Scientific Computing Basics
What you'll need to make CHACAL a success

Louie Dartmoor Corpe (LPC Clermont)
15 Jan 2024

Welcome!

« It's a pleasure to give you a warm welcome to CHACAL24

 The objective is to give you a crash course in advanced computing methods used in
particle physics, specifically collider physics at the LHC.

« We'll cover three broad categories:
« Monte Carlo simulation, a cornerstone of data analysis at the LHC

 Machine Learning, one of the most powerful tools at our disposal for data analysis

 Quantum Computing and alternative computing architectures, with an eye to the future

 The aim is that at the end of this school, you come out with practical skills to help you
make use of these technologies in your future research... while forming links and strong

cohorts along the way to help you build your network.

What we need from you

* You'll be getting lectures (morning) + hands-on sessions (afternoon)
« These will often be led by world experts... make the most of it!

« Ask questions, be proactive, and have fun

« Always be respectful and patient with each
other and the other lecturers

 Follow the CERN code of conduct* at all times:
be excellent to each other

 Don't be shy: there is no such thing
as a dumb question, and we have plenty CREATIVITY O
of time for questions and discussion

O COMMITMENT

PROFESSIONALISM

* https://cds.cern.ch/record/2240689/files/BrochureCodeofConductEN.pdf?

https://cds.cern.ch/record/2240689/files/BrochureCodeofConductEN.pdf?

What tools do we need?

« Almost all the computing done at the LHC is done using custom software,
developed using open-source tools and platforms

« That custom software is usually in three main languages:

C++ (for heavy operations that need to happen fast and where we
need precise control of the objects and classes we create. Usually
more complicated to write, but executes fast because it's compiled.)

(for data analysis, and operations where time and memory are
not an issue... easier to write but usually much slower than C++ as it's
not compiled).

(for navigating on the terminal, book-keeping, automation, etc.)

What tools do we need?

« There are also some other tools which you will need to know about this
week:

. provide an interactive and visual way to write
python code. A lot of the tutorials will be done using such notebooks,
either locally or via Google Collab (if you don't have one already, now is a
good time to make a google account so you can follow those tutorials)

Docker containers: aka docker images. Containers are a way of taking
a snapshot of a whole software stack (operating system and all), which
can be run from within another machine. That way, instead of trying (and
failing) to install a complicated programme with all its correct
dependencies, you can download the docker container and just work
inside that. Used heavily in industry, for example in web commerce: if
there are more clients buying on your website, you can deploy resources
eg on Amazon Webserver instantly by just sending the container with the
website backend.

What will we cover today?

« Today | will review (in this order).
 Brief introduction to
« Bash and the basics of using a terminal

« Python: review of the basics, and the most common libraries we will need: numpy,
matplotlib, pandas... as well as Jupyter notebooks

« This afternoon we will get our hands dirty with some of these skills in the tutorial.
But if you have a laptop with you already, feel free to follow along!

« Tomorrow, you'll learn all about C++ with Caterina.

Let's get started!

[]
[] o
Particules

Laboratorre de Physique de Clermont

Docker
Software containers

gdocker

Why are we starting with Docker?

« As we will see in the next chapter, we tend to use unix-based
environments, especially to interact with the terminal.
Linux and Mac are unix-based, Windows is not.

« That means that Windows users may struggle to follow the next section
"Bash and the terminal”... unless they use a docker container!

* We are staring with Docker to give a chance to people with Windows
machines to install docker and load a simple linux-based image so they
can follow along !

What is docker?

« Docker is an open platform which allows you to open and run software containers.

 OK, but what is a software container???

* A software container is a standard unit of software that packages up code and
all its dependencies so the application runs quickly and reliably from one
computing environment to another.

* For example, so you can run a unix terminal tutorial on a windows machine ;)

* In English: it's a box which has a
(down to the operating system) from any operating system

« That means you can have a container for, for example "Rivet installed on linux™ with
versions X.y.z. You can open that container on any machine (windows, Mac, Fedora...)
and it will be "as if" you were running on the linux machine with Rivet installed.

How to install it?

Manuals / Docker Engine / |Install / Overview

* First, you need a docker engine:
see https://docs.docker.com/

e n q i n e/i n Stal |/ This section describes how to install Docker Engine on Linux, also known as Docker CE. Docker Engine is
- also available for Windows, macQOS, and Linux, through Docker Desktop. For instructions on how to install

Install Docker Engine

Docker Desktop, see:

e Suggest to use "Docker
Desktop”

e Docker Desktop for Linux

e Docker Desktop for Mac (macOS)

e Docker Desktop for Windows

 There are detailed installation
instructions for all p|atforms Install Docker Desktop on Windows

Install interactively Install from the command line

—_

Download the installer using the download button at the top of the page, or from the release notes.

* Probably best not to overload
the wifi by all installing at once: . |
WindOWS use rS please go fi rSt! Tfeyllzztre:y:trenn(:todn(::;2:::3::!::;:T:;ivc:)f:;(i::s:,d);ouwiII not be able to select which backend to

use.

2. Double-click Docker Desktop Installer.exe torun the installer.

w

When prompted, ensure the Use WSL 2 instead of Hyper-V option on the Configuration page is

4. Follow the instructions on the installation wizard to authorize the installer and proceed with the

install.

5. When the installation is successful, select Close to complete the installation process.

If your admin account is different to your user account, you must add the user to the docker-users "
group:

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

Container versus image

» Technically speaking:

« A software image is the bundle of software and dependencies.
You can see a list of available images at Docker hub
https://hub.docker.com/

« A software container is the instance of an image which you are running via
docker.

* You can have multiple containers running with the same image.

https://hub.docker.com/

How to use it?

« We want to pick a simple image, for example
with Rivet installed on ubuntu

» Thankfully there is one:
https://hub.docker.com/r/hepstore/rivet

 In a terminal:

docker pull hepstore/rivet

will download the image

: search and pull

Search

[_ hepstore/rivet

Images (13)

Containers (9) Extensions (0)

Docs (0)

¥ 10K+ -

% 2

Tag

latest

A Laboratorre de Physique de Clermont.

ouiecorpe_cernZ@clratilmac@2 ~ ¥ docker

sing default tag: latest

atest: Pulling from hepstore/rivet
HO5f018f9dld: Pull complete

B2cb6d73f0f5: Pull complete

D3b3370bbc3c: Pull complete

617de@c3b@9: Downloading [———————————————===

] 66.24MB/156.6MB

Bdb6073e5257: Download complete

bae4a5e6c533: Download complete

617de@c3b@9: Pull complete

Bdb6@73e5257: Pull complete

bae4a5e6c533: Pull complete

pcf46c197¢c08: Pull complete

bbb4112a6518: Pull complete

Bc2963256b9%a: Pull complete

B5cc@4d89655: Pull complete

16e217af4e@e: Pull complete

58527630d45f: Pull complete

13c685819f40: Pull complete

n3f7acf4f8b9: Pull complete
B16f21ee@ba6: Pull complete
Df4590889b3c: Pull complete
793cbe@7d8dc: Pull complete
h50660d215dd: Pull complete
Hf4fb700ef54: Pull complete
Digest: sha256:dfcee582fe4008509e0ce670cle9d7b19e8a64c47645¢e
4f7aa9ec@18eSbcfc7
btatus: Downloaded newer image for hepstore/rivet:latest
docker.io/hepstore/rivet:latest

https://hub.docker.com/r/hepstore/rivet

How to run it?

