
Introduction to Python for Data Analysis
How to manipulate and represent data with python

Romain Madar, DU Data scientist

Laboratoire de Physique de Clermont-Ferrand (UCA, CNRS/IN2P3) – FRANCE

Contact: romain.madar@clermont.in2p3.fr

September 18, 2023

mailto:romain.madar@clermont.in2p3.fr

2

Contents

Preamble 7

General scope of the lecture . 7

Content of the lecture . 7

How to get prepared . 8

1 Practical Introduction to Python 9

1.1 General information . 9

1.2 Object types . 10

1.3 Object collections . 11

1.4 Loops . 14

1.5 Few python synthax tips . 18

1.6 Functions . 20

1.7 File manipulation . 25

1.8 Plotting data: the very first step . 30

2 Basic introduction to NumPy 33

2.1 Motivations . 33

2.2 The core object: arrays . 33

2.2.1 Main differences with usual python lists . 33

2.2.2 Memory management in python and NumPy . 35

2.2.3 Main caracteristics of an array . 37

2.3 The three key features of NumPy . 37

2.3.1 Vectorization . 37

2.3.2 Broadcasting . 39

2.3.3 Working with sub-arrays: slicing, indexing and mask (or selection) 42

2.4 Few useful NumPy tips . 47

3

Contents

2.5 Example of simple gradient descent: NumPy v.s. pure python 48

2.5.1 Gradient descent: what (for) is this? . 48

2.5.2 Pure python implementation . 51

2.5.3 Numpy implementation . 52

2.6 Example of a vectorized grid scan with NumPy . 53

2.6.1 Context : the brut force grid scan . 53

2.6.2 Pure python approach : nested loops . 54

2.6.3 NumPy approach : broadcasting + vectorizaton . 56

2.6.4 Timing comparison for 2 parameters . 61

3 Three important tools to know 63

3.1 A word of caution . 63

3.2 Graphical respresentation of data : matplotlib . 63

3.2.1 Example of 1D plots and histograms . 64

3.2.2 Example of 2D scatter plot . 64

3.2.3 Example of 3D plots . 65

3.2.4 Example of 2D function z = f (x, y): notion of meshgrid 66

3.3 import and manipulate data as numpy array: pandas . 68

3.3.1 Data importation . 69

3.3.2 Cleaning the dataset using numpy syntax . 70

3.3.3 Extracting numpy arrays and plotting . 71

3.3.4 Add information in a dataframe . 72

3.3.5 Data visualization with pandas . 73

3.4 Mathematics, physics and engineering: scipy . 74

3.4.1 General overview . 74

3.4.2 Curve fitting example . 75

4 High dimensional data manipulation 79

4.1 Introduction . 79

4.2 Data model and goals . 80

4.3 Mean over the differents axis . 81

4.3.1 Mean over observations (axis=0) . 81

4.3.2 Mean over the 10 vectors (axis=1) . 82

4.3.3 Mean over the coordintates (axis=2) . 83

4

Contents

4.4 Distance computation . 84

4.4.1 Distance to a reference r0 . 84

4.4.2 Distance between ri and < r >i for each event . 85

4.5 Pairing 3D vectors for each observation, without a loop . 87

4.5.1 Finding all possible (ri, rj) pairs for all events . 87

4.5.2 Computing (minimum) distances on these pairs . 90

4.6 Selecting a subset of ri based on (x, y, z) values, without loop 92

4.6.1 Counting number of points amont the 10 with xi > yi in each event 93

4.6.2 Plotting z for the two types of population (x > y and x < y) 94

4.6.3 Computation of xi + yi + zi sum over a subset of the 10 positions 95

4.6.4 Pairing with a subset of ri verifying xi > yi only . 97

4.7 Some comments . 98

5 Introduction to image processing 101

5.1 Motivations . 101

5.2 Basic investigations . 102

5.2.1 Plotting . 102

5.2.2 Histograms . 103

5.2.3 Color and gray scale . 104

5.3 Numerical operations on images . 107

5.3.1 Addition & subtraction . 108

5.3.2 Modifying certain pixels . 109

5.3.3 Modifying regions . 110

5.4 Image filters with NumPy . 111

5.4.1 Kernels, image blocks v.s. windows . 111

5.4.2 Image blocks: intuitive but inefficient approach . 115

5.4.3 Image blocks : fast numpy-based approach . 117

5.5 Few typical filters . 121

5.5.1 Few utility functions . 121

5.5.2 Blurry filter . 123

5.5.3 Edge detection . 124

5.5.4 Sharpen filter . 126

5

Contents

6

Preamble

These notes contain the material for a python lecture proposed for the master PFA, for the Data scientist
University Diploma (DU), and the master iMAAP, hosted at Université Clermont-Auvergne (UCA). Basic python
knowledge is not required but would be very valuable. However, it is better to know about some basic
mathemtatics like simple vectorial operation or statistics.

data scientist university degree proposed at Université Clermont-Auvergne (UCA). No prerequisite knowledge
is assumed but being familiar with one progamming language might be useful. It is better to know about
some basic mathemtatics like simple vectorial operation or statistics. All the material of this lecture can be
found in this github repository.

This lecture is only a support to help you doing things yourself. As any other language, you must
practice it if you want to progress. If you don’t write and test code on your own, this lecture is close to
be useless. I am available for any questions or general feedback on this lecture, so feel free to contact me:
romain.madar@clermont.in2p3.fr.

General scope of the lecture

Python offers a rapidly evolving ecosystem to perform data analysis and it is both out of scope and hopeless
to be extensive in this lecture. The main goal is therefore to make people familiar with the basic of python
and data analysis tools in order to make them able to extend their knowledge on themself. Object oriented
programming is not presented in this lecture. Pratical exercises are also available to provide few working
examples as a starting point.

What this lecture is? A basic and practical introduction to python together with some of the most important
data analysis tools namely numpy, matplotlib and pandas.

What this lecture isn’t? Neither a formal introduction to python, nor a extensive demonstration of all features
available in the tools mentioned above.

Content of the lecture

There are a lot of information in this lecture. In order to help you to focus on important aspect, each chapter
start with a list of expected skills that you should take away, ranked with three levels: basic, medium, expert.

1. Introduction to Python. This first section is dedicated to basic object type and operation in python.
Fonctions will also be described but object oriented programming will not be covered – online notebook

7

https://www.uca.fr/formation/nos-formations/par-ufr-ecoles-et-iut/institut-des-sciences/ecole-universitaire-de-physique-et-dingenierie/master/master-physique-fondamentale-et-applications-5
https://www.uca.fr/formation/nos-formations/catalogue-des-formations/du-data-scientist
https://www.uca.fr/formation/nos-formations/catalogue-des-formations/du-data-scientist
https://imapp.eu/
https://www.uca.fr/formation/nos-formations/catalogue-des-formations/du-data-scientist-23438.kjsp
https://github.com/rmadar/lecture-python
mailto:romain.madar@clermont.in2p3.fr%5D
https://nbviewer.jupyter.org/github/rmadar/lecture-python/blob/master/lectures/1-PythonIntroduction.ipynb

Contents

2. Introduction to numpy. Differences between usual python objects and numpy objects will be introduced –
online notebook

3. Three tools to know. This section gives a glimpse of matplotlib, pandas and scipy packages allowing
powerful data analysis – online notebook

4. Multidimensional data manipulation. Non-trivial operation for multidimensional data using the full
power of numpy. Most of these operation can be performed with existing tools but it is intructive to do it once
with native numpy – online notebook

5. Introduction to image processing. Very first steps of image processing (definition, plotting, operation)
including basic filters application (noising, sharpen, border detection) – online notebook

Other practical examples. Depending on the remaining time (and the people taste), we can go through
different topics among the following ones. Some of them can be also used as a project performed by students.

• Fourier analysis
• Principal component analysis (PCA)
• Random Forest regression
• Gaussian processes

How to get prepared

1. Get familiar with python. I would recommand two links: w3school tutorial (both basic and complete)
and https://www.learnpython.org (code can be ran directly within your web browser).

2. Install python with anaconda. In order to run python on your own machine, you should install it. I would
recommand anaconda for this, which also includes jupyter-notebook.

3. Install git. This is a versioning software which can be installed following these instructions. This whole
repository can be cloned using git clone https://github.com/rmadar/lecture-python command.

4. Get familiar with notebooks. This represents a nice environement combining codes, notes and plots.
This is very powerful to learn something and play with it. You can checkout this video or this post.

8

https://nbviewer.jupyter.org/github/rmadar/lecture-python/blob/master/lectures/2-NumpyIntroduction.ipynb
https://nbviewer.jupyter.org/github/rmadar/lecture-python/blob/master/lectures/3-ToolsToKnow.ipynb
https://nbviewer.jupyter.org/github/rmadar/lecture-python/blob/master/lectures/4-HighDimensionalData.ipynb
https://nbviewer.jupyter.org/github/rmadar/lecture-python/blob/master/lectures/5-ImageProcessing.ipynb
https://www.w3schools.com/python/
https://www.learnpython.org
https://www.anaconda.com/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.youtube.com/watch?v=CwFq3YDU6_Y
https://realpython.com/jupyter-notebook-introduction/

Chapter 1

Practical Introduction to Python

Skills to take away

• basic: int/float/str, list/dictionnary, indexing/slicing, loops, functions, reading/writing files
• medium: docstring, comprehension, zip()/enumerate(), sorting dictionnary
• expert: packing/unpacking, parsing file with correct casting, basic plotting

1.1 General information

Python can be installed using anaconda. Jupyter-notebook (also coming with anaconda) is probably the
easiest way to follow this lecture and make your own notes. The goal of this first chapter is to give a very quick
introduction basis, but practice is mandatory to get confortable with python objects and synthax. Practicing
is possible with a web browser only using https://www.learnpython.org. A more complete tutorial (but not
interactive) can be found in w3school python tutorials. I recommand to follow the last tutorial up to Arrays.

In python, there is one instruction per line. Variable assignment is done with with =, indentation is used to
group instructions together under a loop or a condition block: there is no backet (like in C++) or equivalent.
Comments (i.e. uninterpreted text) start with #. Importation of external modules or fonction can be done with
three different ways: import module, import module as m or from module import this_function.

In the following example, the result of the command will be printed so that people can check that the computer
is doing what is expected. The instruction print(x) will print the content of x. If several variables are printed,
is it convenient to use print('x={} and y={}'.format(x, y)) syntax that will print x and y in bracket
fields with one command - even if they have different types.

Note For python version greather than 3.6, we can also use f-strings which simplify a bit the print commands.
This works as follow:

print(f'x={x} and y={y}')

where the x and y in bracket are actual python variables.

9

https://www.anaconda.com/
https://jupyter.org/
https://www.learnpython.org
https://www.w3schools.com/python

Chapter 1. Practical Introduction to Python

1.2 Object types

Numbers. There are three type of numbers: int, float and complex. The usual operations (+, -, *, /) are
available. In addition, there is also a**b (which means ab), a // b and a % b (which are the result of integer
divisions - see example below).

Basic numbers and operations
a = 2
b = 3.14
print(a+b)
print(a**b)

5.140000000000001
8.815240927012887

Complex numbers and power
a = 1j
a**2

(-1+0j)

Integer division example (// and % operators)
a , b = 10, 4
divisor, rest = a//b, a%b
print('{} = {}x{} + {}'.format(a, divisor, b, rest))

10 = 2x4 + 2

Strings. String allows to manipulate words, sentence or even text with specific methods. String are also python
lists and list methods work as well (see below). The common and useful string manipulations can be counting
the number of letters with len(word) or even manipulate a collection of words using sentence.split('
'). Many methods exist, which can be looked at by typing help(str) in a python terminal or a jupyter
nootebook.

w1 = 'hello'
print(w1, len(w1), w1[3])

hello 5 l

Summing two strings is possible (all other operators dont work)
blank, w2 = ' ', 'world'
sentence = w1 + blank + w2
print(sentence)

hello world

10

1.3. Object collections

Multiplying a string by an integer is also possible
repetition = sentence*3
print(repetition)

hello worldhello worldhello world

Get a list of words from a sentence (cf. below for list objects)
s = 'It is rainy today'
list_words = s.split(' ')
print(list_words)

[’It’, ’is’, ’rainy’, ’today’]

Looping over the words and get the number of letters
for w in s.split(' '):

print(w, len(w))

It 2
is 2
rainy 5
today 5

1.3 Object collections

There are four types of collection, which share several methods but differ from various aspects:

• list
• dictionnary
• tuple
• set

The most commonly used are the lists and dictionnary. The specificy of the set is that it is unordered, while
the specificyt of the tuple is that it cannot be modified. The common methods are

• number of items: len(x)
• loop over items with for element in x:
• check if a item is in the list: element in x

Lists. This is one of the most used collection object in python because it is the next-to-simplest level, after
individual variables. A python list is a list of objects with possibly different types. One can search, loop,
count with list. One can also add two lists or multiply a list by an integer, which makes a concatenation
or a duplication (these points will be important for numpy arrays). The indexing of elements is also a nice
way to access the information of interest: one can access the ith element with my_list[i] or get a sub-list

11

Chapter 1. Practical Introduction to Python

with my_list[i:j]. One can also take only one element every n with my_list[i:j:n] (more precisely
this takes elements of index i + p × n until j, with p = 0, 1, 2, ...). With this synthax, reverting the order of
the list is easy: reverted_list = my_list[::-1], where empty variable are default values (namely 0 and
len(my_list)).

Defining a list and access basic information
my_list1 = [1, 3, 4, 'banana']
print('Second element is {}'.format(my_list1[1]))
print('Number of elements: {}'.format(len(my_list1)))
print('Is \'banana\' in the list? {}'.format('banana' in my_list1))

Second element is 3
Number of elements: 4
Is ’banana’ in the list? True

Sum of two lists
my_list2 = ['string', 1+3j, [100, 1000]]
my_list = my_list1 + my_list2
print(my_list)

[1, 3, 4, ’banana’, ’string’, (1+3j), [100, 1000]]

List multiplied by an integer
my_list = my_list*2
print(my_list)

[1, 3, 4, ’banana’, ’string’, (1+3j), [100, 1000], 1, 3, 4, ’banana’, ’string’, (1+3j), [100,
1000]]

Looping over list element and print the type of seven first elements in the reversed order.
for element in my_list[6:0:-1]:

print('{} is {}'.format(element, type(element)))

[100, 1000] is <class ’list’>
(1+3j) is <class ’complex’>
string is <class ’str’>
banana is <class ’str’>
4 is <class ’int’>
3 is <class ’int’>

sets and tuples. Tuples and sets are modified version of python list. Tuples are ordered but cannot be
modified (no assignment, no addition, while sets are not ordered but can be mofided. In this context, order
means indexing (so x[i:j:n] synthax, among others). Search or loop over elements work in the same way
as for list.

