
Louie Dartmoor Corpe (LPC Clermont)

15 Jan 2024

Scientific Computing Basics
What you'll need to make CHACAL a success

• It's a pleasure to give you a warm welcome to CHACAL24

• The objective is to give you a crash course in advanced computing methods used in
particle physics, specifically collider physics at the LHC.

• We'll cover three broad categories:

• Monte Carlo simulation, a cornerstone of data analysis at the LHC

• Machine Learning, one of the most powerful tools at our disposal for data analysis

• Quantum Computing and alternative computing architectures, with an eye to the future

• The aim is that at the end of this school, you come out with practical skills to help you
make use of these technologies in your future research... while forming links and strong
cohorts along the way to help you build your network.

Welcome!

2

• You'll be getting lectures (morning) + hands-on sessions (afternoon)

• These will often be led by world experts... make the most of it!

• Ask questions, be proactive, and have fun

• Always be respectful and patient with each
other and the other lecturers

• Follow the CERN code of conduct* at all times:
be excellent to each other

• Don't be shy: there is no such thing
as a dumb question, and we have plenty
of time for questions and discussion

What we need from you

3

* https://cds.cern.ch/record/2240689/files/BrochureCodeofConductEN.pdf?

https://cds.cern.ch/record/2240689/files/BrochureCodeofConductEN.pdf?

• Almost all the computing done at the LHC is done using custom software,
developed using open-source tools and platforms

• That custom software is usually in three main languages:

• C++ (for heavy operations that need to happen fast and where we
need precise control of the objects and classes we create. Usually
more complicated to write, but executes fast because it's compiled.)

• Python (for data analysis, and operations where time and memory are
not an issue... easier to write but usually much slower than C++ as it's
not compiled).

• Bash (for navigating on the terminal, book-keeping, automation, etc.)

What tools do we need?

4

• There are also some other tools which you will need to know about this
week:

• Jupyter notebooks: provide an interactive and visual way to write
python code. A lot of the tutorials will be done using such notebooks,
either locally or via Google Collab (if you don't have one already, now is a
good time to make a google account so you can follow those tutorials)

• Docker containers: aka docker images. Containers are a way of taking
a snapshot of a whole software stack (operating system and all), which
can be run from within another machine. That way, instead of trying (and
failing) to install a complicated programme with all its correct
dependencies, you can download the docker container and just work
inside that. Used heavily in industry, for example in web commerce: if
there are more clients buying on your website, you can deploy resources
eg on Amazon Webserver instantly by just sending the container with the
website backend.

What tools do we need?

5

• Today I will review (in this order).

• Brief introduction to Docker containers

• Bash and the basics of using a terminal

• Python: review of the basics, and the most common libraries we will need: numpy,
matplotlib, pandas... as well as Jupyter notebooks

• This afternoon we will get our hands dirty with some of these skills in the tutorial.
But if you have a laptop with you already, feel free to follow along!

• Tomorrow, you'll learn all about C++ with Caterina.

What will we cover today?

6

Let's get started!

7

Docker
Software containers

8

• As we will see in the next chapter, we tend to use unix-based
environments, especially to interact with the terminal.
Linux and Mac are unix-based, Windows is not.

• That means that Windows users may struggle to follow the next section
"Bash and the terminal"... unless they use a docker container!

• We are staring with Docker to give a chance to people with Windows
machines to install docker and load a simple linux-based image so they
can follow along !

Why are we starting with Docker?

9

• Docker is an open platform which allows you to open and run software containers.

• Ok, but what is a software container???

• A software container is a standard unit of software that packages up code and
all its dependencies so the application runs quickly and reliably from one
computing environment to another.

• For example, so you can run a unix terminal tutorial on a windows machine ;)

• In English: it's a box which has a particular programme and all its dependencies
(down to the operating system) compiled and runnable from any operating system

• That means you can have a container for, for example "Rivet installed on linux" with
versions x.y.z. You can open that container on any machine (windows, Mac, Fedora...)
and it will be "as if" you were running on the linux machine with Rivet installed.

What is docker?

10

• First, you need a docker engine:
see https://docs.docker.com/
engine/install/

• Suggest to use "Docker
Desktop"

• There are detailed installation
instructions for all platforms

• Probably best not to overload
the wifi by all installing at once:
Windows users please go first!

How to install it?