* From the terminal:

« You can then "enter" the image docker run -it hepstore/rivet
and you can map to your local directories to access your local files and write new files out

- docker run -it -v $PWD/myf11es /work/myfiles hepstore/rlvet

Run the container ctive mode Mapping this local folder to Using this image
a folder in the container
(-v for volume mount)

louiecorpe_cern2@clratlmac@2 ~ % docker run -it -v $PWD/myfiles:/work/myfiles hepstore/rivet
ERROR: must "cd where/root/is" before calling "
root@af6721063975: /work#
root@af6721063975: /work#
root@af6721063975: /work# 1s
myfiles
root@af6721063975: /work# rivet --help
usage: rivet [-h] [--version] [-a ANA] [--list-analyses] [--list-keywords] [--list-used-analyses] [--show-anal
[--analysis-path-append PATH] [--pwd] [-o HISTOFILE] [-p PRELOADFILES] [--no-histo-file] [-x XS] |
[--unmatch-weights UNMATCH_WEIGHTS] [--nominal-weight NOMINAL_WEIGHT] [--weight-cap WEIGHT_CAP] [
[--event-timeout NSECS] [--run-timeout NSECS] [-1 NATIVE_LOG_STRS] [-v] [-q]
[ARGS ...]

"y

. bin/thisroot.sh" for this version of "gemu-x86_64"!

Run Rivet analyses on HepMC events read from a file or Unix pipe Examples: rivet [options] <hepmcfile> [<hepmcf
[options] fifo.hepmc Environment variables: * RIVET_ANALYSIS_PATH: list of paths to be searched for plugin ana
for data files (defaults to use analysis path) * RIVET_REF_PATH: list of paths to be searched for reference dat
be searched for analysis info files (defaults to use data path) * RIVET_PLOT_PATH: list of paths to be searchec
RIVET_ANALYSIS_PLUGINS: 1list of paths to be searched for data files (defaults to use data path) * RIVET_RANDOM_

sssss

RIVET_STRIP_HEPMC: reduce the complexity of HepMC events before analysis (experimental)

How to run it?

* You can easily "run" docker containers from the Desktop app, but these tend to close immediately
because we are not asking them to do anything particular.

« So we can't easily run a docker container interactively via the Docker desktop unless you start it
from the command line.

« [f anyone knows how to die it without passing via the command line, let me know!

Once you are in...

ouiecorpe_cern2@clratlmac@2 ~ % docker run -it -v $PWD/myfiles:/work/myfiles hepstore/rivet
ERROR: must "cd where/root/is" before calling ". bin/thisroot.sh" for this version of "gemu-x

Now your command line e

: root@503c60065bc8 : /works OS is linux ... on my
IS NO longer the one frOm root@503c60065bc8: /work# Mac!

yOL_Jr Orlglnal maCh_Ine root@503c60065bc8: /work# uname -r
(Windows, Mac, Linux..) |
root@503co00b5bc8: /Mork# rivet --help

BUt it'S as |f ou were in psjUisage: rivet [-h] [--version] [-a ANA] [--Tist-analyses ||i=s .
|inUX maChinye Wlth rivet es] [--show-analysis SHOW_ANALYSES] [--show-bibtex] [-- Rivet available
. [--analysis-path-append PATH] [--pwd] [-o
and a” dependenC|eS o-file] [-x XS] [-n NUM] [--nskip NUM] [--skip-weights] [--match-weights MATCH_WEIGHTS]
insta”ed! [--unmatch-weights UNMATCH_WEIGHTS] [--nominal-weight NOMINAL_WEIGHT] [--weight-
ap WEIGHT_CAP] [--nlo-smearing NLO_SMEARING] [--runname NAME] [--ignore-beams] [-d NUM]

C | oo [--event-timeout NSECS] [--run-timeout NSECS] [-1 NATIVE_LOG_STRS] [-v] [-q]
00l = [ARGS ...]

un Rivet analyses on HepMC events read from a file or Unix pipe Examples: rivet [options] <h
epmcfile> [<hepmcfileZ2> ...] or mkfifo fifo.hepmc my_generator -o fifo.hepmc & rivet [options

Recap on docker

 Docker images encapsulate a software and all it's dependencies (including the OS)

 We can run download and run images in containers so that we can use that software without
worrying about how to install it on our machine.

« Almost any software can run on any platform
« We learnt how to search for images on Docker Hub

* We learnt how to download those images (= pull them from the hub)

« We learnt how to so that we can be "inside" the container

e -zsh

Last login: Tue Jan 9 17:27:34 on ttys004

Bash Llouiecorpe_cernZ@clratlmac@Z ~ % I

Or how | learned to stop
worrying and love the terminal

Terminals, consoles, shells...

« Technically speaking...

Command line

« Aconsole is a piece of physical hardware that allows direct
interaction with a computer system. Includes things like
keyboard and monitor...

 Aterminal is a device or programme that provides an interface
to interact with the computer system. In the past this was a
physical device of some sort, these days they are software-
based.

 Ashell is a command-line textual interpreter that allows us to
send and execute commands and view the output. There are
lots of different kinds of shell, the most common being Bash on
unix-like systems (Linux, Mac), Command Prompt on Windows.

« A command line refers to the place where you write down the o hw B B
commands which are used to interact with the computer. T T T -I—I- .

* In practice all these terms are usually used interchangeably!

Operating systems, or unix vs windows

« Windows uses a closed-source operating system. How it executes the commands we
run is not public information. It also means we don't have full control.

« In particle physics, we therefore opt for operating systems based on "unix”, which are
open-source at least with regards to the command-line interface.

« Linux: the whole operating system is open source, uses bash.

« Max OS: the operating system is in general closed source, but the command line is
unix-like.

« Since bash (or similar) is the default on unix-like systems, this is what we will use.

Windows uses Command Prompt or PowerShell, which are not widely used in particle
physics. So we won't cover those.

Your first command

louiecorpe_cern2@clratlmac@2 ~ % echo "hello world"

hello world

« echo is a command which just prints back the argument you specified.