12

1.3. Object collections

Tuple
t = (1, 3, 7)
print(t)

Access the third element
print(t[2])

Try to modify the second element - using the 'try - except' synthax
try:

t[1] = 'hello'
except TypeError :

print('Impossible to change the value of a tuple')

(1, 3, 7)
7
Impossible to change the value of a tuple

Sets can modified with methods like s.add(x) or s.update([x, y]).

Set
s = {'apple', 'banana', 'orange'}
print(s)

Add one element
s.add('pineapple')
print(s)

Add a list
s.update(['pear', 'prune'])
print(s)

{’orange’, ’banana’, ’apple’}
{’pineapple’, ’orange’, ’banana’, ’apple’}
{’orange’, ’pineapple’, ’apple’, ’pear’, ’prune’, ’banana’}

Try to access the second element - using the 'try - except' synthax
try:

print(s[1])
except TypeError :

print('Impossible to access element via indexing')

Impossible to access element via indexing

Dictionnaries. Various object types are important to manipulate and organize data. The most common one is
the dictionnary which work with a pair of (key, value). The key must be a non-modifiable object, in practice
string or integer, but cannot be a list. This is a very powerful concept to store different types of information
into the same object. One can easily loop, search, modify a given key value, or even add a new key quite easily.

13

Chapter 1. Practical Introduction to Python

dictionnary
person = {'name': 'Charles', 'age': 78, 'size': 173, 'gender': 'M'}
print(person)

{’name’: ’Charles’, ’age’: 78, ’size’: 173, ’gender’: ’M’}

Accessing value using the key
template = '{} ({}) is {} years old and is {} cm'
print(template.format(person['name'], person['gender'], person['age'], person['size']))

Charles (M) is 78 years old and is 173 cm

Adding a key and its value
person['eyes'] = 'blue'
print(person)

{’name’: ’Charles’, ’age’: 78, ’size’: 173, ’gender’: ’M’, ’eyes’: ’blue’}

Test if a key is present
print('name' in person)
print('brand' in person)

True
False

1.4 Loops

Loops are at the core of programming and especially for data analysis oriented tasks. There are two way of
repeating a instruction several times: the for loop and the while loop. Several instructions are common to
both loops, such as continue (skip instruction after and switch to the next element) or break (stop the loop),
but the use case of these two ways are different.

For loops. For data analysis, I think these are the most used ones. But as we will see in the introduction to
numpy, for loops must not be used for heavy computations in python. For loops are relevant for small (~1000)
data samples (and computations). We’ll come back to this point in the lecture. Below, few example are given.

Compute sum(iˆ2) for i from 0 to 9
x = 0
for i in range(0, 10):

x += i**2
print(x)

285

14

1.4. Loops

Loop over fruit via a set and print only ones with a 'p'
for fruit in s:

if 'p' in fruit:
print(fruit)

pineapple
apple
pear
prune

There are several ways to loop over dictionnary depending on how we want to access the information. Indeed,
you can access information by keys, values, or both. An example of each are given below.

Loop over keys for a dictionnary and access the value of each
for properties in person:

value = person[properties]
print('{}: {}'.format(properties, value))

name: Charles
age: 78
size: 173
gender: M
eyes: blue

Loop over dictionnary values only
for v in person.values():

print(v)

Charles
78
173
M
blue

Loop over both keys and values directly
for key, value in person.items():

print('{}: {}'.format(key, value))

name: Charles
age: 78
size: 173
gender: M
eyes: blue

Tip: how to sort a dictionnary? It an can be noted that dictionnary are natively not ordered. This means that you
cannot access a item with its index, since there is no index. However, it can be convenient to sort dictionnary

15

Chapter 1. Practical Introduction to Python

keys according ot their values, using the general python function sorted(collection, key=function)
and a type of object called OrderDict from collections module, as explained below.

Define a dictionnary
students_marks = {

'Jean': 12,
'Chloe': 17,
'Olivier': 8,
'Helene': 10
}

Print the key, values items
for name, mark in students_marks.items():

print(name, mark)

Jean 12
Chloe 17
Olivier 8
Helene 10

The sorted() function works on any type of collection than can be looped over (called iterable). It needs the
collection and the function which return a key on which to sort for each object of the collection. This can be
for e.g. a letter or a number. Let’s try both by defining a function getting either the mark or the first letter of
the name, from a dictionnary item (name, mark).

Order it by increasing marks
def get_mark(item):

return item[1]

Or by the first letter of the name
def get_name(item):

return item[0][0]

Testing with an item
item_test = ('Jacques', 12)
print('{} has a mark of {} and {} as 1st letter'.format(item_test, get_mark(item_test),

get_name(item_test)))↪→

(’Jacques’, 12) has a mark of 12 and J as 1st letter

We can now apply the sorted() function to the collection of items of the initial directory. This will return a
collection of sorted items that can be later converted into a dictionnary. This last step depends on python
version (in version 2.5, one has to use OrderDict from collections module while it’s not needed in python
3 - the version of python can be dynamically checked with sys.version_info from sys module).

16

1.4. Loops

Get all items and sort them by increasing mark
all_items = students_marks.items()
items_sorted_by_marks = sorted(all_items, key=get_mark)
items_sorted_by_names = sorted(all_items, key=get_name)

Check the version of python
import sys
version = sys.version_info[0]
isPython2 = version == 2

Final conversion of collection of items into a dictionnary
if isPython2:

from collections import OrderedDict
marks_sorted_dict = OrderedDict(items_sorted_by_marks)
names_sorted_dict = OrderedDict(items_sorted_by_names)

else:
marks_sorted_dict = {k: v for k, v in items_sorted_by_marks}
names_sorted_dict = {k: v for k, v in items_sorted_by_names}

Check the mark sorted results:
for k, v in marks_sorted_dict.items():

print(k, v)

Olivier 8
Helene 10
Jean 12
Chloe 17

Check the name sorted results:
for k, v in names_sorted_dict.items():

print(k, v)

Chloe 17
Helene 10
Jean 12
Olivier 8

While loops. They are bit less used in practive but they are quickly discribed for completness. The idea is to
repeat a given instruction until a condition is reached.

Cast (ie change type) the set s into a list
my_list = list(s)

Remove item one by one until there are no items left.

17

Chapter 1. Practical Introduction to Python

while len(my_list)>0:
my_list.pop()
print(my_list)

[’orange’, ’pineapple’, ’apple’, ’pear’, ’prune’]
[’orange’, ’pineapple’, ’apple’, ’pear’]
[’orange’, ’pineapple’, ’apple’]
[’orange’, ’pineapple’]
[’orange’]
[]

1.5 Few python synthax tips

Comprehension. This is the action of building a collection with one line of code. The comprehension syntax
work for all collections, with conditions, or even nested loops (loops of loops). Few examples are given below.

List
list_squares = [i**2 for i in range(1, 10)]
print(list_squares)

Dictionnary
dict_squares = {i:i**2 for i in list_squares[0:5]}
print(dict_squares)

[1, 4, 9, 16, 25, 36, 49, 64, 81]
{1: 1, 4: 16, 9: 81, 16: 256, 25: 625}

Comprehension list with a condition (e.g. keep only even numbers)
list_even = [i for i in range(0, 10) if i%2==0]
print(list_even)

[0, 2, 4, 6, 8]

Comprehension with nested loops
sum_integers = [i*10+j for i in range(0,5) for j in range(0, 5)]
print(sum_integers)

[0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 20, 21, 22, 23, 24, 30, 31, 32, 33, 34, 40, 41, 42, 43,
44]

Looping with enumerate and zip.

The keywork enumerate return directly a counter together with the element arising in the loop. This is useful
if you need to count the number of iterations of the loop. This can be done without enumerate but you need
to add two lines (initialisation of the counter, and incrementation).

18

1.5. Few python synthax tips

Position of each word in a sentence
sentence = 'I would like to analyse this sentence in term of word position'
words = sentence.split(' ')
for i, w in enumerate(words):

print(w.ljust(10) + ': ' + str(i))

I : 0
would : 1
like : 2
to : 3
analyse : 4
this : 5
sentence : 6
in : 7
term : 8
of : 9
word : 10
position : 11

The zip(list1, list2) synthax allows to form pairs using elements of each list at the same position. This
is quite convenient to associate some objects which are stored in different collections in a very quick and
readable way. If list1 and list2 don’t have the same size, the mimimum of the two lenght is taken. Finally,
the zip() command can take more than two collections and return then a group of element which has the
size of the number of collection.

Associate fruits and colors
fruits = ['banana', 'orange', 'pineapple', 'pear', 'prune']
colors = ['yellow', 'orange', 'brown', 'green', 'purple']
for f, c in zip(fruits, colors):

print('{} is {}'.format(f, c))

banana is yellow
orange is orange
pineapple is brown
pear is green
prune is purple

Using zip() with three lists
l1, l2, l3 = range(0, 10), range(0, 100, 10), range(0, 1000, 100)
for i, j, k in zip(l1, l2, l3):

print(i, j, k, i+j+k)

0 0 0 0
1 10 100 111
2 20 200 222
3 30 300 333
4 40 400 444

19

Chapter 1. Practical Introduction to Python

5 50 500 555
6 60 600 666
7 70 700 777
8 80 800 888
9 90 900 999

1.6 Functions

Functions are defined as a set of instruction encapsulated into one object. This is particulary convenient
when one has to the same list of instructions several times. A good guideline to know when to write a function
could be

If you copy-paste the same pieace of code more than two times, then make a function

Definition. A function takes some arguments, perform some instruction an return a result. The syntax to
define and call a function is showed below. In python, function must be defined before being used (as opposed
to C++ where it can be different, as soon as the function is declared). This makes the concept of package quite
relevant to wrapp-up several function into a python file which can be imported in the main code.

Definition syntax
def function(argument):

result = argument * 3
return result

Call syntax
function(2)

6

The type of the arguement is not fixed (since it is a general feature of python) so the same instruction will
be interpreted differently depending on the type. The following example shows the different result of the
function above for two argument types.

Print the result for two types of arguements
print('function(10) = {}'.format(function(10)))
print('function(\'ouh\') = {}'.format(function('ouh')))

function(10) = 30
function(’ouh’) = ouhouhouh

def person_printer(p):
template = '{} ({}) is {} years old and is {} cm'
print(template.format(p['name'], p['gender'], p['age'], p['size']))
return

20

1.6. Functions

def grow_old(p, n_years):

1. copy the dictionnary person (otherwise p *will* be modified)
res = p.copy()

2. Compute the new age and size
new_age = res['age'] + n_years
new_size = res['size'] - n_years*0.13

3. Assign the new age/size to the result
res['age'] = new_age
res['size'] = new_size

4. Return the result
return res

Print before growing old
person_printer(person)

Growing old
old_guy = grow_old(person, 10)

Print after growing old
person_printer(old_guy)

Charles (M) is 78 years old and is 173 cm
Charles (M) is 88 years old and is 171.7 cm

Docstring.

This offers the possibility to document your code in a proper way, which is quite useful for others (and for
you, when you will re-use a code after several years). This is then a good practice to do, even if it takes time.
This can be accessed using the command help(function) or by using the keyboard shortcut Shift+Tab
in jupyter notebook (when the cursor is after the opening parenthesis of the function). The syntax to add
docstring is '''My documentation''' at the very begining of the function.

def grow_old(p, n_years):
'''
Take a person dictionnary and update the age and the size to make the person older.

Parameters

p: dictionnary

Person object as defined earlier in the code, with at least 'age' (year)
and 'size' (cm) keys, to get old.

n_years: integer
Number of years to be added to the age of the person.

21

Chapter 1. Practical Introduction to Python

Return

person: dictionnary

Person object as defined earlier in the code with age and size updated as
age -> age+n_years
size -> size-n_years*0.13

'''

1. copy the dictionnary person (otherwise p will be modified, which might problematic)
res = p.copy()

2. Compute the new age and size
new_age = res['age'] + n_years
new_size = res['size'] - n_years*0.13

3. Assign the new age/size to the result
res['age'] = new_age
res['size'] = new_size

4. Return the result
return res

help(grow_old)

Help on function grow_old in module __main__:

grow_old(p, n_years)
Take a person dictionnary and update the age and the size to make the person older.

Parameters
–––––
p: dictionnary

Person object as defined earlier in the code, with at least ’age’ (year)
and ’size’ (cm) keys, to get old.

n_years: integer
Number of years to be added to the age of the person.

Return
–––
person: dictionnary

Person object as defined earlier in the code with age and size updated as
age -> age+n_years
size -> size-n_years*0.13

There are several ways to organise the docstring and the example above is based on numpy docstring style.
Note that docstring can be also added to a module (in practice, a python file) to document the content, goal
and usage of this module.

Arbitrary number of arguments: *args and **kwargs. The example above are relatively simple and

22

1.6. Functions

generally function takes several arguments. Sometime it is even convenient to have an unfixed number of
arguments, so that the function is rather evolutive when the code grows. Python offres a nice way to define
such a function thanks to the packing and unpacking notion, which is describe right below.

Apparte: packing and unpacking. In short, this is the possibity to convert a list into a serie of objects (unpack-
ing) or vis-versa (packing). This way of writing collection makes code developments very consise and fast,
especially to call function with a several arguments in a nice way. This also allows to define function with an
arbitrary number of arguments as already mentioned. The following dummy function is used to illustrate the
concept of packing/unpacking with both a list and a dictionnary.

Test function
def mean(a, b, c):

return (a+b+c)/3.

It is possible to use a list of three number to specify the argument values of the mean(a, b, c) function,
using the unpacking syntax for list: *list. This is demonstrated below:

Packing & unpacking with a list (or a tuple): *list
my_numbers = [10, 12, 15]
mean(*my_numbers)

12.333333333333334

This is also sometime convenient to call the argument by their name (mostly to make the code more readable).
This type of arguments are called keyword arguments and can be packed/unpacked into a dictionnary. Each
argument name is a key of this dictionnary and the value is the values passed to the function. The unpacking
is done with **dict.