11

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

• Technically speaking:

• A software image is the bundle of software and dependencies.
You can see a list of available images at Docker hub
https://hub.docker.com/

• A software container is the instance of an image which you are running via
docker.

• You can have multiple containers running with the same image.

• In practice we use these terms interchangeably

Container versus image

12

https://hub.docker.com/

• We want to pick a simple image, for example
with Rivet installed on ubuntu

• Thankfully there is one:
https://hub.docker.com/r/hepstore/rivet

• In a terminal:
docker pull hepstore/rivet
will download the image

• In docker desktop: search and pull

How to use it?

13

https://hub.docker.com/r/hepstore/rivet

• From the terminal:

• You can then "enter" the image docker run -it hepstore/rivet
and you can map to your local directories to access your local files and write new files out

• docker run -it -v $PWD/myfiles:/work/myfiles hepstore/rivet

How to run it?

14

Run the container in interactive mode Mapping this local folder to
a folder in the container
(-v for volume mount)

Using this image

• From the docker desktop:

• You can easily "run" docker containers from the Desktop app, but these tend to close immediately
because we are not asking them to do anything particular.

• So we can't easily run a docker container interactively via the Docker desktop unless you start it
from the command line.

• If anyone knows how to die it without passing via the command line, let me know!

How to run it?

15

• Now your command line
is no longer the one from
your original machine
(Windows, Mac, Linux..)

• But it's as if you were in a
linux machine with rivet
and all dependencies
installed!

• Cool 😎

Once you are in...

16

Rivet available

OS is linux ... on my
Mac!

• Docker images encapsulate a software and all it's dependencies (including the OS)

• We can run download and run images in containers so that we can use that software without
worrying about how to install it on our machine.

• Almost any software can run on any platform

• We learnt how to search for images on Docker Hub

• We learnt how to download those images (= pull them from the hub)

• We learnt how to execute them interactively so that we can be "inside" the container

Recap on docker

17

Bash
Or how I learned to stop
worrying and love the terminal

18

• Technically speaking...

• A console is a piece of physical hardware that allows direct
interaction with a computer system. Includes things like
keyboard and monitor...

• A terminal is a device or programme that provides an interface
to interact with the computer system. In the past this was a
physical device of some sort, these days they are software-
based.

• A shell is a command-line textual interpreter that allows us to
send and execute commands and view the output. There are
lots of different kinds of shell, the most common being Bash on
unix-like systems (Linux, Mac), Command Prompt on Windows.

• A command line refers to the place where you write down the
commands which are used to interact with the computer.

• In practice all these terms are usually used interchangeably!

Terminals, consoles, shells...

19

Terminal

Shell

Console

Command line

Operating systems, or unix vs windows

• Windows uses a closed-source operating system. How it executes the commands we
run is not public information. It also means we don't have full control.

• In particle physics, we therefore opt for operating systems based on "unix", which are
open-source at least with regards to the command-line interface.

• Linux: the whole operating system is open source, uses bash.

• Max OS: the operating system is in general closed source, but the command line is
unix-like.

• Since bash (or similar) is the default on unix-like systems, this is what we will use.
Windows uses Command Prompt or PowerShell, which are not widely used in particle
physics. So we won't cover those.

Your first command

• echo is a command which just prints back the argument you specified.

• Your computer's file system is organised as a tree of

• Directories (=folders)

• Files (.txt , .cc, .py, .jpg ...)

• Some files (like text files, csv, code...) are
human readable and can be edited directly in
a text editor

• Other files are in binary formats
(compiled code, root files, images...)
that need to be decoded to be viewed.

Unix file structure

22

• When you log into your terminal, you start in your
home/<username> directory

Basic navigation

23

• When you log into your terminal, you start in your
home/<username> directory

• Your location is given by a path, here:
/home/sue

• you can check your current path at any time
by typing pwd (print working directory)

Basic navigation

24

• When you log into your terminal, you start in your
home/<username> directory

• Your location is given by a path, here:
/home/sue

• you can check your current path at any time
by typing pwd (print working directory)

• You can change your location using the cd
(change directory) command either by specifying
a relative path from your current location
cd Pictures/pets

Basic navigation

25

• When you log into your terminal, you start in your
home/<username> directory

• Your location is given by a path, here:
/home/sue

• you can check your current path at any time
by typing pwd (print working directory)

• You can change your location using the cd
(change directory) command either by specifying
a relative path from your current location
cd Pictures/pets

• or specifying an absolute path from the root
directory.
cd /root/home/fred/Desktop

Basic navigation

26

• When specifying a relative path, you can use two
dots ".." To indicate, "go back one directory
towards root". A single dot means "here".
cd ..