Unix file structure

* Your computer's file system is organised as a tree of

* Files (.txt, .cc, .py, .jpg ...)
‘boot| [usr] [etc] [home) ‘dev| _proc)

. Some files (like text files, csv, code...) are /]\ }\
human readable and can be edited directly ir B (5 (e (o L g
a text editor % \7\

* Other flleS are in blna_ry fo_rmats .bashrc [.mozilla) (Desktop) Pictures)(Music) .bashrc (Desktop) (Docs)
(compiled code, root files, images...) A~ ~ N S
that need to be decoded to be viewed. () (Fawai) (dowsiown) i

ﬂ N’\\
mom.jog timmy.jpg ... img01.jpg img02.jpg img03.jog ... fido.jpg fluffy.jog

Basic navigation

 When you log into your terminal, you start in your
home /<username> directory

“home dev ‘proc)

sue fred)

.bashrc [.mozilla) (Desktop) Pictures)(Music) .bashrc (Desktop) (Docs)
(family) (hawaii) (downtown) pets

ﬂ N’\\
mom.jog timmy.jpg ... img01.jpg img02.jpg img03.jog ... fido.jpg fluffy.jog

Basic navigation

When you log into your terminal, you start in your
home /<username> directory

Your location is given by a path, here:
/home/sue

[—

you can check your current path at any time

by typing pwd (print working directory)

./ |(root directory)
‘boot| [usr] [etc] [home) ‘dev| _proc)
//]\ —
bin| [lib] [share linclude) sue fred

.bashrc [.mozilla) (Desktop) Pictures)(Music) .bashrc (Desktop) (Docs)

(family) [hawaii) (downtown) pets

ﬂ N’\\
mom.jog timmy.jpg ... img01.jpg img02.jpg img03.jog ... fido.jpg fluffy.jog

Basic navigation

 When you log into your terminal, you start in your

home /<username> directory

i/ (root directory)

* Your location is given by a path, here: %N

/home/sue

boot| [usr] [etc] [home) ‘dev| _proc)

e you can check your current path at any time

by typing pwd (print working directory) =2,

(bin) (lib) [share) include) sue) (fred)

« You can change your location using the cd %\ /\
(change directory) command either by specifying bashe (mozila) (Deskiop) (Pictires) (Music) bashrc (Deskiop) (Docs)

y . T A AN A
a relative path from your current location g —
cd Pictures/pets P B péis

mom.jog timmy.jpg ... img01.jpg img02.jpg img03.jog ... fido.jog fluffy.jpg

Basic navigation

 When you log into your terminal, you start in your
home/<username> directory
:/ (root directory)

* Your location is given by a path, here: %N
/home/sue

R
‘boot| [usr] [etc) %oﬁ; ‘dev| _proc)
. A TN
e you can check your current path at any time LR
by typmg pwd (prmt Worklng dlrectory) (bin) (lib) [share) include) :sue\,\ (fred)

o .
 You can change your location using the cd %\ \‘ N
(Change direCtory) command either by SpeCifying .bashre (mozilla) (Desktop) (Pictures) (Music) s .bashrc (Desktop) (Docs)

. . - P S § A A
a relative path from your current location S
cd Pictures/pets (family) ~ (hawaii) (downigus péts

mmy.jpg ... img01.jpg img02.jpg img03.jog ... fido.jpg fluffy.jog

« or specifying an absolute path from the root
directory.
cd /root/home/fred/Desktop

Basic navigation

« When specifying a relative path, you can use two
dots ".." To indicate, "go back one di

towards root". A single dot means "he
cd ..

......

.bashrc [.mozilla) (Desktop) Pictures)(Music) .bashrc (Desktop) (Docs)
(family) (hawaii) (downtown) pets

ﬂ N’\\
mom.jog timmy.jpg ... img01.jpg img02.jpg img03.jog ... fido.jpg fluffy.jog

Basic navigation

« When specifying a relative path, you can use two
dots ".." To indicate, "go back one directory

towards root". A single dot means "here”".
cd ..

cd ../sue/Pictures/downtown/../hawaii

A

(family) [hawaii) (downtown) pets

AT TS
mom.jog timmy.jpg ... img01.jpg img02.jpg img03.jog ... fido.jpg fluffy.jog

Basic navigation

« When specifying a relative path, you can use two
dots ".." To indicate, "go back one directory

towards root". A single dot means "here". '/ | (root directory)

cd ..

cd ../sue/Pictures/downtown/../hawaii / %N \
boot| | usr| |etc, _home dev| _proc

« To inspect the contents of a directory or get %\ }\
Tformatlon about a file, use the Is (list) command (b7n) (ib) (share) (nclude) (SuS) (fred)
S
(orIs /home/sue/Pictures/hawaii) /\
> Imgo1jpg ImQOZJpg ImQOBJpg Lozilla) :Disfktopj (Pictures) :Mu,s\ii: .bashrc :Def.ﬁnpj :D/(i\c\sj

(family) [hawaii) (downtown) pets

ﬂ N’\\
mom.jog timmy.jpg ... img01.jpg img02.jpg img03.jog ... fido.jog fluffy.jpg

Creating and manipulating directories

You may want to create new file structures

mkdir (make directory). Use options -p if creating several nested directories at once
eg. mkdir -p /home/louie/path/to/my/project

mv (move a directory or file). Format: mv <object to move> <where to move it to>
Egmv chacal /home/louie/path/to/my/project/.
(what happens if mv chacal /home/louie/path/to/my/project2 ?)

cp (copy a directory or file). Instead of updating the location, make a copy of a file or
directory in a new location. Use -r (recursive) if copying a directory.

egcp -r /home/louie/path/to/my/project2 /home/louie/path/to/
my/project3

rm (remove a directory or file). Permanently remove a file or directory. Use -x for

directories. USE WITH GREAT CAUTION, ALWAYS DOUBLE CHECK YOU ARE
REMOVING WHAT YOU THINK YOU ARE.

Files

Inside your directories, you will have files.

Text-based files are eg code, configuration files, simple data formats like
csv... these are usually designed to be written or edited by a human user.

Binary files or custom formats, which can't be opened by a text editor
and need to be either decoded or opened with custom software. Human-
readable is generally not an efficient format to store data in. That's why
we designed more efficient formats, but which are no longer human-
readable. Examples are images, sound files, databases, root files,
compiled code...

We'll focus on human-readable text files in the following.

Common operations on text files

« > or >> (send or append). You can send or append something that would
otherwise be printed to your screen towards a file.
Eg echo "hello world" > file.txt

. (list, option "long") give info when the file was created, who created
it, its size, and permissions. Eg 1s -t file.txt
> —-rw-r--r-- 1 louiecorpe cern2 staff 12 10 Jan 10:32
file.txt -

« more Or less (see "more" of the file, ie a preview of file contents). This

opens a basic interface to see what's in the file, which then disappears when
you exit. You cannot edit the file. Eg 1ess file. txt

« cat (concatenate) allows you to print the contents of the file to your screen.
eg cat file. txt
eg cat file.txt > file2.txt

Text editors

* You won't get very far editing files by appending from the command line!

« To modify or write code or other files, you'll need a text editor.

« There is an ancient and passionate argument between those who use vim and those who use

emacs as a their text editor.
| will give you a VERY BRIEF overview of how to use each.

« | will try to be unbiased, but you will probably be able to tell which side of the argument | am on.
* In reality, there are better tools, like VisualStudio, which real computer programmers use.

 If one of the other is not installed, you can usually easily do so via command line, eg for Ubuntu

(Linux)
apt install vimor apt install emacs

 The exact command to use to install a package depends on your operating system

Vim in a nutshell

« Open a new or existing file like so vim my file.txt

« By default you are in command mode. This allows you to type certain commands to do operations
like find and replace etc.

* By default, you navigate through the text via your keyboard.
In COMMAND mode, type ": set mouse=a" which means your cursor will go to where you click.

« To start editing text, put your cursor to where you want to modify text and type "i". You are now in

INSERT mode, and you can type and modify the text like in a "regular" text editor. When you are
done, hit esc to return to COMMAND mode.

* You can undo your last change using "u

« To save your changes, in COMMAND mode do ":w" (write). To quitdo ": q".