Packing & unpacking with a dictionnary: **dict
my_numbers = {'a': 10, 'b': 12, 'c': 15}
mean(**my_numbers)

12.333333333333334

Coming back to the initial motivation, i.e. having an arbitrary number of arugments. It is possible to define
such a function as follow - which in that case just print number and the list of arguments:

Function definition with *args
def test_function(*args):

print('There are {} arguments: '.format(len(args)))
for a in args:

print(' -> {}'.format(a))
print('')
return

23

Chapter 1. Practical Introduction to Python

Test with different numbers/types of arguments
test_function()
test_function('hoho')
test_function('hoho', 3)
test_function('hoho', 3, [1,'banana'], {'mood': 'happy', 'state': 'holidays'})

There are 0 arguments:

There are 1 arguments:
-> hoho

There are 2 arguments:
-> hoho
-> 3

There are 4 arguments:
-> hoho
-> 3
-> [1, ’banana’]
-> {’mood’: ’happy’, ’state’: ’holidays’}

Function definition with kwargs
def test_function(**kwargs):

print('There are {} arguments: '.format(len(kwargs)))
for k, v in kwargs.items():

print(' {}={}'.format(k, v))
print('')
return

test_function()
test_function(x='hoho')
test_function(word='hoho', multiplicity=3)
test_function(a='hoho', N=3, shopping=[1,'banana'], feeling={'mood': 'happy', 'state':

'holidays'})↪→

There are 0 arguments:

There are 1 arguments:
x=hoho

There are 2 arguments:
word=hoho
multiplicity=3

There are 4 arguments:
a=hoho
N=3
shopping=[1, ’banana’]

24

1.7. File manipulation

feeling={’mood’: ’happy’, ’state’: ’holidays’}

This can be used to declare argument in a very readable and concise way. This might be helpful for some
cosmetic argument of plot that can be common to several plots (but not all). We’ll see some concrete example
later in the lecture. In the meanwhile, here is the equivalent of last call from the code above:

Pack all keyword arguments in a dictionnary first
my_args = {

'a': 'hoho',
'N': 3,
'shopping': [1,'banana'],
'feeling': {'mood': 'happy', 'state': 'holidays'}

}

Then call the function
test_function(**my_args)

There are 4 arguments:
a=hoho
N=3
shopping=[1, ’banana’]
feeling={’mood’: ’happy’, ’state’: ’holidays’}

1.7 File manipulation

File handling is quite important since it enable interaction between your code and input/ouput data (called
I/O). There are several features related to file handeling in python and this short section just give few basic
practices.

Open/close a file. Python has native methods to open and close file. While closing a file doesn’t allow for
many variations, the opening can be done in different mode, depending if we want to read, write or append
to the openned file. The basic syntax is:

Open
f = open('my_file_name.txt', option)

Close
f.close()

where option is a one letter string which can be: + r read (default): to just read the file + a append: to add
content at the end of an existing file + w write: to write content in a file (it creates a new file) + x create: to
create a new file

Write a file.

25

Chapter 1. Practical Introduction to Python

Text to be written (can be one line string 'my text' or multiple lines string - docstring)
text = '''Gervaise avait attendu Lantier jusqu’à deux heures du matin. Puis,
toute frissonnante d’être restée en camisole à l’air vif de la fenêtre,
elle s’était assoupie, jetée en travers du lit, fiévreuse, les joues
trempées de larmes.
'''

Open in write mode
f = open('test.txt', 'w')

Write string
f.write(text)

Close
f.close()

Read a file. The following example load the precedent file and loop over each line to analyse its content. One
can note several issues: first one sentence can be on two lines, and second, each end of line containt a\n (which
is an invisible caracter meaning “go-to-next-line”). There is a method to clean a line, called line.strip()
and remove all spaces and invisible caracteres, unless specifed otherwise - see help(str.strip).

Open the file in read mode
f = open('test.txt', 'r')

Loop over the lines
for line in f:

Print a header to make the ouput clearer
print('\n\n{}'.format('='*50))

Print the line as it is given
print('This line: {}'.format(line))

Split by '.' to isolate sentence
sentences = line.split('.')
print('This line has {} sentences: '.format(len(sentences)))

Split each sentence by ' ' to isolate words
for i,s in enumerate(sentences):

sclean = s.strip()
words = sclean.split(' ')
print(' - sentence {}: {}'.format(i, words))

f.close()

==
This line: Gervaise avait attendu Lantier jusqu’à deux heures du matin. Puis,

26

1.7. File manipulation

This line has 2 sentences:
- sentence 0: [’Gervaise’, ’avait’, ’attendu’, ’Lantier’, ’jusqu’à’, ’deux’, ’heures’, ’du’,

’matin’]
- sentence 1: [’Puis,’]

==
This line: toute frissonnante d’être restée en camisole à l’air vif de la fenêtre,

This line has 1 sentences:
- sentence 0: [’toute’, ’frissonnante’, ’d’être’, ’restée’, ’en’, ’camisole’, ’à’, ’l’air’,

’vif’, ’de’, ’la’, ’fenêtre,’]

==
This line: elle s’était assoupie, jetée en travers du lit, fiévreuse, les joues

This line has 1 sentences:
- sentence 0: [’elle’, ’s’était’, ’assoupie,’, ’jetée’, ’en’, ’travers’, ’du’, ’lit,’,

’fiévreuse,’, ’les’, ’joues’]

==
This line: trempées de larmes.

This line has 2 sentences:
- sentence 0: [’trempées’, ’de’, ’larmes’]
- sentence 1: [”]

Re-write a modifed version of a file into a new file. It can be quite convenient to modify an existing file to
correct a systematical mistake automatically, or simply do more complexe operation. The example below
shows how to remove all the “e” from the text below and write it in a new file.

Open the in/out files
f_i = open('test.txt', 'r')
f_o = open('test_without_e.txt', 'w')

Loop over line, remove all "e" for each, and write the result in the output file
for line in f_i:

line_without_e = line.replace('e', '') # replace "e" by nothing
f_o.write(line_without_e)

Close all files
f_i.close()
f_o.close()

Open in read mode and check the result
f = open('test_without_e.txt', 'r')
print(f.read())

27

Chapter 1. Practical Introduction to Python

Grvais avait attndu Lantir jusqu’à dux hurs du matin. Puis,
tout frissonnant d’êtr rsté n camisol à l’air vif d la fnêtr,
ll s’était assoupi, jté n travrs du lit, fiévrus, ls jous
trmpés d larms.

Read a csv file to get data.

This use case is quite important since it allows to convert a file with data into variables accessible in the
code (for some computation, plotting, etc . . .). One the most basic format to store data is called csv (for
comma-separated values) which can import/export from any spreadsheet software (like excel). This format is
not necessarily appropriate for large dataset but is quite useful if a large number of situations. one must be
able to manipulate it easily, as shown in the example below.

Creation of a csv file on the fly using a docstring

Data taken from kaggle: https://www.kaggle.com/jolasa/waves-measuring-buoys-data-mooloolaba
data_csv_format = '''index,date,height,heightMax,period,energy,direction,temperature
1,01/01/2017 00:00,-99.9,-99.9,-99.9,-99.9,-99.9,-99.9
2,01/01/2017 00:30,0.875,1.39,4.421,4.506,-99.9,-99.9
3,01/01/2017 01:00,0.763,1.15,4.52,5.513,49,25.65
4,01/01/2017 01:30,0.77,1.41,4.582,5.647,75,25.5
5,01/01/2017 02:00,0.747,1.16,4.515,5.083,91,25.45
6,01/01/2017 02:30,0.718,1.61,4.614,6.181,68,25.45
7,01/01/2017 03:00,0.707,1.34,4.568,4.705,73,25.5
8,01/01/2017 03:30,0.729,1.21,4.786,4.484,63,25.5
9,01/01/2017 04:00,0.733,1.2,4.897,5.042,68,25.5
10,01/01/2017 04:30,0.711,1.29,5.019,8.439,66,25.5
11,01/01/2017 05:00,0.698,1.11,4.867,4.584,64,25.55
12,01/01/2017 05:30,0.686,1.14,4.755,5.211,56,25.55
13,01/01/2017 06:00,0.721,1.12,4.843,5.813,67,25.5
14,01/01/2017 06:30,0.679,1.22,4.948,4.71,81,25.45
15,01/01/2017 07:00,0.66,1.08,5.068,5.353,90,25.45
16,01/01/2017 07:30,0.662,1.18,5.263,7.436,67,25.4
17,01/01/2017 08:00,0.653,1.21,5.007,6.001,90,25.45
18,01/01/2017 08:30,0.665,1.17,4.952,6.414,90,25.55
19,01/01/2017 09:00,0.684,1.55,5.022,6.691,88,25.6
20,01/01/2017 09:30,0.679,1.09,4.926,6.804,88,25.65
21,01/01/2017 10:00,0.667,1.12,4.928,6.641,122,25.75
22,01/01/2017 10:30,0.688,1.13,4.808,5.958,91,25.7
23,01/01/2017 11:00,0.644,0.99,4.559,6.691,92,25.9
'''

Create csv file using these data
f = open('wave_data.csv', 'w')
f.write(data_csv_format)
f.close()

Reading the csv file and storing values in python objects. In this example, we’ll see how to store all information
about the wave in a list of dictionnaries.

28

1.7. File manipulation

Open the file in read mode
f = open('wave_data.csv', 'r')

Get the first line (calling the readline() method once) to extract the feature names.
features = f.readline().strip().split(',')
print(features)

Loop over lines and store the information
data = []
for l in f:

values = l.strip().split(',')
data_single_wave = {var: val for var, val in zip(features, values)}
data.append(data_single_wave)

[’index’, ’date’, ’height’, ’heightMax’, ’period’, ’energy’, ’direction’, ’temperature’]

helper function for a nice printing
def print_wave(w):

tmp = 'Wave {} ({}) had a heigh of {}m with a temperature of {} degree'
print(tmp.format(w['index'], w['date'], w['height'], w['temperature']))

Print the first 5 waves
for wave in data[:5]:

print_wave(wave)

Wave 1 (01/01/2017 00:00) had a heigh of -99.9m with a temperature of -99.9 degree
Wave 2 (01/01/2017 00:30) had a heigh of 0.875m with a temperature of -99.9 degree
Wave 3 (01/01/2017 01:00) had a heigh of 0.763m with a temperature of 25.65 degree
Wave 4 (01/01/2017 01:30) had a heigh of 0.77m with a temperature of 25.5 degree
Wave 5 (01/01/2017 02:00) had a heigh of 0.747m with a temperature of 25.45 degree

At the stage, the problem is that the type of object which are stored is string and not numbers . . . so no
computation can be made. Typically, the following code will crash because the division between string is not
defined:

Compute the average height
heights = [w['height'] for w in data]
average = sum(heights)/len(heights)

One has to cast (i.e. change type) the object stored into the dictionnaries. They can all casted as float but the
date. The index makes more sense as integer as well. So the following can work:

Manage string to time object conversion
def str_to_time(date_str):

import datetime
return datetime.datetime.strptime(date_str, '%d/%m/%Y %H:%M')

29

Chapter 1. Practical Introduction to Python

Container with properly converted data
DATA = []

Loop over waves and make the proper conversion depending on the feature name
for w in data:

wgood = w.copy()
for k in w:

if k == 'index': # Cast string into an integer
wgood[k] = int(w[k])

elif k == 'date': # cast string into a datetime object
wgood[k] = str_to_time(w[k])

else: # cast string into a float
wgood[k] = float(w[k])

DATA.append(wgood)

Computing the averaged heigh of wave now works but give a quite strange result:

Compute the average height
heights = [w['height'] for w in DATA]
average = sum(heights)/len(heights)
print('Averaged waveheight is {:.1f} m'.format(average))

Averaged waveheight is -3.7 m

This is due to the first row which has all values at -99. Removing it (using indexing technics) gives a more
sensible result:

heights = [w['height'] for w in DATA[1:]]
average = sum(heights)/len(heights)
print('Averaged waveheight is {:.1f} m'.format(average))

Averaged waveheight is 0.7 m

1.8 Plotting data: the very first step

Graphical representation of data is a key element of data analysis: it allows to get some intuition (and then
ideas), or just perform visual checks. You might find the terminology “Exploratory Data Analysis (EDA)” in the
litterature, which correspond to plot data in all possible way to extract exploitable information from data. The
EDA is an entire field which will not cover in this lecture. We will simply gives some basic examples, which
will provide a starting point to expand your knowledge. The standard library to produce plots is matplotlib,
but it exist many other tools that we will not introduce (e.g. seaborn, bokeh for browser-interactive plots,
cartopy for geographic data analysis/plots, etc.).

30

1.8. Plotting data: the very first step

Prepare data to plot: wave height v.s. wave energy (removing point with -99 values)
height = [w['height'] for w in DATA if w['height']>-99]
energy = [w['energy'] for w in DATA if w['energy']>-99]

Import the key part of the package: pyplot
import matplotlib.pyplot as plt

Display matplotlib output in the notebook
%matplotlib inline

Call the simplest function to plot x vs y
plt.plot(height, energy, linewidth=0, marker='o', label='Wave data')

Set x and y axis axis labels
plt.xlabel('Wave Height')
plt.ylabel('Wave Energy')

Adding a legend based on label keyword
plt.legend();

31

Chapter 1. Practical Introduction to Python

32

Chapter 2

Basic introduction to NumPy

Skills to take away

• basic: n-dim arrays (dim, shape, size), organisation of data alongs axis, element-wise operations
• medium: n-dim slicing, fency indexing, basic broadcasting (no new axis), linspace/arange
• expert: general broadcasting, n-dim random arrays (np.random)

2.1 Motivations

Why numpy? Numpy stands for numerical python and is highly optimized (and then fast) for computations in
python. Numpy is one of the core package on which many others are based on, such as scipy (for scientific
python), matplotlib or pandas. A lot of other scientific tools are also based on numpy and that justifies to have
- at least - a basic understanding of how it works. Very well, but one could also ask why python at the end?

Why python? Depending on your preferences and your purposes, python can be a very good option (or not -
this language has pros and con, as any other). In any case, many tools are available in python scanning a very
broad spectrum of applications, from machine learning to web design or string processing. Learning python
is definitely a good investment for general purpose application.

2.2 The core object: arrays

The core of numpy is the called numpy array. These objects allow to efficiently perform computations over
large dataset in a very consise way from the language point of view, and very fast from the processing time
point of view. The price to pay is to give up explicit for loops. This lead to somehow a counter intuitive logic -
at first.

2.2.1 Main differences with usual python lists

The first point is to differenciate numpy array from python list, since they don’t behave in the same way. Let’s
define two python lists and the two equivalent numpy arrays.