Basic navigation

27

• When specifying a relative path, you can use two
dots ".." To indicate, "go back one directory
towards root". A single dot means "here".
cd ..
cd ../sue/Pictures/downtown/../hawaii

Basic navigation

28

• When specifying a relative path, you can use two
dots ".." To indicate, "go back one directory
towards root". A single dot means "here".
cd ..
cd ../sue/Pictures/downtown/../hawaii

• To inspect the contents of a directory or get
information about a file, use the ls (list) command
ls
(or ls /home/sue/Pictures/hawaii)
> img01.jpg img02.jpg img03.jpg...

Basic navigation

29

• You may want to create new file structures

• mkdir (make directory). Use options -p if creating several nested directories at once
eg: mkdir -p /home/louie/path/to/my/project

• mv (move a directory or file). Format: mv <object to move> <where to move it to>
Eg mv chacal /home/louie/path/to/my/project/.
(what happens if mv chacal /home/louie/path/to/my/project2 ?)

• cp (copy a directory or file). Instead of updating the location, make a copy of a file or
directory in a new location. Use -r (recursive) if copying a directory.
eg cp -r /home/louie/path/to/my/project2 /home/louie/path/to/
my/project3

• rm (remove a directory or file). Permanently remove a file or directory. Use -r for
directories. USE WITH GREAT CAUTION, ALWAYS DOUBLE CHECK YOU ARE
REMOVING WHAT YOU THINK YOU ARE.

Creating and manipulating directories

30

• Inside your directories, you will have files.

• Text-based files are eg code, configuration files, simple data formats like
csv... these are usually designed to be written or edited by a human user.

• Binary files or custom formats, which can't be opened by a text editor
and need to be either decoded or opened with custom software. Human-
readable is generally not an efficient format to store data in. That's why
we designed more efficient formats, but which are no longer human-
readable. Examples are images, sound files, databases, root files,
compiled code...

• We'll focus on human-readable text files in the following.

Files

31

• > or >> (send or append). You can send or append something that would
otherwise be printed to your screen towards a file.
Eg echo "hello world" > file.txt

• ls -l (list, option "long") give info when the file was created, who created
it, its size, and permissions. Eg ls -t file.txt
> -rw-r--r-- 1 louiecorpe_cern2 staff 12 10 Jan 10:32
file.txt

• more or less (see "more" of the file, ie a preview of file contents). This
opens a basic interface to see what's in the file, which then disappears when
you exit. You cannot edit the file. Eg less file.txt

• cat (concatenate) allows you to print the contents of the file to your screen.
eg cat file.txt
eg cat file.txt > file2.txt

Common operations on text files

32

• You won't get very far editing files by appending from the command line!

• To modify or write code or other files, you'll need a text editor.

• There is an ancient and passionate argument between those who use vim and those who use
emacs as a their text editor.

• I will give you a VERY BRIEF overview of how to use each.

• I will try to be unbiased, but you will probably be able to tell which side of the argument I am on.

• In reality, there are better tools, like VisualStudio, which real computer programmers use.

• If one of the other is not installed, you can usually easily do so via command line, eg for Ubuntu
(Linux)
apt install vim or apt install emacs

• The exact command to use to install a package depends on your operating system

Text editors

33

• Open a new or existing file like so vim my file.txt

• By default you are in command mode. This allows you to type certain commands to do operations
like find and replace etc.

• By default, you navigate through the text via your keyboard.
In COMMAND mode, type ":set mouse=a" which means your cursor will go to where you click.

• To start editing text, put your cursor to where you want to modify text and type "i". You are now in
INSERT mode, and you can type and modify the text like in a "regular" text editor. When you are
done, hit esc to return to COMMAND mode.

• You can undo your last change using "u"

• To save your changes, in COMMAND mode do ":w" (write). To quit do ":q".

• You may be asking... why is it so complicated?
Vim becomes VERY powerful once you get the hang of it for rapid modifications to text.