* You may be asking... why is it so complicated?
Vim becomes VERY powerful once you get the hang of it for rapid modifications to text.

' hical cheat t
oot (english keyboard layout)
mode
toggle ' external play search end 0, match A "soft” begin repeat * search begin end "soft” begin next
case Fiker ®* macro backwards $ of Bne /o {bracket) of line & = forward sequence sequence o: Gne + Ene
[— lown
: : = o=
. “hard” begin .|
- a1 2 3 4 5 6 7 8 9 e |
ext d place back 13 d: insert e begs nd
Q - < E w=|[RO=E|[T |y C=|u =l =0 =|po==][{ ==} s
- ord ext d ol H mert past
qQ sllw oomlle sl oesmlle WY eed|lu i m=sllo e=|Pol| S| -
nd bt delete “back" of / joi look and_6n jster! begin of hine /
A =3l =D E=][F ~=ElG ~[H =) &K s=s=]|L == TS
- 1
bst. find tra? h ‘ ¢ k T l ‘_’ B repeat . goto \o od
A weed| [S == d delete! 3 f' char g “ands J ' (ST mark e
indent* qu® back- change visual prev. find screen un- indent” find
> Z. X pace C to eol V {8nes) WORD N prev. middle | | indent | [> ?- frev)
- extra® delete sl b find reverese /.
S win |2 ws[X W) |C st [V o] | L= [= 1 | Fee
Main command line commands ("ex"): Vim 7.x only commands: Notes:
moves the cursor w [File] {save} CTRL + X -CTRL + O (omni completition in [1] use "x before ayank/paste/del command
motion or defines the range q{quit} insert mode) to use that register ('dipboard’) (x=a.x,*)
foranoperator 9! {quit without saving} (e.g.:"ay$ to copy rest of line to reg 'a)
wq {save & quit} ‘tabe [File] {edit [File] in a new tab} [2] typein a number before any action to
:e foo {open file foo} ‘tabc [n] {close tab [n]} repeate it that number of times
. . :n {new File} tabonly {close all other tab pages} (e.g.:2p, d2w, 5i, d4))
'dlrect'actlon Cmd. sp {split window horizontally} ‘tabmove [n] (move tab to position [n]} [3] duplicate operator to act on current line
command| if red it entersinsert vsp {split window vertically} ‘tab [cmd] {execute [cmd] and when (dd = delete line, >> = intent line)
mode reg {display content of named registers} itopens a new window open a new tab page [4] ZZ to save & quit, ZQ to quit w/o saving
:Explore [dir] {open file-explorer} instead, e.g :tab split opens current bufferina [5] zt: scroll cursor to top, zb bottom,
. . :h {help} new tabm :tab help gt opens tab page with zz center
requires a motion :h holy-grail {list all commands} help for gt} [6] gg: top of file (vim only), gf: open file
to afterwards, operates Other important commands: ‘tabs {list all tab pages} under cursor (vim only)
operator
between cursor and CTRL + R (redo) [n) gt {goto next or tab [n]}
destination CTRL + P/ N (complete the current word) gT {goto previoustab} Visual mode:
CTRL + W (move cursor to next window))) Move around and type operator to act on the
[n] CTRL + & (toggle [n]th alternate File) :undolist {list leafs in tree of change} selected region.
. . C +F/ earlier [n] [s/m/h] {goto older text state [n]
special Functions, CTRL+F/B (page up /down) . .
extra rgquires extra input CTRL + E /Y (scroll lin eup / down) times / sec / min / hours} Vim-HeIp navigation:
CTRL + V (block-visual mode) g- {goto older text state} CTRL+ ALT GR +] or a2 [:t2q] (jump to
Find and replace: :t'?‘e' [/"1 [5//"‘/ h] §9h°‘° “}e""‘” bt state [n] subject using tags, CTRL + O to jump back)
Al A imes /sec /min / hours]
commands witha o 'RQQEX P>/ ,SErmg, /9 (replace <RegExp> g+ {goto newer text state}
° dot need a char by <String> filewide) =
5/<RegExp>/<String>/ (search current line
argument afterwards and replace first match)

.
®, boticlles

pLasmas

Lo ove

== opplication!)
Laboratorre de Physique de Clermont

Emacs in a nutshell

e emacs is in some ways more intuitive but (for reasons which are more philosophical than
rational at this point) extremely frustrating for people who are used to vim.

. Eirst_uninstal | i inctead

« Open a file as emacs file.txt. Beware this opens a new window (why is this the default?!).
You can get it to open directly in there terminal using emacs -nw file.txt

 Emacs then behaves more like a "normal” text editor, you can go ahead and start editing your
text freely. Emacs will regularly auto-save.

[
AYAa Aala N Y] AN alaa -
NS

.
° a¥a a a¥a a a A a a
C J A" C O v, o v,

aRa a a
? CA V 4 C/ A U U A V U1V LA VY \.J

 Emacs also has a sort of COMMAND more, which you access via ctrl+x

* Once in COMMAND mode you can save by hitting ctrl+s, and close using ctri+c

HOW TO LEARN EMACS S50 0 205 o s Opze o

from yoo!

Learn Emacs basics g‘wﬁ; Learn ofher ha“dﬂ -HPS

Buffer % window W\ar\aaomemk

If yourea developeror sysad.

G8) e
e olher
S y ?én editor

[t's okay Learn the basics so that

Bonus mini-cheat sheet!
Here's what you need to know in Vi

L insert mode «» <Ese) command mode

ou can eas\\y Work on other people’s Lona-time Vi -:\/im‘l’u‘l‘or :
CDV"‘PW“";' ¥ you know your way user hﬂh\ﬁ ouf w w:j\: Jsove e C' C‘Q ({‘\'f\d-evt) C-x b SW|+CL\ bytter S gyen beter
around \im, people won't gve you Emacs? ;o‘l ;"lea\\ . X open e C-x 2 spit = Ot Mo ido-mode
as much grief over Emacs. his W qui C-x (-s sove NDTE: C-» 3 SpAT m

C_X O other window B

C-x C-¢ quit \52\) dont need to qut Emacs
D> You can ach_;allg edit q r eoch £ile. Just leave he C-x %) ger Hidh of coment window B
ﬂtﬁt::-;ﬁ“j‘d te D.SZW" VO\M:\\\'\ 20,1\\6;(\52 Cx Ci o C-x 1 3& id of other windows
" a
fopic. (Curiovs? See FeAMP) ﬁ/’ vssh/fip pe EE
vemacs
Row 1o select Text

& Navigation 2 Seardn

(o to the start of your celection

e rm i
Meet editor Zealots ambitedrous!
4 —] ond press CSPC Cordrol + Spaced

Okau. Once you know th : Why Emacs? : — o M-q4 Mg 9o o line
of Vim, ouﬂi:nn;:t o,e\ %:)\;f\s - Omazingly customizable g‘j\j"x‘f eo”tf’r\ ZE v\ﬁfnge\e on (o, A/ an
learning BEmacs. & - Endless Toom for growth *eam how Yo use fres 3 e
oot C-w cut (k) Keyooard. macros. E‘S {n’(cmc,hve search
ot PR L h (- se (yank) Theyre awesome. -r Interadive search backurd
A a QWESOME
earn NOW +O leafﬂ Other resources: é_, I‘ij F,gygc older things 2"‘% stot wmaces m’z E;% of H’f{?;\,@
. - -X end madd - NN er
\Ki. Or 6
W (7 Jrer are ome ld ook on B i of s C-/ unde Crg oakeone Mox ocar FET Fird Uines
ot s an be planet-emacsen.o RN
er CONTUSING. Cmacs-related lods \ |
Start with the buitt-in tutorial instead. IRC: irc.freenodenet ™ @ & oy
kemacs @ ; !
Help» Emacs Tutorial |« repeat as rmany wa*f'" help and EXTend X CUdDM‘ZQ P
4innes as you néedto hanging oot \ RET st X} Org-mode. o
W, M-x load-theme aoky osee ot L . 9) N \
Try sut Color Themes SV gk Ovaanize ~ G€e ol 'O\A)\V\%/ Fo\
. 160\) . ws .
tool bar M-x (,uﬁowze—group Ret iv\ﬁ?\ain fext W\demv\% ~

Setb common ovham

— Con't use_the menv?
/@ \:renss 1o start.