33

Chapter 2. Basic introduction to NumPy

import numpy as np
l1, l2 = [1, 2, 3], [3, 4, 5]
a1, a2 = np.array([1, 2, 3]), np.array([3, 4, 5])
print(l1, l2)

[1, 2, 3] [3, 4, 5]

First of all, all mathematical operations act element by element in a numpy array. For python list, the addition
acts as a concatenation of the lists, and a multiplication by a scalar acts as a replication of the lists:

obj1+obj2
print('python lists: {}'.format(l1+l2))
print('numpy arrays: {}'.format(a1+a2))

python lists: [1, 2, 3, 3, 4, 5]
numpy arrays: [4 6 8]

obj*3
print('python list: {}'.format(l1*3))
print('numpy array: {}'.format(a1*3))

python list: [1, 2, 3, 1, 2, 3, 1, 2, 3]
numpy array: [3 6 9]

One other important difference is about the way to access element of an array, the so called slicing and
indexing. Here the behaviour of python list and numpy arrays are closer expect that numpy array supports
few more features, such as indexing by an array of integer (which doesn’t work for python lists). Use cases of
such indexing will be heavily illustrated in the next chapters.

Indexing with an integer: obj[1]
print('python list: {}'.format(l1[1]))
print('numpy array: {}'.format(a1[1]))

python list: 2
numpy array: 2

Indexing with a slicing: obj[slice(1,3))]
print('python list: {}'.format(l1[slice(1,3)]))
print('numpy array: {}'.format(l1[slice(1,3)]))

python list: [2, 3]
numpy array: [2, 3]

34

2.2. The core object: arrays

Indexing with a list of integers: obj[[0,2]]
print('python list: IMPOSSIBLE')
print('numpy array: {}'.format(a1[[0,2]]))

python list: IMPOSSIBLE
numpy array: [1 3]

2.2.2 Memory management in python and NumPy

When a list is created in python (and NumPy), you might want to copy it and modify the copy to have both the
unmodified orignal version and the modified copied version.This doesn’t work : the original list will be
modifed too. If you are not sure of what is done, just try! Here an example :

Create a list
l1 = [1, 2, 3]

Getting a copy and modifying it
l2 = l1
l2[1] = 10

Print the two lists : both are modified
print(f'l1={l1}, l2={l2}')

l1=[1, 10, 3], l2=[1, 10, 3]

Create an array
a1 = np.array([1, 2, 3])

Getting a copy and modifying it
a2 = a1
a2[1] = 10

Print the two arrays: both are modified
print(f'a1={a1}, a2={a2}')

a1=[1 10 3], a2=[1 10 3]

Explanation : python works with memory addresses (called pointers in C). This means that l1 and l2 don’t
contain the data, but instead, they both contains the adresses in the computer memory to which the data are
stored. Since the adresses of l1 and l2 are the sames, they point to the same data, and any modification in
l2 will be seen in l1.

How to avoid this ? You must make copy of the object. In NumPy, you can simply use a.copy() command.
In pure python, there is a package called copy which can either make a copy, or a deepcopy(). The difference
is explained just after this example.

35

Chapter 2. Basic introduction to NumPy

import copy
l1 = [1, 2, 3]
l2 = copy.copy(l1)
l2[1] = 10
print(f'l1={l1}, l2={l2}')

l1=[1, 2, 3], l2=[1, 10, 3]

a1 = np.array([1, 2, 3])
a2 = a1.copy()
a2[1] = 10
print(f'a1={a1}, a2={a2}')

a1=[1 2 3], a2=[1 10 3]

To understand the difference between copy and a deepcopy, one needs to make some test on nested lists, i.e
a list of lists. Indeed, deepcopy allows to propagate the copy into all the nested lists.

This work with a copy
l1 = [[1, 2], [3, 4], [5, 6]]
l2 = copy.copy(l1)
l2[1] = 3
print(f'l1={l1}, l2={l2}')

l1=[[1, 2], [3, 4], [5, 6]], l2=[[1, 2], 3, [5, 6]]

When modifying the most inner list, it doesn't work anymore:
l1 = [[1, 2], [3, 4], [5, 6]]
l2 = copy.copy(l1)
l2[1][0] = 10
print(f'l1={l1}, l2={l2}')

l1=[[1, 2], [10, 4], [5, 6]], l2=[[1, 2], [10, 4], [5, 6]]

Using deepcopy() and modifying the most inner list:
l1 = [[1, 2], [3, 4], [5, 6]]
l2 = copy.deepcopy(l1)
l2[1][0] = 10
print(f'l1={l1}, l2={l2}')

l1=[[1, 2], [3, 4], [5, 6]], l2=[[1, 2], [10, 4], [5, 6]]

36

2.3. The three key features of NumPy

2.2.3 Main caracteristics of an array

The strenght of numpy array is to be multidimensional. This enables a description of a whole complex dataset
into a single numpy array, on which one can do operations. In numpy, dimension are also called axis. For
example, a set of 2 position in space r⃗i can be seen as 2D numpy array, with the first axis being the point
i = 1 or i = 2, and the second axis being the coordinates (x, y, z). There are few attributes which describe
multidimentional arrays:

• a.dtype: type of data contained in the array
• a.shape: number of elements along each dimension (or axis)
• a.size: total number of elements (product of a.shape elements)
• a.ndim: number of dimensions (or axis)

points = np.array([[0, 1, 2],
[3, 4, 5]])

print('a.dtype = {}'.format(points.dtype))
print('a.shape = {}'.format(points.shape))
print('a.size = {}'.format(points.size))
print('a.ndim = {}'.format(points.ndim))

a.dtype = int64
a.shape = (2, 3)
a.size = 6
a.ndim = 2

2.3 The three key features of NumPy

2.3.1 Vectorization

The vectorization is a way to make computations on numpy array without explicit loops, which are very
slow in python. The idea of vectorization is to compute a given operation element-wise while the operation is
called on the array itself. An example is given below to compute the inverse of 100000 numbers, both with
explicit loop and vectorization.

a = np.random.randint(low=1, high=100, size=100000)

def explicit_loop_for_inverse(array):
res = []
for a in array:

res.append(1./a)
return np.array(res)

37

Chapter 2. Basic introduction to NumPy

Using explicit loop
%timeit explicit_loop_for_inverse(a)

167 ms ± 12.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Using list comprehension
%timeit [1./x for x in a]

151 ms ± 1.63 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Using vectorization
%timeit 1./a

106 µs ± 185 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)

The suppression of explicit for loops is probably the most unfamiliar aspect of numpy - according to me
- and deserves a bit a of practice. At the end, lines of codes becomes relatively short but ones need to
properly think how to implement a given computation in a pythonic way.

Many standard functions are implemented in a vectorized way, they are call the universal functions, or ufunc.
Few examples are given below but the full description can be found in numpy documentation.

a = np.random.randint(low=1, high=100, size=3)
print('a : {}'.format(a))
print('aˆ2 : {}'.format(a**2))
print('a/(1-aˆa): {}'.format(a/(1-a**a)))
print('cos(a) : {}'.format(np.cos(a)))
print('exp(a) : {}'.format(np.exp(a)))

a : [49 22 82]
a^2 : [2401 484 6724]
a/(1-a^a): [1.91469204e-17 -4.41611606e-18 8.20000000e+01]
cos(a) : [0.30059254 -0.99996083 0.9496777]
exp(a) : [1.90734657e+21 3.58491285e+09 4.09399696e+35]

All these ufunct can work for n-dimension arrays and can be used in a very flexible way depeding on the axis
you are refering too. Indeed the mathematical operation can be performed over a different axis of the array,
having a totally different meaning. Let’s give a simple concrete example with a 2D array of shape (5,2), i.e. 5
vectors of three coordinates (x, y, z)Much more examples will be discussed in the section 2.

Generate 5 vectors (x,y,z)
positions = np.random.randint(low=1, high=100, size=(5, 3))

Average of the coordinate over the 5 observations
pos_mean = np.mean(positions, axis=0)

38

https://docs.scipy.org/doc/numpy-1.15.1/reference/ufuncs.html

2.3. The three key features of NumPy

print('mean = {}'.format(pos_mean))

Distance to the origin sqrt(xˆ2 + yˆ2 + zˆ2) for the 5 observations
distances = np.sqrt(np.sum(positions**2, axis=1))
print('distances = {}'.format(distances))

mean = [27.4 65.2 59.2]
distances = [96.27564593 97.71898485 91.41662868 116.05602096 103.74487939]

Note on matrix product. Numpy arrays can be used to describe and manipulate matrices. There is a special
way to do a matrix product instead of element-wise product. You can use np.dot(a, b) (or a.dot(b)), even
if several other syntaxes are possible (like a@b, or equivalently np.matmul(a, b)). If you are interested into
these features, I would recommand to read in detail the np.dotdocumentation, because different syntax dont
really correspond to the same mathematical operation (for instance, np.matmul(a, b) allows broadcasting
for 2× 2matrix product - cf. latter).

a = np.array([[1, 1],
[1, 0]], dtype=int)

b = np.array([[2, 4],
[1, 1]], dtype=int)

print(np.dot(a, b))

[[3 5]
[2 4]]

2.3.2 Broadcasting

The broadcasting is a way to compute operation between arrays of having different sizes in a implicit (and
consice) manner. One concrete example could be to translate three positions r⃗i = (x, y)i by a vector d⃗0 simply
by adding points+d0where points.shape=(3,2) and d0.shape=(2,). Few examples are given below but
more details are give in this documentation.

operation between shape (3) and (1)
a = np.array([1, 2, 3])
b = np.array([5])
print('a+b = \n{}'.format(a+b))

a+b =
[6 7 8]

operation between shape (3) and (1,2)
a = np.array([1, 2, 3])
b = np.array([

39

https://numpy.org/devdocs/reference/generated/numpy.dot.html
https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html

Chapter 2. Basic introduction to NumPy

[4],
[5],

])
print('a+b = \n{}'.format(a+b))

a+b =
[[5 6 7]
[6 7 8]]

Translating 3 2D vectors by d0=(1,4)
points = np.random.normal(size=(3, 2))
d0 = np.array([1, 4])
print('points:\n {}\n'.format(points))
print('points+d0:\n {}'.format(points+d0))

points:
[[-0.87306615 0.2632651]
[0.02112935 -0.59555212]
[-1.15652288 -0.02169556]]

points+d0:
[[0.12693385 4.2632651]
[1.02112935 3.40444788]
[-0.15652288 3.97830444]]

Not all shapes can be combined together and there are broadcasting rules, which are (quoting the numpy
documentation):

When operating on two arrays, NumPy compares their shapes element-wise. It starts with the trailing
dimensions, and works its way forward. Two dimensions are compatible when

1. they are equal, or
2. one of them is 1

It means that NumPy starts from the most right dimension (i.e. the most internal structure) of the two arrays
and check if they are compatible (either equal, or one of them is one) : if they aren’t a broadcast error is
thrown ; if they are, the next axis is checked in the same way. The broadcasting is possible if all dimensions of
the two arrays are compatibles.

In case two arrays are not immediatly “broadcastable”, it might be possible to add a new empty axis
np.newaxis to an array to make some of their dimensions compatible and then make the broadcasting
possible if the other non empty dimensions are compatible. Here are two very simple examples:

Example 1 : case that can be fixed by modifying one array.

The most right dimension is not compatible but the next one is. This case can be solved by adding an empty
axis on the right of b.

40

https://docs.scipy.org/doc/numpy-1.15.0/user/basics.broadcasting.html
https://docs.scipy.org/doc/numpy-1.15.0/user/basics.broadcasting.html

2.3. The three key features of NumPy

a = np.arange(10).reshape(2,5)
b = np.array([10, 20])

try:
res = a+b
print('Possible for {} and {}:'.format(a.shape, b.shape))
print('a+b = \n {}'.format(res))

except ValueError :
print('Impossible for {} and {}'.format(a.shape, b.shape))

Impossible for (2, 5) and (2,)

c = b[:, np.newaxis]
try:

res = a+c
print('Possible for {} and {}:'.format(a.shape, c.shape))
print('a+c = \n {}'.format(res))

except ValueError :
print('Broadcasting for {} and {}'.format(a.shape, c.shape))

Possible for (2, 5) and (2, 1):
a+c =
[[10 11 12 13 14]
[25 26 27 28 29]]

Example 2: case that cannot be fixed by modifying one array.

The most right dimension is not compatible and the next one is not either. This case cannot be solved by
adding an empty axis on the right of b2, since an error will be thrown comparing the next dimension.

b2 = np.array([10, 20, 30])

c2 = b2[:, np.newaxis]
try:

res = a+c2
print('Possible for {} and {}:'.format(a.shape, c2.shape))
print('a+b = \n {}'.format(res))

except ValueError :
print('Impossible for {} and {}'.format(a.shape, c2.shape))

Impossible for (2, 5) and (3, 1)

However, we can modify both a and b2 to make all their dimensions compatible. The required shapes in that
case would be : + a_broad -> (1, 2, 5) where an empty dimension were added to the left. + b_broad ->
(3, 1, 1) where two empty dimension were added to the right. + any mathematical operation will result
into an array of shape (3, 2, 5).

An application of this logic to perform vectorized grid scan search is presented at the end of this chapter.

41

Chapter 2. Basic introduction to NumPy

a_broad = a[np.newaxis, :, :]
b_broad = b2[:, np.newaxis, np.newaxis]
c_broad = a_broad + b_broad
print(f'{a_broad.shape} + {b_broad.shape} --> {c_broad.shape}')

(1, 2, 5) + (3, 1, 1) –> (3, 2, 5)

print(c_broad)

[[[10 11 12 13 14]
[15 16 17 18 19]]

[[20 21 22 23 24]
[25 26 27 28 29]]

[[30 31 32 33 34]
[35 36 37 38 39]]]

2.3.3 Working with sub-arrays: slicing, indexing and mask (or selection)

As mentioned eariler, slicing and indexing are ways to access elements or sub-arrays in a smart way. Python
allows slicing with Slice() object but numpy allows to push the logic much further with what is called fancy
indexing. Few examples are given below and for more details, please have a look to this documentation page.

Rule 1: the syntax is a[i] to access the ith element. It is also possible to go from the last element using
negative indices: a[-1] is the last element.

a = np.random.randint(low=1, high=100, size=10)
print('a = {}'.format(a))
print('a[2] = {}'.format(a[2]))
print('a[-1] = {}'.format(a[-1]))
print('a[[1, 2, 5]] = {}'.format(a[[1, 2, 5]]))

a = [89 30 48 19 39 93 41 5 97 30]
a[2] = 48
a[-1] = 30
a[[1, 2, 5]] = [30 48 93]

Rule 2: numpy also support array of indices. If the index array is multi-dimensional, the returned array will
have the same dimension as the indices array.