Vim in a nutshell

34

Vim in a nutshell

35

• emacs is in some ways more intuitive but (for reasons which are more philosophical than
rational at this point) extremely frustrating for people who are used to vim.

• First, uninstall emacs and use vim instead

• Open a file as emacs file.txt. Beware this opens a new window (why is this the default?!).
You can get it to open directly in there terminal using emacs -nw file.txt

• Emacs then behaves more like a "normal" text editor, you can go ahead and start editing your
text freely. Emacs will regularly auto-save.

• Saving and quitting involve claw-like operations which emacs users pretend are perfectly
normal.

• Emacs also has a sort of COMMAND more, which you access via ctrl+x

• Once in COMMAND mode you can save by hitting ctrl+s, and close using ctrl+c

Emacs in a nutshell

36

Emacs in a nutshell

37

• In a terminal we frequently make use of environment variables to keep track of important
paths, locations of libraries and files and executables, and to store all manner of information.

• Type env to see all the environment variables defined in your terminal session.

• Some important ones like PATH and PYTHONPATH are telling bash or python where to find
executables or libraries.

• You can create a new environment variable like so export MYVAR="hello world"

• And you can access its value using ${MYVAR}, eg echo "${MYVAR}"

• Environment variables become very important for compilation and maintaining a self-
consistent set of packages. That's likely the main way you will use them this week.

Environment variables

38

• Sometimes, we will want to repeat a series of commands multiple times, for example, when
installing a software package.

• If we know a sequence of commands needs to be executed, and it's always the same, it
makes sense to just write them in a text file and get the shell to perform them one by one.

• Like the script of a theatre production - one line comes after the other!

• This is called scripting. We can make a new file "myscrip.sh", and tell it to do a certain
number of things, like change directories, create new files, execute various commands.

• Just write commands line by line as you would in the command line, then save the file.

• After, you can do "source myscript.sh" to execute them sequentially.

• In principle you can also have if-else blocks, loops and other logical operations, but this bash is
not a fun language to do these things in if you can avoid it. Logic should be reserved for your
C++ or python files unless you know what you are doing.

Scripting

39

• So after this part of the lecture you should know how to:

• Navigate a file structure

• Create new directories and files

• Copy or move files and directories around

• Open a file in a text editor (vim or emacs for example), make small
changes, save and quit.

• Define or modify environment variables and print their value

• Write a simple shell script

• We will practice these skills in the hands-on session this afternoon!

Review of the terminal

40

Python
And its various libraries...

41

This part is based heavily on Romain Madar's
"Introduction to Python for Data Analysis" course.
Find full materials here!
https://github.com/rmadar/lecture-python
And the Python Course PDF attached to indico. Python is a vast topic, I will only cover the

basics to get everyone to a minimal level!

https://github.com/rmadar/lecture-python

Jupyter notebooks

42

• Jupyter notebooks are used to create
interactive notebook documents that can
contain live code, equations, visualizations,
media and other computational outputs.

• The simplest way to install Jupyter is on
the command line via
pip install jupyter
https://jupyter.org/install

• You can also do it via Google Colab
https://colab.google/
that is how David's ML tutorials will be run

• Please create a Google account if you
don't have one already!

https://jupyter.org/install
https://colab.google/

• Python is a very popular coding language, which has many high quality
libraries for data analysis, plotting.

• That's why its used heavily in data science, machine learning and many
other domains

• Unlike C++, Python is not a compiled language.
That means it's easy to write but much slower to execute.

• Although some libraries like numpy use c++ under the hood so can be
rather fast!

• Python supports classes (you can do object-oriented programming)

• One of the most important things to note: logic in python is controlled using
indentation instead of brackets (like in C++)

What is python ?

43

• There are three type of numbers: int (integer),
float (floating point = decimal number) and
complex.

• The usual operations (+, -, *, /) are available.

• In addition, there is also:

• a**b (which means ab),

• a // b (divisor in integer division),

• a % b (remainder in integer division),

• We also have Booleans (True/False)

Basic types and operations - numbers
Section 1.2 of the PDF

44

• Strings allow to manipulate words,
sentence or even text with specific
methods.

• String are also python lists (see next
section) and list methods work as well

• The common and useful string
manipulations can be counting the
number of letters with
len(word)
or splitting a collection of words using
sentence.split(' ')

Basic types and operations - strings
Section 1.2 of the PDF

45

• There are four types of collection, which share several methods but differ from
various aspects:

• Lists, dictionaries, sets and tuples

• The most commonly used are the lists and dictionary.