NOTE: The Ewnacs Htorial has lots of
" "frome. “putfer

weird terms: "Meta key

This Is because Emacs started a (0779

Lime ago. Dont wor ov'll get the
hang of it with chr%\?‘cel,j E

\Cmvvx e

modeline

] ST

windows show

Mex customize-face RET A TRAM P

~ " remote access

change backgound, foreground, etc.

Some things that mi Wt help: Other good .
J 2 P help c?mmands. buflers, which
C-x C-s: This is how Keb\ooard shorteots C-h ¢ manual coud be
e S ove written. . C-n k <kespoard = files
ress Control & x at the same Hime shidvteot> . Drocesses

ov hel
@\Vg 9 \P ° ‘ﬂ«\er I'AFD

1""@""\:7\ let o of X ona press Cordrol 1S
(- g desoribes commandy
chiong

Tip: Since gou're using Gortrol o
both K2us, you can held Contvol C-n o gearches for
down instead of letting 30 SFEN Commands

X and =, Cn (cln shows help

M-x lets you call ommands by name, which s

(\'hlﬂem great i€ you cant remember the

vy = Keyboard: shorfeut £x: Mox help-with tutorial RET
T means press

Enter/ Return

M-x Us’f-Po\ckao\\es ReT o
install lots of modules wm*g"cw\l:'“,g,
TP or X
ok 7 ek
ond then... k\@bﬁ%ﬁ”%‘,&

ed{t{nﬁ yovr w/emacs.d/m{te(Lile! .-
N

initializes

ovr Emacs,
adds new
funchionalityy, and s on.
Use M-x eval-buffer or cestat Emac

1o see the changes

‘.~ BrKe your 'gemacs -q, skip Your wstomnabions

Emacs cova'Q,

ce &wmcswkki.orq o
for (ot of examples

w2
/ Cx 4o !

. Create itl

QES\M\\ [Term

command-une

— CQ|C " Emacg
%’ﬁg powerfol ca\evlator

and converter™

R edeb
(L Wmm@ 2 dcbusff\r\s E
Emacs™lis
(it sounds scary, bt its pmc-?v\ L)

There's So much more!

\}\\'* 2 0h ye,
WY . -~ ”‘s‘gna b

Y \0:\0«}:\6/ d\

el R RS
Ak away,

ond discover more
log exploring!

Aacha. Chusos

37

Environment variables

« In a terminal we frequently make use of environment variables to keep track of important
paths, locations of libraries and files and executables, and to store all manner of information.

« Type env to see all the environment variables defined in your terminal session.

« Some important ones like PATH and PYTHONPATH are telling bash or python where to find
executables or libraries.

« You can create a new environment variable like so export MYVAR="hello world"

« And you can access its value using $ {MYVAR}, eg echo "${MYVAR}"

* Environment variables become and maintaining a self-
consistent set of packages. That's likely the main way you will use them this week.

Scripting

« Sometimes, we will want to repeat a series of commands multiple times, for example, when
installing a software package.

« If we know a sequence of commands needs to be executed, and it's always the same, it
makes sense to just write them in a text file and get the shell to perform them one by one.

« Like the script of a theatre production - one line comes after the other!

« This is called scripting. We can make a new file "myscrip.sh", and tell it to do a certain
number of things, like change directories, create new files, execute various commands.

« Just write commands line by line as you would in the command line, then save the file.

« After, you can do "source myscript.sh" to execute them sequentially.

 In principle you can also have if-else blocks, loops and other logical operations, but this bash is
not a fun language to do these things in if you can avoid it. Logic should be reserved for your
C++ or python files unless you know what you are doing.

Review of the terminal

« So after this part of the lecture you should know how to:
« Navigate a file structure
* Create new directories and files
« Copy or move files and directories around

« Open afile in a text editor (vim or emacs for example), make small
changes, save and quit.

« Define or modify environment variables and print their value

* Write a simple shell script

« We will practice these skills in the hands-on session this afternoon!

Python

And its various libraries...

This part is based heavily on Romain Madar's
"Introduction to Python for Data Analysis" course.
Find full materials here!
https://github.com/rmadar/lecture-python

And the Python Course PDF attached to indico.

Python is a vast topic, | will only cover the

basics to

get ever

one to a minimal level!

https://github.com/rmadar/lecture-python

Jupyter notebooks

« Jupyter notebooks are used to create
Interactive notebook documents that can
contain live code, equations, visualizations,
media and other computational outputs.

* The simplest way to IS on
the command line via
plip 1nstall jupyter
https://jupyter.org/install

* You can also do it via
https://colab.google/
that is how David's ML tutorials will be run

* Please create a Google account if you
don't have one already!

llllllllll
ooooooo
UUUUUUU
oooooooooooo

Laboratoire de P!

: Ju pyter Untitled2 Last Checkpoint: 7 seconds ago

File Edit View Run Kernel Settings Help
B+ XO @ » m C » Code v

l [1: |l

cO & UntitledO.ipynb

File Edit View Insert Runtime Tools Help Saving..

+ Code + Text

Qg

X
) ¥ [1] import matplotlib.pyplot as plt

Os
Oz

(>
D)

https://jupyter.org/install
https://colab.google/

What is python ?

* Python is a very popular coding language, which has many high quahty
libraries for data analysis, plotting.

« That's why its used heavily in data science, machine learning and many
other domains

« Unlike C++, Python is not a compiled language.
That means it's easy to write but much slower to execute.

* Although some libraries like numpy use c++ under the hood so can be
rather fast!

* Python supports classes (you can do object-oriented programming)

* One of the most important things to note: logic in python is controlled using
indentation instead of brackets (like in C++)

Basic types and operations - numbers

Section 1.2 of the PDF

* There are three type of numbers: int (integer),
float (floating point = decimal number) and
complex.

 The usual operations (+, -, *, /) are available.
* |n addition, there is also:

* a**b (which means ab),

* a/l b (divisor in integer division),

* a % b (remainder in integer division),

 We also have Booleans (True/False)

Basic numbers and operations
a=2

b =23.14

print (a+b)

print (a**b)

5.140000000000001
8.815240927012887

Complex numbers and power
a=1j

a*x*2

(-1+0j)

Integer division example (// and) operators)

a, b=10, 4

divisor, rest = a//b, alb

print('{} = {3x{} + {}'.format(a, divisor, b, rest))

10 = 2x4 + 2

Basic types and operations - strings

Section 1.2 of the PDF

« Strings allow to manipulate words,
sentence or even text with specific
methods.