Small n-dimensional indices array: 3 arrays of 2 elements
indices = np.arange(6).reshape(3,2)
print('indices =\n {}'.format(indices))
print('a[indices] =\n {}'.format(a[indices]))

42

https://docs.scipy.org/doc/numpy-1.15.1/reference/arrays.indexing.html

2.3. The three key features of NumPy

indices =
[[0 1]
[2 3]
[4 5]]

a[indices] =
[[89 30]
[48 19]
[39 93]]

Playing with n-dimensional indices array: 2 arrays of (10, 10) arrays
indices_big = np.random.randint(low=0, high=10, size=(2, 3, 2))
print('indices_big =\n {}'.format(indices_big))
print('a[indices_big] =\n {}'.format(a[indices_big]))

indices_big =
[[[3 2]
[0 8]
[2 4]]

[[6 3]
[5 1]
[3 9]]]

a[indices_big] =
[[[19 48]
[89 97]
[48 39]]

[[41 19]
[93 30]
[19 30]]]

Rule 3: There is a smart way to access sub-arrays with the syntax a[min:max:step]. In that way, it’s for
example very easy to take one element over two (step=2), or reverse the order of an array (step=-1). This
syntax works also for n-dimensional array, where each dimension is sperated by a comma. An example is
given for a 1D array and for a 3D array of shape (5, 2, 3) - that can considered as 5 observations of 2 positions
in space.

1D array
a = np.random.randint(low=1, high=100, size=10)
print('full array a = {}'.format(a))
print('from 0 to 1: a[:2] = {}'.format(a[:2]))
print('from 4 to end: a[4:] = {}'.format(a[4:]))
print('reverse order: a[::-1] = {}'.format(a[::-1]))
print('all even elements: a[::2] = {}'.format(a[::2]))

full array a = [10 23 60 57 77 12 80 67 86 60]
from 0 to 1: a[:2] = [10 23]
from 4 to end: a[4:] = [77 12 80 67 86 60]

43

Chapter 2. Basic introduction to NumPy

reverse order: a[::-1] = [60 86 67 80 12 77 57 60 23 10]
all even elements: a[::2] = [10 60 77 80 86]

3D array
a = np.random.randint(low=0, high=100, size=(5, 2, 3))
print('a = \n{}'.format(a))

a =
[[[99 11 92]

[73 63 47]]

[[78 3 16]
[64 47 58]]

[[85 81 17]
[98 66 73]]

[[55 0 43]
[4 92 61]]

[[8 78 34]
[77 30 14]]]

Let’s say, one wants to take only the (x, y) coordinates for the first vector for all 5 observations. This is how
each axis will be sliced: - first axis (=5 observations): :, i.e. takes all - second axis (=2 vectors): 1 i.e. only the
2nd element - third axis (=3 coordinates): 0:2 i.e. from 0 to 2− 1 = 1, so only (x, y)

Taking only the x,y values of the first vector for all observation:
print('a[:, 0, 0:2] =\n {}'.format(a[:, 0, 0:2]))

a[:, 0, 0:2] =
[[99 11]
[78 3]
[85 81]
[55 0]
[8 78]]

Reverse the order of the 2 vector for each observation:
print('a[:, ::-1, :] = \n{}'.format(a[:, ::-1, :]))

a[:, ::-1, :] =
[[[73 63 47]

[99 11 92]]

[[64 47 58]
[78 3 16]]

44

2.3. The three key features of NumPy

[[98 66 73]
[85 81 17]]

[[4 92 61]
[55 0 43]]

[[77 30 14]
[8 78 34]]]

Rule 4: The last part of of indexing is about masking array or in a more common language, selecting sub-
arrays/elements. This allows to get only elements satisfying a given criteria, exploiting the indexing rules
described above. Indeed, a boolean operation applied to an array such as a>0 will directly return an array of
boolean values True or False depending if the corresponding element satisfies the condition or not.

a = np.random.randint(low=-100, high=100, size=(5, 3))
mask = a>0
print('a = \n{}'.format(a))
print('\nmask = \n {}'.format(mask))

a =
[[-89 -20 -75]
[63 18 47]
[68 9 58]
[92 -59 13]
[65 8 -33]]

mask =
[[False False False]
[True True True]
[True True True]
[True False True]
[True True False]]

print('\na[mask] = \n {}'.format(a[mask])) # always return 1D array
print('\na*mask = \n {}'.format(a*mask)) # preserves the dimension (False=0)
print('\na[~mask] = \n {}'.format(a[~mask])) # ~mask is the negation of mask
print('\na*~mask = \n {}'.format(a*~mask)) # working for a product too.

a[mask] =
[63 18 47 68 9 58 92 13 65 8]

a*mask =
[[0 0 0]
[63 18 47]
[68 9 58]
[92 0 13]
[65 8 0]]

45

Chapter 2. Basic introduction to NumPy

a[~mask] =
[-89 -20 -75 -59 -33]

a*~mask =
[[-89 -20 -75]
[0 0 0]
[0 0 0]
[0 -59 0]
[0 0 -33]]

Note the case of boolean arrays as indices has then a special treatment in numpy (since the result is always a
1D array). There is actually a dedicated numpy object called masked array (cf. documentation) which allows
to keep the whole array but without considering some elements in the computation (e.g. CCD camera with
dead pixel). Note however that when a boolean array is used in an mathematical operation (such as a*mask)
then False is treated as 0 and True as 1:

print('a+mask = \n{}'.format(a+mask))

a+mask =
[[-89 -20 -75]
[64 19 48]
[69 10 59]
[93 -59 14]
[66 9 -33]]

This boolean arrays are also very useful to replace a category of elements with a given value in a very easy,
consise and readable way:

a = np.random.randint(low=-100, high=100, size=(5, 3))
print('Before: a=\n{}'.format(a))

a[a<0] = a[a<0]**2
print('\nAfter: a=\n{}'.format(a))

Before: a=
[[-24 79 -20]
[-69 -60 50]
[-75 53 -57]
[-52 -37 42]
[1 72 -36]]

After: a=
[[576 79 400]
[4761 3600 50]
[5625 53 3249]
[2704 1369 42]
[1 72 1296]]

46

https://docs.scipy.org/doc/numpy-1.15.1/reference/maskedarray.html

2.4. Few useful NumPy tips

2.4 Few useful NumPy tips

This short section is presenting few handy features to know about NumPy, which can help beginners. For a
slightly more complete view of “everyday NumPy”, I would recommand to have a look to the cheat sheet from
DataCamp.

Dummy array initialization.

x = np.zeros(shape=(3, 2)) # Only 0
x = np.ones(shape=(3, 2)) # Only 1
x = np.full(shape=(3, 2), fill_value=10) # Only 10
x = np.eye(2) # Create identity matrix (only return 2D array)

Create sequence of numbers.

Linear inteveral from 0 to 10
x = np.linspace(0, 10, 10) # 10 numbers between 0 and 1
x = np.arange(0, 10, 1.0) # One number every 1.0 between 0 and 1
x = np.logspace(0, 10, 10) # 10 numbers between 10**0 and 10**10

Shape-based manipulation of arrays.

a = np.arange(0, 18).reshape(3, 3, 2)
x = a.ravel() # Return a flat array
x = a.reshape(9, 2) # change the shape
x = a.T # transpose array: a.T[i, j, k] = a[k, j, i]
x = np.concatenate([a,a], axis=0) # concatenate arrays along a given axis: shape=(6, 3, 2)
x = np.stack([a, a], axis=0) # group arrays along a given axis: shape=(2, 3, 3, 2)

Compare arrays.

Making dummy arrays for comparisons
a = np.arange(-6, 6).reshape(3, 4)
b = np.abs(a)
c = np.append(b, [[1, 2, 3, 4]], axis=0)

Print the arrays
print('a = {}\n'.format(a))
print('b = {}\n'.format(b))
print('c = {}'.format(c))

a = [[-6 -5 -4 -3]
[-2 -1 0 1]
[2 3 4 5]]

b = [[6 5 4 3]
[2 1 0 1]

47

https://www.datacamp.com/community/blog/python-numpy-cheat-sheet
https://www.datacamp.com/community/blog/python-numpy-cheat-sheet

Chapter 2. Basic introduction to NumPy

[2 3 4 5]]

c = [[6 5 4 3]
[2 1 0 1]
[2 3 4 5]
[1 2 3 4]]

Arrays with the same shapes
print(np.equal(a, b)) # Return array with element-wise True/False
print(np.all(a==b)) # Return true is all element is true
print(np.allclose(a, b, rtol=10)) # same as all function with relative/absolute precision
print(np.any(a==b)) # Return true if any of the element is true

[[False False False False]
[False False True True]
[True True True True]]

False
True
True

Arrays with the possibly different shapes
print(np.array_equal(a, c)) # True if a and b have the same shape and np.equal(a, b)
print(np.array_equiv(a, b)) # True if a and b have braodcastable shapes and same elements

False
False

Example of equivalent arrays
a = np.array([1, 2])
b = np.array([[1, 2], [1, 2]])
np.array_equiv(a, b)

True

2.5 Example of simple gradient descent: NumPy v.s. pure python

2.5.1 Gradient descent: what (for) is this?

The gradient descent is a method allowing to numerically find a the minum of a function f (p0, ..., pn). Finding
minumum is needed for most of machine learning problems (I include usual model fitting in the machine
learning category here): ones always want to find the best set of parameter describing a dataset, assuming
a given function. Let’s assume, you have n couple of measured values (xi, yi) and you want to be able to
predict the mathematical relationship between x and y for all points: yi = model(xi). Usually the mathematical

48

2.5. Example of simple gradient descent: NumPy v.s. pure python

function “model” will depend on some unknown parameters p0, ..., pN. In that case, the function to minimze
is often the error function (or cost):

f (p0, ...pN) =
1
n

n∑
i=1

(
yi −model(xi; p0, ...pN)

)2
Finding the minimum of an error (cost) function is rather general to any (supervised) learning algorithm.
These notions will be described in more details in other lectures.

How does gradient descent work? At each iteration (or epoch), parameters are updated using a step value µ

along the oposit direction of the gradient, evaluated at the present point:

(p0, ..., pN)i+1 ← (p0, ..., pN)i − µ
(∂f
∂p0

, ...
∂f
∂pN

)
|(p0,...,pN)i

This assume that the value of the gradient is known. There are some technics to numerically estimate the
gradient for arbitrary function. In the example below, we consider a much simpler situation - which actually
has an exact solution: a linear model. In other words, there are only two parameters and we assume that:

model(x) = p0 + p1x

with the following loss function gradient:

∂f
∂p0

= −2
n

i=n∑
i=0

(
yi − p0 − p1xi)

)
(2.1)

∂f
∂p1

= −2
n

i=n∑
i=0

(
(yi − p0 − p1xi)× xi

)
(2.2)

From a coding point of view, we will then introduce an array delta = [yi - p0 - p1*xi] which will be
used to compute both the two gradient components and the loss function. The next two section describe the
pure python implementation and a numpy implementation, in order to compare performences. What follows
is higly inspired fomr a RealPython post on performence comparison. Before entering in the discussion, let’s
define our fake dataset:

Fake (xi, yi) data definition
n = 1000
x = np.linspace(0, 2, n)
xfine = np.linspace(0, 2, 1000) # to draw a line
y = 3 + 2 * x + 0.1*np.random.randn(n)

Linear model definition
def model(x, p0, p1):

return p0 + p1*x

Loss function definition
def loss_function(p0, p1):

return np.mean((y - model(x, p0, p1))**2)

49

https://realpython.com/numpy-tensorflow-performance/

Chapter 2. Basic introduction to NumPy

Vectorize the loss function for many parameters
loss_function = np.vectorize(loss_function)

The above numpy.vectorize() function allow to make several calls of the same function much faster using
vectorization (cf. this documentation page). The next function plot_model(p) follows simply represent the
data, the model, the loss function evolution and the trajectory in the (p0, p1) space which is followed by the
gradient descent. This function is based in matplotlib librairy which will be discussed in later chapters of this
lecture.

Plotting function (data vs fit, loss function, gradient descent)
def plot_model(p):

'''
Producing three plots from the list of the 2
parameters for all epochs: p.shape = (Nepochs, 2)
'''
import matplotlib.pyplot as plt
plt.figure(figsize=(30, 7))

Get Best parameters (last ones), ymodel and lost functions
p0, p1 = p[-1, 0], p[-1, 1]
ymodel = model(x, p0, p1)
loss = loss_function(p[:, 0], p[:, 1])

Plot (xi,yi) data and overlay (x, model(x, p)) points
plt.subplot(1, 3, 1)
plt.plot(x, y, 'o', alpha=0.3, markersize=5, label='data')
plt.plot(xfine, ymodel, linewidth=3, color='tab:red', label='model')
plt.xlabel('x'); plt.ylabel('y')
plt.legend()

Plot the loss function v.s. epoch
plt.subplot(1, 3, 2)
plt.semilogy(loss, linewidth=3)
plt.xlabel('Epochs'); plt.ylabel('Loss function')

Plot the gradient in the (p0, p1) space and the descent trajectory
plt.subplot(1, 3, 3)
P0, P1 = np.meshgrid(np.linspace(0, 4, 300), np.linspace(0, 3, 300))
plt.imshow(np.log(loss_function(P0, P1)), extent=[0, 4, 0, 3], aspect='auto',

origin='lower', cmap='Greys')
plt.plot(p[:, 0], p[:, 1], linewidth=5, color='tab:red', alpha=0.8, label='Trajectory')
plt.xlabel('p_0'); plt.ylabel('p_1')
plt.colorbar(label='log(loss function)')
for t in plt.legend().get_texts():

t.set_color('white')

return

50

https://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.html

2.5. Example of simple gradient descent: NumPy v.s. pure python

Tuning default matplotlib style
import matplotlib as mpl
mpl.rcParams['legend.frameon'] = False
mpl.rcParams['legend.fontsize'] = 24
mpl.rcParams['xtick.labelsize'] = 20
mpl.rcParams['ytick.labelsize'] = 20
mpl.rcParams['axes.titlesize'] = 24
mpl.rcParams['axes.labelsize'] = 24

2.5.2 Pure python implementation

The pure python implementation don’t use any of the vectorized features of numpy. The loop and sum over
the data points are explicit, using zip(), sum() and comprehension syntax. The function return an array of
all parameters for each epoch (for later convenience, we simply return a numpy array - but mathematical
operations are not done with numpy in this function).

def python_linear_descent(x, y, mu, N_epochs):

Length of data
n = len(x)

Initialize predictions, errors, parameters and gradients.
ym = [0] * n
para = [[0, 0]] * N_epochs
grad = [0, 0]
pm = [0, 0]

Looping over iterations (epochs)
for i_epoch in range(0, N_epochs):

delta = tuple(i - j for i, j in zip(y, ym))
grad[0] = -2/n * sum(delta)
grad[1] = -2/n * sum(i * j for i, j in zip(delta, x))
pm = [i - mu * j for i, j in zip(pm, grad)]
ym = (model(i, pm[0], pm[1]) for i in x)

Save all parameters
para[i_epoch] = pm

Return numpy array of the 2 paramters for all epochs
return np.array(para)

We can then try to time this function using a step of 0.01 and 2000 epochs for our 1000 data points.