• The specificy of the set is that it is unordered, while the specificity of the tuple is
that it cannot be modified. We won't discuss them much more than that.

Object collections
Section 1.3 of the PDF

46

• Lists are a list of objects with possibly
different types.

• One can search, loop, count with lists.
One can also add two lists or multiply a
list by an integer, which makes a
concatenation or a duplication (unlike for
numpy arrays which we will see later).

• Lists can also be indexed. One can
access the ith element with my_list[i] or
get a sub-list my_list[i:j]

Object collections - lists
Section 1.3 of the PDF

47

• Dictionaries are arrays of (key,
value) pairs. Each value can be
accessed via a unique key.

• The key must be a non-
modifiable object, in practice
string or integer.

• One can easily loop, search,
modify a given key value, or
even add a new key quite
easily.

Object collections - dictionaries
Section 1.3 of the PDF

48

Looping in python
Section 1.4 of the PDF

49

• Loops are at the core of
programming.

• There are two way of repeating a
instruction several times: the for loop
and the while loop.

• Several instructions are common to
both loops, such as

• continue (skip instruction after and
switch to the next element) or

• break (stop the loop)

Looping in python
Section 1.4 of the PDF

50

• Loops are at the core of
programming.

• There are two way of repeating a
instruction several times: the for loop
and the while loop.

• Several instructions are common to
both loops, such as

• continue (skip instruction after and
switch to the next element) or

• break (stop the loop)

Looping in python
Section 1.4 of the PDF

51

• Loops are at the core of
programming.

• There are two way of repeating a
instruction several times: the for loop
and the while loop.

• Several instructions are common to
both loops, such as

• continue (skip instruction after and
switch to the next element) or

• break (stop the loop)

• If-else blocks allow you to control the
logic flow of your code

• They work as you would expect, but
beware of:

• elif: if you want to add a third,
fourth, etc option use elif (only one
option in the block ever gets
executed)

• Indentation: make sure your logic
does what you think it does by
keeping related if/else keywords on
the same indentation level!

If-else blocks

52

• List comprehension is the
action of building a collection
with one line of code. The
comprehension syntax works
for all collections, with
conditions, or even nested
loops (loops of loops).

List comprehension
Section 1.5 of the PDF

53

• Functions are defined as a set of instruction
encapsulated into one object.

• This is particularly convenient when one has to
the same list of instructions several times.
If you copy-paste the same piece of code
more than two times, then make a function.

• A function takes some arguments, perform
some instructions and returns a result.

• The type of the argument is not fixed so the
same instruction will be interpreted differently
depending on the type. This is very different to
C++ behaviour!

Functions - Section 1.6 of the PDF

54

• One can write collections of functions and classes and
maintain it. Some extremely powerful libraries are
available this way:
numpy, scipy, matplotlib, pandas...

• They can usually be installed easily on command line:
pip install matplotlib

• And imported into your code
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import convolve2d

• I'll say a few words about the most important
packages

Libraries

55

• We reviewed:

• Basic python types and operations

• Common object collections: lists and dictionaries

• Looping and if-else statements

• Writing Functions

• Review of list comprehension

• Packages/libraries and how to install them

• But our python journey is not over! We will review now the core properties of the most
important python library : numpy.

• And also common plotting and data manipulation libraries: matplotib and pandas

Review of Python

56

Numpy
And friends...

57

This part is based heavily on Romain Madar's
"Introduction to Python for Data Analysis" course.
Find full materials here!
https://github.com/rmadar/lecture-python
And the Python Course PDF attached to indico.

https://github.com/rmadar/lecture-python

• Numpy (numerical python) is one of the most important
packages in data science. Many other packages (scipy,
pandas, scikitlearn) are based upon it.

• The core improvement wrt vanilla python is numpy arrays.
It's like a python list, but with several critical improvements:

• Vectorised operations

• Broadcasting

• Fancy indexing and slicing.

• These objects allow to efficiently perform computations
over large datasets in a very concise way from the
language point of view, and very fast from the processing
time point of view.

• The price to pay is to give up explicit for loops. This lead
to somehow a counter intuitive logic - at first.