« String are also python lists (see next
section) and list methods work as well

« The common and useful string
manipulations can be counting the
number of letters with
len (word)

or splitting a collection of words using
sentence.split (' ")

wl = 'hello'
print(wl, len(wl), wi[3])

hello 5 1

Summing two strings is possible (all other operators dont work)
blank, w2 = ' ', 'world'
sentence = wl + blank + w2

print(sentence)

hello world

Multiplying a string by an integer is also possible
repetition = sentence*3

print(repetition)

hello worldhello worldhello world

Get a list of words from a sentence (cf. below for list objects)
s = 'It is rainy today'
list_words = s.split(' ')

print(list_words)

IHHIIIII

[’It’, ’is’, ’rainy’, ’today’]

Object collections
Section 1.3 of the PDF

* There are four types of collection, which share several methods but differ from
various aspects:

* Lists, , and tuples
 The most commonly used are the lists and

* The specificy of the set is that it is unordered, while the specificity of the tuple is
that it cannot be modified. We won't discuss them much more than that.

e number of items: 1len(x)

e loop overitems with for element in x:
e checkifaitemisin the list: element in x

Object collections - lists
Section 1.3 of the PDF

« Lists are a list of objects with possibly
different types.

* One can search, loop, count with lists.
One can also add two lists or multiply a
list by an integer, which makes a
concatenation or a duplication (unlike for
numpy arrays which we will see later).

 Lists can also be indexed. One can
access the ith element with my_list[i] or
get a sub-list my_list[i:j]

Defining a list and access basic information

my_listl = [1, 3, 4, 'banana']

print('Second element is {}'.format(my_list1[1]))

print ('Number of elements: {}'.format(len(my_list1)))

print('Is \'banana\' in the list? {}'.format('banana' in my_listl))

Second element is 3
Number of elements: 4

Is ’banana’ in the list? True

Sum of two lists

my_list2 = ['string', 1+3j, [100, 1000]]
my_list = my_listl + my_list2
print(my_list)

[1, 3, 4, ’banana’, ’string’, (1+3j), [100, 1000]]

Object collections - dictionaries

Section 1.3 of the PDF

are arrays of (key,
value) pairs. Each value can be
accessed via a unique key.

The key must be a non-
modifiable object, in practice
string or integer.

One can easily loop, search,
modify a given key value, or
even add a new key quite
easily.

dictionnary
person = {'name': 'Charles', 'age': 78, 'size': 173, 'gender': 'M'}

print (person)

{’name’: ’Charles’, ’age’: 78, ’size’: 173, ’gender’: ’M’}

Accessing value using the key
template = '{} ({}) is {} years old and is {} cm'

print(template.format (person['name'], person['gender'], person['age'], person['size']))

Charles (M) is 78 years old and is 173 cm

Adding a key and its value

person['eyes'] = 'blue'’
print (person)
{’name’: ’Charles’, ’age’: 78, ’size’: 173, ’gender’: ’M’, ’eyes’: ’blue’}

Test 1f a key is present
print('name' in person)

print('brand' in person)

True

False

Looping in python
Section 1.4 of the PDF

Define a dictionnary

 Loops are at the core of

students_marks = {

programming. Jean': 12,
'Chloe': 17,
* There are two way of repeating a ‘Olivier': 8,
instruction several times: the for loop }Hl 10
and the while loop.
Print the key, values items
¢ Several inStrUCtionS are common tO for name, mark in students_marks.items():
both loops, such as print (name, mark)
. (skip instruction after and Jean 12
switch to the next element) or Chloe 17

Olivier 8
Helene 10

. (stop the loop)

Looping in python
Section 1.4 of the PDF

° Loops are at the core Of # Compute sum(i~2) for % from 0 to 9

programming. - 0
] for i in range(0, 10):

* There are two way of repeating a x 4= i#%2

iInstruction several times: the for loop print (x)

and the Whlle Ioop # Loop over fruit via a set and print only ones with a 'p'

for fruit in s:

* Several instructions are common to if 'p' in fruit:

both loops, such as print (fruit)

. (skip instruction after and bineapple

switch to the next element) or apple

pear

. (stop the loop) prune

Looping in python
Section 1.4 of the PDF

 Loops are at the core of
programming.

* There are two way of repeating a e
instruction several times: the for loop my_list.pop()
and the while loop. print(my_list)
« Several instructions are common to [’orange’, ’pineapple’, ’apple’, ’pear’, ’prune’]
both IOOpS, SUCh as [’orange’, ’pineapple’, ’apple’, ’pear’]
[’orange’, ’pineapple’, ’apple’]
: (skip instruction after and ey TmeseRe
switch to the next element) or [

. (stop the loop)

If-else blocks

° If_else bIOCkS aIIOW you to ContrOI the 1st Condition is True 2nd Condition is True All Conditions are False
IOQ'C ﬂOW Of your Code }it nur;;ber =05. }(f?t nursber =O-? }it nursber =00.
m o Al
* They work as you would expect, but , e | | _
beware Of ellfﬁnlcjrgzzr <0 ellf#nl:rgtd):r <O & ehfﬁnt:r(r;?:r <O
. . . else : else : —» else
« elif: if you want to add a third, # code # code # code
fourth, etc option use elif (only one
—P» # code after if —» # code after if — st coteramter il

option in the block ever gets

executed)
outer if statement
* : make sure your IOgiC if condition1:
does what you think it does by + SLAUEIENE(S)
keeping related if/else keywords on # inner if statement

the same indentation level! if condition2:
statement(s)

llllllllll
ooooooo
UUUUUUU

Laboratorre de Physique

List comprehension
Section 1.5 of the PDF

List
list_squares = [i**2 for i in range(1, 10)]

print (list_squares)

* List comprehension is the # Dictionnary
action of building a collection dict_squares = {i:i**2 for i in list_squares[0:5]}
with one line of code. The et i
comprehension syntax works

[1, 4, 9, 16, 25, 36, 49, 64, 81]

for a” CO”eCtlonS’ Wlth {1: 1, 4: 16, 9: 81, 16: 256, 25: 625}
conditions, or even nested
IOOpS (IOOpS Of IOOpS) # Comprehension list with a condition (e.g. keep only even numbers)

list_even = [i for i in range(0, 10) if i72==0]

print (list_even)

[0, 2, 4, 6, 8]

Functions - Section 1.6 of the PDF

* Functions are defined as a set of instruction
encapsulated into one object. ¢ Definition syntes

def function(argument):

* This is particularly convenient when one has to Femtlc| = arguant 3
the same list of instructions several times. Feturn result
If you copy-paste the same piece of code # Call syntaz
more than two times, then make a function. fumction

« A function takes some arguments, perform 6

some instructions and returns a result. # Print the result for two types of arquements

print ('function(10) = {}'.format (function(10)))

¢ The type Of the argument |S nOt flxed SO the print ('function(\'ouh\') = {}'.format(function('ouh')))
same instruction will be interpreted differently
depending on the type. This is very different t0 zunction(10) = 30
C++ behaVIOur| function(’ouh’) = ouhouhouh

Libraries

* One can write collections of functions and classes and
maintain it. Some extremely powerful libraries are
available this way:
numpy, scipy, matplotlib, pandas...