%timeit python_linear_descent(x, y, mu=0.01, N_epochs=2000)

1.14 s ± 52.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

51

Chapter 2. Basic introduction to NumPy

This takes approximatly 1 second to run. What follows shows the best model prediction for the best parameters,
the evolution of the loss function as well as the descent trajectory in the parameter space:

parameters = python_linear_descent(x, y, mu=0.01, N_epochs=2000)
plot_model(parameters)

2.5.3 Numpy implementation

The numpy implementation makes a full use of the vecorization feature discussed several time in this chapter,
but also broadcasting. This lead to a significantly clearer piece of code and also much faster. We can note in
particular the different syntax used to update the model parameters.

def numpy_linear_descent(x, y, mu, N_epochs):

To define the lost function
n = x.shape[0]

Initialize predictions, errors, parameters and gradients.
ym = np.zeros(n)
para = np.zeros((N_epochs, 2))
pm, grad = np.zeros(2), np.zeros(2)

Looping over iterations (epochs)
for i_epoch in range(0, N_epochs):

delta = y-ym
grad = -2/n * np.array([np.sum(delta), np.sum(delta*x)])
pm = pm - mu*grad
ym = model(x, pm[0], pm[1])

Save all parameters
para[i_epoch] = pm

return para

%timeit numpy_linear_descent(x, y, mu=0.01, N_epochs=2000)

40.3 ms ± 2.26 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

52

2.6. Example of a vectorized grid scan with NumPy

parameters = numpy_linear_descent(x, y, mu=0.01, N_epochs=2000)
plot_model(parameters)

We check that the result are indeed the same for an execution about 25 times faster . . .

2.6 Example of a vectorized grid scan with NumPy

2.6.1 Context : the brut force grid scan

This approach consist in scanning the parameter space to find the optimum of a given (loss) function. This
procedure is not often the best one for a real life case, but it is interesting to know how to efficiently code
this scan using the vectorization and the broadcasting of NumPy, as it can this logic can be useful in other
contexts. For this example, we will define (fake) data on which we will fit several models having a different
number of parameters. The fit will be performed with a parameter grid scan search, both with pure python
and NumPy. Note that the plotting package presented in the next chapter will be used for this example.

import matplotlib.pyplot as plt

Fake data with noise
Npoints, Nsampling = 20, 1000
xcont = np.linspace(-5.0, 3.5, Nsampling)
x = np.linspace(-5, 3.0, Npoints)
y = 2*(np.sin(x/2)**2 + np.random.random(Npoints)*0.3)
dy = np.sqrt(0.10**2 + (0.10*y)**2)

Data style for plotting
data_style = {'marker': 'o', 'color': 'black', 'markersize': 8,

'linestyle': '', 'zorder': 10, 'label': 'Data'}

Plotting the fake data
plt.errorbar(x, y, yerr=dy, **data_style);

53

Chapter 2. Basic introduction to NumPy

Linear model
def model_lin(x, p0, p1):

return p0 + p1*x

Trigonometric model
def model_x3(x, p0, p1, p2, p3):

return p0 + p1*x + p2*x**2 + p3*x**3

2.6.2 Pure python approach : nested loops

The naive way to proceed a grid scan is just perform nested loops (as many as parameters to scan) and
compute the loss function for each point in the grid, and keep track of the minimum and the corresponding
parameters. We will try it on the linear model only.

Loss for linear model for nested loops
def loss_linear_loops(p0, p1):

residus = (y - model_lin(x, p0, p1)) / dy
return np.sum(residus**2)

def grid_scan_linear_loops(N0=100, N1=100):

'''
Perform a grid search over (p0, p1) using nested loops
for the linear model. Return the parameter for which
the loss was found to be minimal in the grid.
'''

54

2.6. Example of a vectorized grid scan with NumPy

Defining the grid
p0s = np.linspace(-2, 2, N0)
p1s = np.linspace(-3, 3, N1)

Loop over parameters
lmin, ip0min, ip1min = 1e10, -1, -1
for ip0, p0 in enumerate(p0s):

for ip1, p1 in enumerate(p1s):
l = loss_linear_loops(p0, p1)
if l<lmin:

lmin = l
ip0min = ip0
ip1min = ip1

Return the minimum of the loss and the associated parameters
return p0s[ip0min], p1s[ip1min]

Making the scan
p0, p1 = grid_scan_linear_loops()
print(f'p0={p0:.2f}, p1={p1:.2f}')

Plotting the result
plt.plot(xcont, model_lin(xcont, p0, p1), label='model')
plt.errorbar(x, y, yerr=dy, **data_style);
plt.legend();

p0=0.87, p1=-0.09

55

Chapter 2. Basic introduction to NumPy

2.6.3 NumPy approach : broadcasting + vectorizaton

The idea is to enlarge the dimension of the initial array in such a way that broadcasting is made possible and
give the proper result. Let’s assume we have 2 parameters with N0 and N1 values each, the final result should
be a 2D array of shape (N0, N1) which will be the values of the loss function for every parameter values. The
residuals are computed at first for every individual data points residuals, before being summed up over
the dataset. The strategy is to have nPars+1 axis. For example, with the 2 parameters, we would change the
dimension with empty axis as below:

data (Ndata) –> (1, 1, Ndata)
par0 (N0) –> (N0, 1, 1)
par1 (N1) –> (1, N1, 1)
residuals –> (N0, N1, Ndata)

The sum over the dataset is then performed over the last axis which result into the wanted 2D array. This is
coded below and a generalization to an arbitrary number of parameter is also presented.

def loss_linear_vectorized(p0s, p1s):

'''
Loss function generalized for arrays of parameters.
Return a 2D array (Np0, Np1) being the value of the
loss function for all parameters values.
'''

Preparing shape of data for broadcasting
xb = x[np.newaxis, np.newaxis, :]
yb = y[np.newaxis, np.newaxis, :]
dyb = dy[np.newaxis, np.newaxis, :]

Preparing shape of parameters for broadcasting
p0sb = p0s[:, np.newaxis, np.newaxis]
p1sb = p1s[np.newaxis, :, np.newaxis]

Compute the residus for each points and paramter values
residus = (yb - model_lin(xb, p0sb, p1sb)) / dyb

Return the sum over all points for each parameters values
return np.sum(residus**2, axis=-1)

def grid_scan_linear_vectorized(N0=100, N1=100):

'''
Perform a grid search over (p0, p1) using vectorization
for the linear model. Return the parameter for which
the loss was found to be minimal in the grid. If several
is found, the first one found by np.where() is returned.
'''

56

2.6. Example of a vectorized grid scan with NumPy

Defining the grid
p0s = np.linspace(-2, 2, N0)
p1s = np.linspace(-3, 3, N1)

Compute losses for all parameters
ls = loss_linear_vectorized(p0s, p1s)

Get the optmized parameters
lmin = np.min(ls)
ip0min, ip1min = np.where(lmin==ls)

Return the minimum of the loss and the associated parameters
return p0s[ip0min[0]], p1s[ip1min[0]]

Making the scan
p0, p1 = grid_scan_linear_vectorized()
print(f'p0={p0:.2f}, p1={p1:.2f}')

Plotting the result
plt.plot(xcont, model_lin(xcont, p0, p1), label='model')
plt.errorbar(x, y, yerr=dy, **data_style);
plt.legend();

p0=0.87, p1=-0.09

Let’s try to generalize to an arbitrary model, dataset and parameter grid. For this the new dimension will
be created on the fly and the function a.reshape() will be used since it accept a python list to specify the

57

Chapter 2. Basic introduction to NumPy

dimension along each axis. As you can see below, such a function can be written but the limiting facto will
then be the available memory. This brut force approach scales very badly with the dimension of the problem
(i.e. the number of parameters).

def loss_vectorized(xdata, ydata, dydata, model, *modelpars):

'''
Return the loss value for the full data set
for a model `model` and the associated parameters.

loss = sum_{data} (ydata - model(xdata, *pars))ˆ2

For example, if we have 20 data points with a model of 3 parameters
having 200 steps each, the internally created arrays have the following
dimensions:

data = (1, 1, 1, 20)
par1 = (200, 1, 1, 1)
par2 = (1, 200, 1, 1)
par3 = (1, 1, 200, 1)

Arguments:

- xdata, ydata, dydata: 1D array corresponding to the data points.
- model: callable of type f(x, *pars).
- *modelpars: list of 1D array correponding to the scan of each

parameter.
'''

Parameters
pars = [p for p in modelpars]
Npars = len(pars)

Generic data broadcasting for Npars:
Data shape : (1, 1, 1, ..., 1, Ndata) (with as much as 1 as Npars)
data_dim = [1 for p in pars]
data_dim.append(xdata.shape[0]) # Append the last axis with Ndata
xdata_b = xdata.reshape(data_dim)
ydata_b = ydata.reshape(data_dim)
dydata_b = dydata.reshape(data_dim)

Generic broadcasting for each parameters
pars_b = []
for ip in range(Npars):

pdim = [1 if ip!=jp else pars[ip].shape[0] for jp in range(Npars)]
pdim.append(1) # Append a last empty axis for the data
pars_b.append(pars[ip].reshape(pdim))

Compute residus
residus = (ydata_b - model(xdata_b, *pars_b)) / dydata_b

58

2.6. Example of a vectorized grid scan with NumPy

Return the sum over data - first axis
return np.sum(residus**2, axis=-1)

Trying the function
all_pars = [np.linspace(0, 1, 10) for i in range(4)]
ls = loss_vectorized(x, y, dy, model_x3, *all_pars)
print(ls.shape, ls.size)

(10, 10, 10, 10) 10000

def grid_scan_vectorized(xdata, ydata, dydata, model, mins, maxs, steps):

'''
Return the parameter which minimize the loss function over the full
dataset for a model `model` :

loss = sum_{data} (ydata - model(xdata, *pars))ˆ2

Arguments:

- xdata, ydata, dydata: 1D array corresponding to the data points.
- model: callable of type model(x, *pars).
- mins : list of floats being the minimum for each paramters
- maxs : list of floats being the maximum for each paramters
- steps: list of integers being the steps for each parameters

'''

Checking that the inputs for the parameters are correct
nmins, nmaxs, nsteps = len(mins), len(maxs), len(steps)
if not (nmins==nmaxs and nmins==nsteps and nmaxs==nsteps):

print(f'Uncorrect numbers for min, max and/or steps: {len(mins)}, {len(maxs)},
{len(steps)}')↪→

return [-1]

Defining the parameter grid
npars = nmins
pars = [np.linspace(mins[i], maxs[i], steps[i]) for i in range(npars)]

Computing the loss for all parameters
ls = loss_vectorized(xdata, ydata, dydata, model, *pars)

Get the optmized parameters
lmin = np.min(ls)
ipars_min = np.where(lmin==ls)

Return the minimum of the loss and the associated parameters
return [p[i[0]] for p, i in zip(pars, ipars_min)]

59

Chapter 2. Basic introduction to NumPy

Making the scan
p0, p1 = grid_scan_vectorized(x, y, dy, model_lin, [-2, -3], [2, 3], [100, 100])
print(f'p0={p0:.2f}, p1={p1:.2f}')

Plotting the result
plt.plot(xcont, model_lin(xcont, p0, p1), label='model')
plt.errorbar(x, y, yerr=dy, **data_style);
plt.legend();

p0=0.87, p1=-0.09

Making the scan with same function for another model.
p0, p1, p2, p3 = grid_scan_vectorized(x, y, dy, model_x3, [-1, -1, -1, -0.1], [1, 1, 1, 0.1],

[50]*4)↪→

print(f'p0={p0:.2f}, p1={p1:.2f}, p2={p2:.2f}, p3={p3:.3f}')

Plotting the result
plt.plot(xcont, model_x3(xcont, p0, p1, p2, p3), label='model')
plt.errorbar(x, y, yerr=dy, **data_style);
plt.legend();

p0=0.35, p1=-0.22, p2=0.27, p3=0.055

60

2.6. Example of a vectorized grid scan with NumPy

2.6.4 Timing comparison for 2 parameters

%timeit grid_scan_linear_loops(N0=500, N1=500)

2.31 s ± 5.14 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

%timeit grid_scan_linear_vectorized(N0=500, N1=500)

45.2 ms ± 912 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

61

Chapter 2. Basic introduction to NumPy

62

Chapter 3

Three important tools to know

Skills to take away

• basic: plotting y = f (x) and histograms with numpy/matplotlib, dataframes from csv, add columns
• medium: scatter plots, dataframe cleaning and plotting, curve fitting
• expert: meshgrid and 3D plots for y = f (x, y)

3.1 A word of caution

The three important tools discussed in this section, namely matplotlib, pandas and scipy, are only intro-
duced. A descently extensive presentation would deserve an entire book for each of them. The main goal of
this chapter is to give the very basic and practicly features of each of them, so that you can search for more
detailed information when you need it.

3.2 Graphical respresentation of data : matplotlib

Matplolib is an extremely rich librairy for data visualization and there is no way to cover all its features in this
note. The goal of this section is just to give short and practical examples to plot data. Much more details can
be obtained on the webpage. Another interesting link to understand the structure of a matplotlib plot is a post
on realpython website. The following shows how to quickly make histograms, graph, 2D and 3D scatter plots.

The main object of matplotlib is matplotlib.pyplot imported as plt here (and usually). The most common
functions are then called on this objects, and often takes numpy arrays in argument (possibly with more than
one dimension) and a lot of kwargs to define the plotting style.