Numpy - Chap 2 of the PDF

58

Arrays can have arbitrary dimension,
But must all have the same data type.
Unlike lists which can contain any objects
Even of mixed types!

• Vectorisation is a way to make
computations on numpy array
without explicit loops, which are
very slow in python.

• In simple terms: you can do an
operation on an array as if it was
just a single item, and it will
implicitly do the operation on all
items of the array.

• The idea of vectorization is to
compute a given operation element-
wise while the operation is called on
the array itself.

Vectorisation - Chap 2.3.1 of the PDF

59

• Broadcasting is a way to compute
operation between arrays of having
different sizes in a implicit (and concise)
manner.

Broadcasting - Chap 2.3.2 of the PDF

60

• Indexing in numpy takes on a whole new level compared to vanilla python

• You can still access elements of an array using [i] or slices using [i:j] as
for lists

• But you can also provide arrays of indices saying which ones to pick, (which
is not possible for lists)

Fancy indexing/slicing - Chap 2.3.3 of the PDF

61

• You can access sub-arrays using the format [i:j:k], meaning take elements
from i to j in steps of k. Negative k values go through the elements in reverse.

• This also works when you have multi dimensional arrays!

Fancy indexing/slicing - Chap 2.3.3 of the PDF

62

• Finally, in numpy you can do
"masking". If you provide a list
of True/False values the same
size and shape as your array, you
will create a new list where only
the elements with a "True" value
are included.

• We can use this to apply
selections on an array

• ~ can be used to negate a mask

• Masking is a super-powerful
tool in particle physics when
applying selections!

Fancy indexing/slicing - Chap 2.3.3 of the PDF

63

Extra numpy tips - Chap 2.4 of the PDF

64

Extra numpy tips - Chap 2.4 of the PDF

65

Extra numpy tips - Chap 2.4 of the PDF

Plotting with matplotlib - Chap 3.2 of the PDF

66

• Matplolib is an extremely rich library for data
visualization and there is no way to cover all its
features here. The goal of this section is just to
give short and practical examples to plot data.

• The main object of matplotlib is
matplotlib.pyplot imported as plt here
(and usually). The most common functions are
then called on this objects, and often takes
numpy arrays in argument (possibly with more
than one dimension)

1D data plots - Chap 3.2.1 of the PDF

67

• We can make use of
plt.plot(...)
or
plt.hist(...)
to plot one-dimensional
data.

2D data plots - Chap 3.2.2 of the PDF

68

• Scatter is useful for 2D plotting

• For example we can use
the size of markers as an
extra dimension

3D data plots - Chap 3.2.3 of the PDF

69

• We can also make 3-D representations

3D data plots - Chap 3.2.3 of the PDF

70

• We can also make 3-D representations

Many other kinds of plots are possible, check matplotlib
documentation for comprehensive list examples!

Pandas dataframes- Chap 3.3 of the PDF

71

• Pandas is a package which is extremely
useful to manipulate datasets.

• It can very quickly read in a dataset (for
example as CSV file) into a so-called
dataframe.

• Dataframe objects are essentially
dictionaries of numpy arrays. You can
access properties (= columns of the CSV)
by name, add new columns, and
manipulate the contents rapidly using
dumpy-like vectorization, broadcasting
and fancy indexing.

Pandas dataframes- Chap 3.3 of the PDF

72

• Pandas is a package which is extremely
useful to manipulate datasets.

• It can very quickly read in a dataset (for
example as CSV file) into a so-called
dataframe.

• Dataframe objects are essentially
dictionaries of numpy arrays. You can
access properties (= columns of the CSV)
by name, add new columns, and
manipulate the contents rapidly using
dumpy-like vectorization, broadcasting
and fancy indexing.

• Numpy introduces a new collection called a numpy array. It's like a list but:

• Can be of arbitrary dimension

• Does vectorised operations

• Supports broadcasting

• Support fancy indexing and masking

• Many excellent packages are based upon numpy including:

• Matplotlib for plotting (in particular plot(), hist(), scatter() types)

• Pandas dataframes, which are basically dictionaries of numpy arrays for efficient dataset
book-keeping and manipulation.

Review of Numpy and friends

73

• We have covered a lot of ground this morning and I don't expect
you to remember everything!

• After lunch, we will attempt some practical examples. That's the
best way to learn !

• Thanks for your attention!
• Speak to me in the break if you have questions

Conclusion

74

