parameter	Unit	CTF2 + PHAROS + Copper	CTF2 + Cs ₂ Te + One Five	CLEAR + CALIFES	CLEAR + PHAROS	CLEAR + One Five
		Single bunch	Multi- bunch	Multi- bunch	Single bunch	Multi- bunch
Compton edge	keV	0.89	0.88	740	750	740
Electron energy	MeV	7	7	200	200	200
X-ray pulse duration	ps	0.7	6	5	0.7	6
Ph/bunch		5×10^4	2×10^{2}	3×10^{3}	3×10^{5}	2×10^3
Bunches		1	80	30	1	150
Total flux	Ph/s	$5 imes 10^5$	2×10^5	9×10^5	3×10^{6}	3×10^5

Parameter	Unit	CTF2 + OneFive + Cs ₂ Te + FPC	CLEAR + OneFive + FPC
Bunches/train		80	150
Max Effective gain		60	107
Max Effective energy	J	0.5	0.9
Total flux	ph/s	1×10^{10} @ 890 eV	3×10^{10} @ 740 keV

- Without Fabry-Perot cavity (FPC), CBS experiment will have low flux.
- FPC requires EO comb as front-end of laser system to be effective.

Water window experiments

- The 7 MeV electron beam provided by the injector can generate high • intensity X-rays in the water window region.
- Compact set-up with up-to-date accelerator technology. •

Vlad Musat | CLIC beam physics meeting

10²⁰

ALS (BM)

BESSY II (U)

ALS (U)

ALBA (BM)

BESSY II (BM)

Liquid jet LP [79]

Liquid jet LP [42]

Measurables

Semiconductor based detectors are typically used for low energy X-rays.

Method	Detector	Requirements	Uses
Photon flux	Micro-channel plate, silicon drift detector	 High count rate (over 1e4 photons per bunch) Fast response time 	Experimental check of simulated fluxFlux stability
Spectroscopy	HP Germanium detector, silicon drift detectors	 Good energy resolution (best from Germanium) 	Reproduction of spectrumX-ray fluorescence (XRF)
Imaging	2D X-ray detectors	High count rateSmall pixel sizeGood spatial resolution	 Imaging of samples

26 July 2023