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

63

https://matplotlib.org/index.html
https://realpython.com/python-matplotlib-guide
https://realpython.com/python-matplotlib-guide

Chapter 3. Three important tools to know

3.2.1 Example of 1D plots and histograms

To play with data, we generate 2 samples of 1000 values distributed according to a normal probability density
function with µ = −1 and µ = 1 respectively, and σ = 0.5. These data are stored in a numpy array x of shape
x.shape=(1000, 2). We then simply compute and store the sinus of all these values into a same shape array
y:

x = np.random.normal(loc=[-1, 1], scale=[0.5, 0.5], size=(1000,2))
y = np.sin(x)

The next step is to plot these data in two ways: first we want y v.s. x, second we want the histogram of the
x values. We need to first create a figure, then create two subplots (specifying the number of line, column,
and subplot index). Note that matplotlib take always the first dimension to define the numbers to plot, while
higher dimensions are considered as other plots - automatically overlaid.

plt.figure(figsize=(24, 10))
plt.subplot(121) # 121 means 1 line, 2 column, 1st plot
plt.plot(x, y, marker='o', markersize=5, linewidth=0.0)
plt.subplot(122) # 122 means 1 line, 2 column, 2nd plot
plt.hist(x, bins=20);

3.2.2 Example of 2D scatter plot

A scatter plot allows to draw marker in a 2D space and a thrid information is encoded into the marker size.
In order to play, we generated two set of 5000 numbers distributed according to uncorrelated gaussians of
(µ0 = µ1 = 0) and (σ1,σ2) = (0.5, 0.8) in a numpy array points of shape points.shape=(5000,2). These two
sets of numbers are then interepreted as (x, y) positions being loaded in two (5000, 1) arrays x and y:

points = np.random.normal(loc=[0, 0], scale=[0.5, 0.8], size=(5000,2))
x, y = points[:, 0], points[:, 1]

64

3.2. Graphical respresentation of data : matplotlib

We can then plot the 5000 points in the 2D plan, and here we specify the marker size at 100× sin2(x) using the
argument s of the plt.scatter() function (note that the array x, y and s must have the same shape):

plt.figure(figsize=(10,6))
plt.scatter(x, y, s=100*(np.sin(x))**2, marker='o', alpha=0.3)
plt.xlim(-3, 3)
plt.ylim(-3, 3);

3.2.3 Example of 3D plots

For 3D plots, one can generate 1000 positions in space, and operate a translation by a vector r⃗0 using broad-
casting:

data = np.random.normal(size=(1000, 3))
r0 = np.array([1, 4, 2])
data_trans = data + r0

It is then easy to get back the spatial initial (i.e. before translation) and final (i.e. after translation) coordinates:

xi, yi, zi = data[:,0], data[:,1], data[:,2]
xf, yf, zf = data_trans[:,0], data_trans[:,1], data_trans[:,2]

An additional module must be imported in order to plot data in three dimensions, and the projection has to be
stated. Once it’s done, a simple call to ax.scatter3D(x,y,z) does the plot. Note that we call a function of
ax and not plt as before. This is due to the ax = plt.axes(projection='3d') command which is needed
for 3D plotting. More details are available on the matplotlib 3D tutorial.

65

https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html

Chapter 3. Three important tools to know

from mpl_toolkits import mplot3d
plt.figure(figsize=(12,10))
ax = plt.axes(projection='3d')
ax.scatter3D(xi, yi, zi, alpha=0.4, label='before translation')
ax.scatter3D(xf, yf, zf, alpha=0.4, label='after translation')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
ax.legend(frameon=False, fontsize=18);

3.2.4 Example of 2D function z = f (x, y): notion of meshgrid

Another typical plot we might want to do is to represent a function of two variables (x, y) in 3D: z = f (x, y). In
python this implies the notion of meshgrid which is not trivial at first. Let’s first define a 2 variable function:

def my_surface(x, y):
x0 = 5*np.sin(y)
sigma = 5+y
amp = (10-y)
return amp*np.exp(-(x-x0)**2/sigma**2)

66

3.2. Graphical respresentation of data : matplotlib

Let’s define a (x, y) interval on which we want to describe the surface:

x = np.linspace(-40, 40, 100)
y = np.linspace(0, 20, 200)

These two numpy arrays don’t have the same shape and an explicit loop would be needed to process them -
which is very time consuming in python. This is where the meshgrid notion comes: it will provide a two arrays
with the same size and allow then the vectorization:

Meshgrid and function application (see after for more details)
xx, yy = np.meshgrid(x, y)
Z = my_surface(xx, yy)

Plotting
fig = plt.figure(figsize=(13,8))
ax = fig.gca(projection='3d')
ax.plot_surface(xx, yy, Z)

Choose the default view
ax.view_init(azim=48, elev=48)

Meshgrid explanation. The meshgrid consists of two 2D arrays made out of two 1D arrays. The main purpose
is to have numpy arrays with the same shape, which can then support vectorized operations. The logic is
relatively straightforward and can be understood with two points along each coordinate. Let’s assume you
want to scan the {0, 1} x-values and {2, 3} y-values, then you need to build up the four following 2D points: (0,

67

Chapter 3. Three important tools to know

2), (1, 2), (0, 3), (1, 3). These four points can be encoded in the two arrays [[0, 1], [0, 1]] and [[2, 2],
[3, 3]]. These two arrays have the same shape, which is similar to the result of f(x,y) computed on this
grid, even if there are not the same numbers of x and y values.

Create a simple 2-variables function
def f(x, y):

return x**2+y**2

Define x-values, y-values and create the 2D
x, y = np.arange(0, 2), np.arange(2, 4)
xx, yy = np.meshgrid(x, y)
zz = f(xx, yy)

Printing arrays
print('Array values:')
print('xx={}'.format(xx))
print('yy={}'.format(yy))
print('zz={}'.format(zz))

Array values:
xx=[[0 1]
[0 1]]

yy=[[2 2]
[3 3]]

zz=[[4 5]
[9 10]]

A way to explicit the meshgrid, you can flat xx and yy arrays with the ravel() function, and take each pair
(with the zip() syntax). Every point is indeed formed:

for i, j in zip(xx.ravel(), yy.ravel()):
print('(x,y)=({},{}); f(x,y)={}'.format(i, j, f(i, j)))

(x,y)=(0,2); f(x,y)=4
(x,y)=(1,2); f(x,y)=5
(x,y)=(0,3); f(x,y)=9
(x,y)=(1,3); f(x,y)=10

If you want to read more about this, you can check the numpy meshgrid documentation and this stackoverflow
post. For more advanced readers, there are two similar functions which return slightly different objects:
np.ogrid() and np.mgrid(). For a nice discussion of differences, you can check this post.

3.3 import and manipulate data as numpy array: pandas

The package pandas is an very rich interface to read data from different format and produce a
pandas.dataframe that can be based on numpy (but contanining a lot more features). There is no
way to fully desribe this package here, the goal is simply to give functional and concrete example easily
usable. More more details, please check the pandas webpage.

68

https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.meshgrid.html
https://stackoverflow.com/questions/36013063/what-is-the-purpose-of-meshgrid-in-python-numpy
https://stackoverflow.com/questions/36013063/what-is-the-purpose-of-meshgrid-in-python-numpy
http://louistiao.me/posts/numpy-mgrid-vs-meshgrid/
https://pandas.pydata.org/

3.3. import and manipulate data as numpy array: pandas

3.3.1 Data importation

Many build-in functions are available to import data as pandas dataframe. One, which is particularly conve-
nient, directly reads csv files (one can specify the columns to loads, the row to skip, and many other options
. . .):

import pandas as pd
df = pd.read_csv('../data/WaveData.csv')
print(df.head())

Date/Time Hs Hmax Tz Tp Peak Direction SST
0 01/01/2017 00:00 -99.900 -99.90 -99.900 -99.900 -99.9 -99.90
1 01/01/2017 00:30 0.875 1.39 4.421 4.506 -99.9 -99.90
2 01/01/2017 01:00 0.763 1.15 4.520 5.513 49.0 25.65
3 01/01/2017 01:30 0.770 1.41 4.582 5.647 75.0 25.50
4 01/01/2017 02:00 0.747 1.16 4.515 5.083 91.0 25.45

Rename columns names using df.rename() function
old_new_cols = {

'Date/Time': 'date',
'Hs': 'height',
'Hmax': 'heightMax',
'Tz': 'period',
'Tp': 'energy',
'Peak Direction': 'direction',
'SST': 'temperature'

}

The argument `inplace` means the current dataframe is overwritten with the change
df.rename(columns=old_new_cols, inplace=True)
print(df.head())

date height heightMax period energy direction \
2 01/01/2017 01:00 0.763 1.15 4.520 5.513 49.0
3 01/01/2017 01:30 0.770 1.41 4.582 5.647 75.0
4 01/01/2017 02:00 0.747 1.16 4.515 5.083 91.0
5 01/01/2017 02:30 0.718 1.61 4.614 6.181 68.0
6 01/01/2017 03:00 0.707 1.34 4.568 4.705 73.0

temperature height_normalized heightMax_normalized period_normalized \
2 25.65 -0.898215 -1.047342 -1.184338
3 25.50 -0.884973 -0.757690 -1.117565
4 25.45 -0.928484 -1.036201 -1.189723
5 25.45 -0.983346 -0.534881 -1.083102
6 25.50 -1.004155 -0.835673 -1.132643

energy_normalized direction_normalized temperature_normalized
2 -1.463956 -2.044360 0.762152

69

Chapter 3. Three important tools to know

3 -1.407891 -0.973294 0.694918
4 -1.643866 -0.314176 0.672506
5 -1.184467 -1.261658 0.672506
6 -1.802020 -1.055683 0.694918

3.3.2 Cleaning the dataset using numpy syntax

This is possible to clean the dataframe using some masking syntax. First, let’s check how many default values
are stored for each column (all but the date):

Check which wave has -99 values for every variables
for c in ['height', 'heightMax', 'period', 'energy', 'direction', 'temperature']:

n = np.count_nonzero(df[c]<=-99)
print('{}: {} wave have <=-99'.format(c, n))

height: 85 wave have <=-99
heightMax: 85 wave have <=-99
period: 85 wave have <=-99
energy: 85 wave have <=-99
direction: 271 wave have <=-99
temperature: 262 wave have <=-99

Simply take value above -99
print(df[df>-99].head())

date height heightMax period energy direction temperature
0 01/01/2017 00:00 NaN NaN NaN NaN NaN NaN
1 01/01/2017 00:30 0.875 1.39 4.421 4.506 NaN NaN
2 01/01/2017 01:00 0.763 1.15 4.520 5.513 49.0 25.65
3 01/01/2017 01:30 0.770 1.41 4.582 5.647 75.0 25.50
4 01/01/2017 02:00 0.747 1.16 4.515 5.083 91.0 25.45

Removing all entry (line) which has at least one default value
for c in ['height', 'heightMax', 'period', 'energy', 'direction', 'temperature']:

df = df[df[c]>-99]

print(df.head())

date height heightMax period energy direction temperature
2 01/01/2017 01:00 0.763 1.15 4.520 5.513 49.0 25.65
3 01/01/2017 01:30 0.770 1.41 4.582 5.647 75.0 25.50
4 01/01/2017 02:00 0.747 1.16 4.515 5.083 91.0 25.45
5 01/01/2017 02:30 0.718 1.61 4.614 6.181 68.0 25.45
6 01/01/2017 03:00 0.707 1.34 4.568 4.705 73.0 25.50

We can now check how many default value we get:

70

3.3. import and manipulate data as numpy array: pandas

for c in ['height', 'heightMax', 'period', 'energy', 'direction', 'temperature']:
n = np.count_nonzero(df[c]<=-99)
print('{}: {} wave have <=-99'.format(c, n))

height: 0 wave have <=-99
heightMax: 0 wave have <=-99
period: 0 wave have <=-99
energy: 0 wave have <=-99
direction: 0 wave have <=-99
temperature: 0 wave have <=-99

3.3.3 Extracting numpy arrays and plotting

This is possible to perform some computation using pandas columns directly, but it can be useful to extract
numpy arrays in case of more complex broadcasting or indexing. This can be done using df[col].values
command:

Get numpy array for further manipulations
T = df['temperature'].values
P = df['period'].values
H = df['heightMax'].values
E = df['energy'].values

Plot temperature vs period vs max_height vs energy
plt.figure(figsize=(15, 7))
plt.scatter(T, P , s=H**3, c=E, cmap='GnBu', alpha=0.4)
plt.colorbar(label='Energy')
plt.xlabel('Temperature')
plt.ylabel('Period');

71

Chapter 3. Three important tools to know

3.3.4 Add information in a dataframe

One of the nice feature of pandas is to be able to easily store the result of a computation as a new column. For
instance, it’s a common practice in machine learning to normalize the input variables, i.e. transform them
to have a mean of 0 and a variance of 1.0. The following example shows how to add new column which are
normalized:

def add_normalized_variable_to_df(col):

Get a numpy arrays
v = df[col].values

Replace NaN by 0.0
v[np.isnan(v)] = 0

Compute quantities
v_mean = np.mean(v)
v_rms = np.sqrt(np.mean((v-v_mean)**2))

Add them into the pandas dataframe
df[col+'_normalized'] = (v-v_mean)/v_rms

return

for c in ['height', 'heightMax', 'period', 'energy', 'direction', 'temperature']:
add_normalized_variable_to_df(c)

Get only normalized column
normalized_cols = [c for c in df.columns.tolist() if '_normalized' in c]
print(df[normalized_cols].head())

height_normalized heightMax_normalized period_normalized \
2 -0.898215 -1.047342 -1.184338
3 -0.884973 -0.757690 -1.117565
4 -0.928484 -1.036201 -1.189723
5 -0.983346 -0.534881 -1.083102
6 -1.004155 -0.835673 -1.132643

energy_normalized direction_normalized temperature_normalized
2 -1.463956 -2.044360 0.762152
3 -1.407891 -0.973294 0.694918
4 -1.643866 -0.314176 0.672506
5 -1.184467 -1.261658 0.672506
6 -1.802020 -1.055683 0.694918

One can simply plot the content of a pandas dataframe using the name of the column (more direct alternative
than extracting numpy array). For instance, one can compare the evolution of the wave height after the
transformation:

72

3.3. import and manipulate data as numpy array: pandas

plt.figure(figsize=(10, 6))
plt.hist(df['height'], bins=100, alpha=0.5, label='Original Wave Height h')
plt.hist(df['height_normalized'], bins=100, alpha=0.5, label='$<h> = 0$, $\sigma_{h}=1$')
plt.legend(frameon=False, fontsize='xx-large');

3.3.5 Data visualization with pandas

There are also many plotting function already included into the pandas library. To show only one example
(all functions are decribed in the pandas visualization tutorial), here is the scatter matrix between variables
(defined as a subset of the ones stored the dataframe) obtained in a single line of code:

from pandas.plotting import scatter_matrix
scatter_matrix(df[normalized_cols][:2000], figsize=(12, 12), alpha=0.2, s=50,

diagonal='kde');↪→

73

https://pandas.pydata.org/pandas-docs/stable/visualization.html

Chapter 3. Three important tools to know

3.4 Mathematics, physics and engineering: scipy

The scipy project is python-based ecosystem of open-source software for mathematics, science, and engi-
neering. In particular, the following core package are part of it: NumPy, matplotlib, pandas, scipy library (very
quickly introduced here) and SymPy (symbolic calculations with mathematical expressions a la mathematica).