* They can usually be installed easily on command line:
pip install matplotlib

* And imported into your code
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import convolve2d

i
» I'll say a few words about the most important Ii'l pandas
packages '

Review of Python

* We reviewed:
« Basic python types and operations
« Common object collections: lists and dictionaries
« Looping and if-else statements
* Writing Functions
* Review of
« Packages/libraries and how to install them

« But our python journey is not over! We will review now the core properties of the most
important python library : numpy.

« And also common plotting and data manipulation libraries: matplotib and pandas

Numpy
And friends...

This part is based heavily on Romain Madar's
"Introduction to Python for Data Analysis" course.
Find full materials here!
https://github.com/rmadar/lecture-python

And the Python Course PDF attached to indico.

NumPy

https://github.com/rmadar/lecture-python

Numpy - Chap 2 of the PDF

. (numerical python) is one of the most important
packages in data science. Many other packages (scipy,
pandas, scikitlearn) are based upon it.

* The core improvement wrt vanilla python is
It's like a python list, but with several critical improvements:

* Vectorised operations
 Broadcasting
* Fancy indexing and slicing.

* These objects allow to efficiently perform computations
over large datasets in a very concise way from the
language point of view, and very fast from the processing
time point of view.

* The price to pay is to give up explicit for loops. This lead
to somehow a counter intuitive logic - at first.

import numpy as np
11, 12 = [1, 2, 3], [3, 4, 5]
al, a2 = np.array([1, 2, 3]), np.array([3, 4, 5])

Arrays can have arbitrary dimension,

But must all have the same data type.
Unlike lists which can contain any objects
Even of mixed types!

Vectorisation - Chap 2.3.1 of the PDF

a = np.random.randint(low=1, high=100, size=100000)

* Vectorisation is a way to make

Computations on numpy array def zzlici[;c_loop_for_inverse(array):
without explicit loops, which are for a in array:
very slow in python. g iy
* |n simple terms: you can do an ¢ Using esplicit Loop
OperatiOn on an array as |f |t was Jtimeit explicit_loop_for_inverse(a)
jUSt d Single item’ and It WI” 186 ms * 13.8 ms per loop (mean # std. dev. of 7 runs, 10 loops each)
implicitly do the operation on all
items of the array. s B)

* The idea of vectorization is to 150 ms + 13.2 ms per loop (mean * std. dev. of 7 runs, 10 loops each)
compute a given operation element- -
wise while the operation is called on ‘isest 1.2
the array itself.

106 ps * 2.65 ps per loop (mean #* std. dev. of 7 rumns, 10000 loops each)

Broadcasting - Chap 2.3.2 of the PDF

operation between shape (3) and (1)

* Broadcasting is a way to compute e 9 A
operation between arrays of having b - np.array([5])
different sizes in a implicit (and concise) printCatb = \n{}'.format(a+b))
manner.
atb =
[6 7 8]

Translating 3 2D vectors by d0=(1,4)
points = np.random.normal (size=(3, 2))

d0 = np.array([1, 4])

print('points:\n {}\n'.format(points))
print('points+d0:\n {}'.format(points+d0))

operation between shape (3) and (1,2)
a = np.array([1, 2, 3])
b = np.array([

(4],
points: (sl,
[[0.24333406 -0.80020589] 1
[1.06124037 0.11580338] print('a+b = \n{}'.format(a+b))

[0.52607555 -1.94077365]]

points+dO: a+b
[[1.24333406 3.19979411] [[5 6 7]

[2.06124037 4.11580338] [6 7 8]]
[1.52607555 2.05922635]]

Fancy indexing/slicing - Chap 2.3.3 of the PDF

* Indexing in numpy takes on a whole new level compared to vanilla python

* You can still access elements of an array using [i] or slices using [i:j] as
for lists

» But you can also saying which ones to pick, (which
IS not possible for lists)

a = np.random.randint(low=1, high=100, size=10)
print('a = {}'.format(a))

print('al2] = {}'.format(a[2]))

print('al-1] = {}'.format(al[-1]))

print('al[1, 2, 5]1] = {}'.format(al[1, 2, 5]1))

a = [26 15 60 38 79 78 12 27 86 14]
al2] = 60

al-1] = 14

all1, 2, 5]1] = [15 60 78]

Fancy indexing/slicing - Chap 2.3.3 of the PDF

* You can access sub-arrays using the format [i:j:k], meaning take Cements
from i to j in steps of k. Negative k values go through the elements in reverse.

» This also works when you have multi dimensional arrays!

Taking only the z,y values of the first vector for all observation:
print('al:, 0, 0:2] =\n {}'.format(al[:, 0, 0:2]))

3D array
a = np.random.randint(low=0, high=100, size=(5, 2, 3))
print('a = \n{}'.format(a))

al:, 0, 0:2] =
a= [[20 0]
[([[20 0 7] [43 65]
[93 24 4]] [86 2]
[46 1]
[[43 65 46] [81 15]]
[97 59 5711
Reverse the order of the 2 vector for each observation:
[[86 2 85] print('al:, ::-1, :1 = \n{}'.format(al:, ::-1, :1))
[31 0 57]]
[[46 1 94] al:, ::-1, :] =
[98 65 6]] [[[93 24 4]
[20 o 71]
[[81 15 3]
[88 47 90111 [[97 59 57]

PPPPPPPPPP

o] [43 65 46]]

Laboratoire d

Fancy indexing/slicing - Chap 2.3.3 of the PDF

® Fina”y, in numpy you can dO :a:kni).::)ldom.randint(1ow=—100, high=100, size=(5, 3))
"maSking". |f yOU prOVIde a IiSt print('a = \n{}'.format(a))
of TruelFalse values the Same print('\nmask = \n {}'.format(mask))
size and shape as your array, you)
will create a new list where only 1o 52 771
the elements with a "True" value [36 -68 88]
. [-61 -18 -71]
are included. [64 -46 58]

[-83 -12 18]]

* \We can use this to apply

mask =

selections on an array [{ True False True]
[True False Truel
* ~ can be used to negate a mask e Talee T

[False False Truell

 Masking is a super-powerful - Canci] =]

tool in particle thSiCS when [19 77 36 88 64 58 18 [-52 -68 -61 -18 -71 -46 -83 -12]
applying selections!
ki

cccccccccccc

Laboratoire de P!

Extra numpy tips - Chap 2.4 of the PDF

Dummy array initialization.

x = np.zeros(shape=(3, 2)) # Only 0

x = np.ones (shape=(3, 2)) # Only 1

x = np.full(shape=(3, 2), fill_value=10) # Only 10

x = np.eye(2) # Create identity matriz (only return 2D array)

Create sequence of numbers.

Linear inteveral from 0 to 10

np.linspace(0, 10, 10) # 10 numbers between 0 and 1

np.arange(0, 10, 1.0) # One number every 1.0 between 0 and 1
np.logspace(0, 10, 10) # 10 numbers between 10%*0 and 10%*10

Lo T o B B =N
I

Extra numpy tips - Chap 2.4 of the PDF

Shape-based manipulation of arrays.

a = np.arange(0, 18).reshape(3, 3, 2)

x = a.ravel() # Return a flat array

x = a.reshape(9, 2) # change the shape

x = a.T # transpose array: a.T[%, 7, k] = alk, 7, 2]

X = np.concatenate([a,al, axis=0) # concatenate arrays along a given azxis: shape=(6, 3, 2)
x = np.stack([a, al, axis=0) # group arrays along a given azis: shape=(2, 3, 3, 2)
Compare arrays.

Making dummy arrays for comparisons

a = np.arange(-6, 6).reshape(3, 4)

b = np.abs(a)

c = np.append(b, [[1, 2, 3, 4]1], axis=0)

Plotting with matplotlib - Chap 3.2 of the PDF

« Matplolib is an extremely rich
and there is no way to cover all its
features here. The goal of this section is just to
give short and practical examples to plot data.

import numpy as np
import matplotlib.pyplot as plt

« The main object of matplotlib is
matplotlib.pyplot imported as plt here
(and usually). The most common functions are
then called on this objects, and often takes
numpy arrays in argument (possibly with more
than one dimension)

Jmatplotlib inline

1D data plots - Chap 3.2.1 of the PDF

np.random.normal (loc=[-1, 1], scale=[0.5, 0.5], size=(1000,2)) ° We can make use Of
np.sin(x) plt.plOt(o« o)

plt.figure(figsize=(24, 10))

plt.subplot(121) # 121 means 1 line, 2 column, 1st plot Plt . hlSt (e o o)
plt.plot(x, y, marker='o', markersize=5, linewidth=0.0)

plt.subplot(122) # 122 means 1 line, 2 column, 2nd plot to pIOt One-dlmenSIOnaI
plt.hist(x, bins=20); data

“ 175

150

125

100

B

2D data plots - Chap 3.2.2 of the PDF

points = np.random.normal(loc=[0, 0], scale=[0.5, 0.8], size=(5000,2))
X, y = points[:, 0], points[:, 1]

plt.figure(figsize=(10,6))
plt.scatter(x, y, s=100*(np.sin(x))#**2, marker='o', alpha=0.3)

« Scatter is useful for 2D plotting Pt xlinC3,
plt.ylim(-3, 3);
 For example we can use ;
the size of markers as an
extra dimension 2]

3D data plots - Chap 3.2.3 of the PDF

 We can also make 3-D representations

before translation

data = np.random.normal (size=(1000, 3)) after translation

r0 = np.array([1, 4, 2])

data_trans = data + rO

xi, yi, zi = datal:,0], datal[:,1], datal:,2]
xf, yf, zf = data_trans[:,0], data_trans[:,1], data_trans[:,2]

from mpl_toolkits import mplot3d

plt.figure(figsize=(12,10))

ax = plt.axes(projection='3d"')

ax.scatter3D(xi, yi, zi, alpha=0.4, label='before translation')
ax.scatter3D(xf, yf, zf, alpha=0.4, label='after translation')
ax.set_xlabel('x"')

ax.set_ylabel('y')

ax.set_zlabel('z')

ax.legend(frameon=False, fontsize=18);

3D data plots - Chap 3.2.3 of the PDF

 We can also make 3-D representations

before translation
data = np.random.normal (size=(1000, 3)) after translation

r0 = np.array([1, 4, 2])
data_trans = data + rO

xi, yi, zi = datal: _ 4

xE. yE 2= 42838 Many other kinds of plots are possible, check matplotlib AL

documentation for comprehensive list examples! £ P :
from mpl_toolkits i ¢

plt.figure(figsize=

ax = plt.axes(projection="3d")

ax.scatter3D(xi, yi, zi, alpha=0.4, label='before translation')
ax.scatter3D(xf, yf, zf, alpha=0.4, label='after translation')
ax.set_xlabel('x"')

ax.set_ylabel('y')

ax.set_zlabel('z')

ax.legend(frameon=False, fontsize=18);

Pandas dataframes- Chap 3.3 of the PDF

 Pandas is a package which is extremely
useful to manipulate datasets.

|t can very quickly read in a dataset (for
example as CSV file) into a so-called
dataframe.

« Dataframe objects are essentially
dictionaries of numpy arrays. You can
access properties (= columns of the CSV)
by name, add new columns, and
manipulate the contents rapidly using
dumpy-like vectorization, broadcasting
and fancy indexing.

import pandas as pd

df = pd.read_csv('../data/WaveData.csv')

print (df.head())

Date/Time Hs

01/01/2017 00:30 0.875
01/01/2017 01:00 0.763
01/01/2017 01:30 0.770
01/01/2017 02:00 0.747

s W N = O

Simply take value above -99
print (df [df>-99] .head())

01/01/2017 00:00 -99.900 -99.90

Hmax

1.39
1.15
1.41
1.16

date height heightMax
NaN
1.39
1.15
1.41
1.16

0 01/01/2017 00:00 NaN
1 01/01/2017 00:30 0.875
2 01/01/2017 01:00 0.763
3 01/01/2017 01:30 0.770
4 01/01/2017 02:00 0.747

Tz

-99.900

4.421
4.520
4.582
4.515

period
NaN
4.421
4.520
4.582
4.515

Tp Peak Direction SST
-99.900 -99.9 -99.90
4.506 -99.9 -99.90
5.513 49.0 25.65
5.647 75.0 25.50
5.083 91.0 25.45

energy direction temperature
NaN NaN NaN
4.506 NaN NaN
5.513 49.0 25.65
5.647 75.0 25.50
5.083 91.0 25.45

Pandas dataframes- Chap 3.3 of the PDF

 Pandas is a package which is extremely
useful to manipulate datasets.

|t can very quickly read in a dataset (for
example as CSV file) into a so-called
dataframe.

« Dataframe objects are essentially
dictionaries of numpy arrays. You can
access properties (= columns of the CSV)
by name, add new columns, and
manipulate the contents rapidly using
dumpy-like vectorization, broadcasting
and fancy indexing.

Get numpy array for further manipulations

#

T = df['temperature'].values
P = df['period'].values

H = df['heightMax'].values
E = df['energy'].values

Plot temperature vs period vs maz_height
plt.figure(figsize=(15, 7))

plt.scatter(T, P , s=H**3, c=E, cmap='GnBu',

plt.colorbar(label='Energy')
plt.xlabel('Temperature')
plt.ylabel('Period');

alpha=0.4)

1n
9

3
= 7
@
a

oo

eeeeeeeeee

TN

175

r10.0

50

Review of Numpy and friends

 Numpy introduces a new collection called a numpy array. It's like a list but:
* Can be of arbitrary dimension
 Does vectorised operations
e Supports
« Support fancy indexing and masking
 Many excellent packages are based upon numpy including:

« Matplotlib for plotting (in particular plot(), hist(), scatter() types)

 Pandas dataframes, which are basically dictionaries of numpy arrays for efficient dataset
book-keeping and manipulation.

Conclusion

We have covered a lot of ground this morning and | don't expect
you to remember everything!

After lunch, we will attempt some practical examples. That's the
best way to learn !

Thanks for your attention!

« Speak to me in the break if you have questions