3.4.1 General overview

Obviously, there is no way to extensively present the scipy library in this short introduction, but one can
quickly summarize few features and illustrate one with a concrete and useful example: fitting data points
with a function. Among the main features, the SciPy library contains:

• Integration (scipy.integrate): integrals, differential equations, etc . . .

74

https://scipy.org/
https://docs.scipy.org/doc/scipy-1.2.0/reference/
https://www.sympy.org/en/index.html

3.4. Mathematics, physics and engineering: scipy

• Optimization (scipy.optimize): minimization, fits, etc . . .
• Interpolation (scipy.interpolate): smoothing methods, etc . . .
• Fourier Transforms (scipy.fftpack): spectral analysis, etc . . .
• Signal Processing (scipy.signal): transfer functions, filtering, etc . . .
• Linear Algebra (scipy.linalg): matrix operation, diagonalisation, determinant, etc . . .
• Statistics (scipy.stats): random number, probability density function, cumulative distribution, etc

. . .

3.4.2 Curve fitting example

from scipy import optimize
from scipy import stats

Let’s now show how to perform a fit of data with error bar using one particular function of scipy.optimize.
First, we need to generate some data where we choose 20 measurements, with some noise of ~30% and an
combined uncertainty of an absolute 0.1 uncertainty and 10% relative uncertainy:

Npoints, Nsampling = 20, 1000
xcont = np.linspace(-5.0, 3.5, Nsampling)
x = np.linspace(-5, 3.0, Npoints)
y = 2*(np.sin(x/2)**2 + np.random.random(Npoints)*0.3)
dy = np.sqrt(0.10**2 + (0.10*y)**2)

Then we need to define functions with which we want to fit our data, for example a degree 1 polynoms. The
syntax has to be func(x, *pars):

def pol1(x, p0, p1):
return p0 + x*p1

The following lines actually perform the fit and return both the optimal parameters and the covariances for
the dgree 1 polynom:

p, cov = optimize.curve_fit(pol1, x, y, sigma=dy)

One can then generalize the procedure by plotting the result of the fit for polynoms of several degrees, after
having plotted the data. This is a good way to compare different models for the same data. First, we define an
arbitrary degree polynom plo_func() and we vectorize it using np.vectorize so that it can accept NumPy
arrays:

def pol_func(x, *coeff):
'''Arbitrary degree polynom: f(x) = a0 + a1*x + a2*xˆ2 + ... aN*xˆN'''
a = np.array([coeff[i]*x**i for i in range(len(coeff))])
return np.sum(a)

pol_func = np.vectorize(pol_func)

75

Chapter 3. Three important tools to know

In the previous call for optimize.curve_fit(), we didn’t use additional arguement. For this example, we
need to specify at least the starting point of the parametersp0because the number of paramter will be assessed
using len(p0) (it’s not known a priori since it is dynamically allocated). Other options can be specified, such
as the miminum and maximum allowed values of parameters. Here is a wrapp-up function performing the fit
for an arbitrary polynom degree:

def fit_polynom(degree):
nPars = degree+1
p0, pmin, pmax = [1.0]*nPars, [-10]*nPars, [10]*nPars
fit_options = {'p0': p0, 'bounds': (pmin, pmax), 'check_finite': True}
par, cov = optimize.curve_fit(pol_func, x, y, sigma=dy, **fit_options)
return par, cov

degree_max = 12

The following code try every polynomial functions up to a degree degree_max=, perform the fit and overlay
the the result for each together with the experimental data on the same figure:

Figure for the result
fig = plt.figure(figsize=(12,7))

Fitting & plotting
for d in np.arange(0, degree_max):

par, cov = fit_polynom(d)
plt.plot(xcont, pol_func(xcont, *par), label='pol{}'.format(d),

linewidth=3, alpha=0.8)

Plotting data
style = {'marker': 'o', 'color': 'black', 'markersize': 8,

'linestyle': '', 'zorder': 10, 'label': 'Data'}
plt.errorbar(x, y, yerr=dy, **style)

Plot cosmetics
plt.xlim(-5.5, 6.3)
plt.ylim(-0.3, 3.4)
plt.legend(frameon=False, fontsize='xx-large');

76

3.4. Mathematics, physics and engineering: scipy

It is possible to quantify how well a given model explain the observations, computing what we call the
goodness of fit. In a frequentist approach, this can be assessed by the fraction of pseudo-data coming from - in
principle - repeating the exact same experiment, with to a worst agreement for a given model. The agreement
can be quantified using χ2 =

∑n
i=1

(yi−f (xi))2
σi2

and its probability density function (PDF) directly gives access
to the fraction of “worst pseudo-data” (by integrating the PDF from χ2 to∞). More precisely, one can use
the cumulative distribution function (CDF) of χ2 computed with n degrees of freedom, for instance Npoins,
i.e. len(x). More details can be found, for examble, in the statistics review of the Particle Data Group. The
following two functions allow to compute the goodness of fit:

def get_chi2_nDOF(y, dy, yfit):
r = (y-yfit)/dy
return np.sum(r**2), len(y)

def get_pvalue(chi2, nDOF):
return 1-stats.chi2.cdf(chi2, df=nDOF)

We can now perform all these fits and extract the goodness of fit (χ2 and p-value) for each model:

Fitting and getting p-value
degree, chiSquare, pvalue = [], [], []
for d in np.arange(degree_max):

par, cov = fit_polynom(d)
c2, n = get_chi2_nDOF(y, dy, pol_func(x, *par))
degree.append(d), chiSquare.append(c2), pvalue.append(get_pvalue(c2, n))

The following piece of code plot both the χ2 and the p-value versus the degree of the polynom using two
different y-axis. This gives another way to use matplolib by defining explicit object such as ax and fig and

77

http://pdg.lbl.gov/2018/reviews/rpp2018-rev-statistics.pdf

Chapter 3. Three important tools to know

call methods on those (called stateless appraoch), instead of using function on plt (called stateful approach).
For more details on these different approaches, see this RealPython post.

Plotting the result with 2 different axis
fig, ax1 = plt.subplots(figsize=(12,7))
ax1.set_xlabel('Polynom degree', fontsize=20)
style = {'marker': 'o', 'markersize': 10, 'alpha': 0.8,

'linestyle': '--', 'linewidth': 3}

Plot chi2/n
ax1.semilogy(degree, np.array(chiSquare)/Npoints, color='tab:red', **style)
ax1.set_ylim(0.2, 100)
ax1.set_ylabel('$\chiˆ2/n$ value [log scale]', color='tab:red', fontsize=20)

Plot p-values
ax2 = ax1.twinx()
ax2.plot(degree, pvalue, color='tab:blue', **style)
ax2.set_ylim(-0.1, 1.1)
ax2.set_ylabel('$\chiˆ2$ probability [lin scale]', color='tab:blue', fontsize=20);

78

https://realpython.com/python-matplotlib-guide/#the-matplotlib-object-hierarchy

Chapter 4

High dimensional data manipulation

Skills to take away

• basic: computation along each axis, distance computation, plotting of n-dim arrays
• medium: find closest elements along a direction, select paires based on their distance
• expert: pairing objects along a given dimension

4.1 Introduction

The present chapter makes use of the concept previously introduced to perform computation that one would
do with high dimensional data. Typically, if a given dataset consist of several 3D positions for each observation,
one has to deal with many numbers. It is possible that grouping these vectors by pairs is relevant to understand
the problem. Or maybe other operation within these various 3D vector is useful. Since we want to use the full
power of numpy, all these computations cannot be done with an explicit loop over observations and/or over
vectors.

This chapter consider few of these typical use cases and their implementation using numpy, using a simple
toy dataset made by hand. Most likely, you will never face such a situation for machine learning algorithm,
but it is good to go trough these examples to show some of the limitation of not being able to loop overs
observations.

Let’s first perform the usual imports:

import itertools
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Then, one can setup he default matplolib style for all following plots (more details on available option can be
found on how to customize matplotlib):

79

https://matplotlib.org/users/customizing.html

Chapter 4. High dimensional data manipulation

import matplotlib as mpl
mpl.rcParams['legend.frameon'] = False
mpl.rcParams['legend.fontsize'] = 'xx-large'
mpl.rcParams['xtick.labelsize'] = 16
mpl.rcParams['ytick.labelsize'] = 16
mpl.rcParams['axes.titlesize'] = 18
mpl.rcParams['axes.labelsize'] = 18
mpl.rcParams['lines.linewidth'] = 2.5
mpl.rcParams['figure.figsize'] = (10, 7)

4.2 Data model and goals

We consider 1 millions observations, each defined by ten 3D vectors (r0, ..., r9)where ri = (x, y, z) (arrow for
vector will be omitted from now on). These pseudo-data can represent position in space or RGB colors for
an image. This is just an example to play with and apply numpy concepts for both simple computations
(element-by-element functions, statistics calculations) and more complex computation exploiting the multi-
dimensional structure of the data. For example, one might want to compute the distance between all pairs
(ri, rj), which has to be done without loop.

Using the np.random module, it is possible to generate n-dimensional arrays easily. In our case, we want to
generate an array containing our observations with have 3 dimensions (or axis in numpy language), and the
size along each of these axis will have the following value and meaning:

• axis=0: over 1 million events
• axis=1: over 10 vectors
• axis=2: over 3 coordinates

r = np.random.random_sample((1000000, 10, 3))

It is possible to print the first two observations as follow:

print(r[0:2])

[[[3.12646048e-01 4.55257576e-01 7.62120920e-01]
[7.57904883e-01 5.75783716e-01 9.85730373e-01]
[8.58351019e-01 9.97112982e-01 6.94945548e-02]
[3.97010641e-01 3.30452282e-01 4.76705513e-01]
[1.90192515e-01 8.46642981e-01 9.44922049e-01]
[2.28626376e-01 5.32713270e-01 5.86119632e-02]
[8.78240385e-01 4.84309389e-01 5.41506300e-01]
[9.04149582e-01 4.92954799e-01 2.21837932e-01]
[7.92243462e-01 9.92160857e-01 5.22952886e-01]
[5.90601463e-01 8.57334963e-01 5.76432781e-01]]

[[4.89732288e-01 2.45947658e-01 5.24605965e-01]

80

4.3. Mean over the differents axis

[2.79684077e-01 1.75887137e-01 5.96777979e-01]
[6.36118572e-01 8.08656904e-01 5.67401037e-01]
[5.01315803e-01 3.79415584e-01 9.73566504e-05]
[8.04499847e-01 4.01132808e-01 2.73607136e-01]
[4.62946717e-01 8.46061510e-01 8.82090460e-01]
[2.30961828e-02 6.79642827e-01 4.79125888e-01]
[7.51716668e-01 9.00985276e-01 6.87922769e-01]
[9.47722015e-01 3.27310436e-01 1.49407680e-02]
[3.36817391e-01 2.63926051e-01 6.90325842e-01]]]

4.3 Mean over the differents axis

4.3.1 Mean over observations (axis=0)

This mean will average all observations i.e. over the first dimension, returning an array of dimension (10, 3)
corresponding to the average ri = (xi, yi, zi) over the observations.

m0 = np.mean(r, axis=0)
print(m0.shape)

(10, 3)

Note the computation time of 30ms for 30 averages over a million number:

%timeit np.mean(r, axis=0)

29.9 ms ± 165 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

While it takes 10 times longer for a single mean over a million number with an explicit loop, so the gain of
vectorization is a factor 300:

def explicit_loop(array):
res=0
for a in array:

res += a/len(array)

%timeit explicit_loop(np.random.random_sample(size=1000000))

286 ms ± 1.32 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The distributions of m0 obtained with plt.hist() results into three separate histograms (one for each x, y, x)
each having 10 entries (one per ri):

81

Chapter 4. High dimensional data manipulation

plt.hist(m0, label=['$<x>_{evts}$', '$<y>_{evts}$', '$<z>_{evts}$'])
plt.title('10 entries, one for each r_i')
plt.legend();

4.3.2 Mean over the 10 vectors (axis=1)

This one will compute the average over the 10 vectors, for each observations, reducing into a (1000000, 3)
shape array, as seen below. This is 3D barycenter of each observation.

m1 = np.mean(r, axis=1)
print(m1.shape)

(1000000, 3)

One can plot the obtained array m1 using plt.hist(), which results into 3 histograms of a million entry each:

plt.hist(m1, label=['$<x>_{i}$', '$<y>_{i}$', '$<z>_{i}$'])
plt.title('$10ˆ6$ entries, one per event')
plt.legend();

82

4.3. Mean over the differents axis

4.3.3 Mean over the coordintates (axis=2)

This directly computes the average over the three coordinates (x + y + z)/3 for each vector of each event,
resulting in 10 values per event:

m2 = np.mean(r, axis=2)
print(m2.shape)

(1000000, 10)

The plt.hist() of the resulting array m2 corresponds then to 10 histograms of a million entries each:

names = ['$(x+y+z)/3|_{'+'{}'.format(i)+'}$' for i in range(1, 11)]
plt.hist(m2, label=names)
plt.title('$10ˆ6$ entries, one per event')
plt.xlim(0, 1.5)
plt.legend();

83

Chapter 4. High dimensional data manipulation

4.4 Distance computation

Computing particular distances inside a given event is relevant for many applications (distances here can
be seen as any type of metric). For example, these computation are crucial in learning algorithms based on
nearest neighbor approach. In collider physics, it’s always useful to compute angle between two objects
(tracks, deposit, particles, . . .) in order to compute invariant masses, or isolation in a given cone, etc . . .

4.4.1 Distance to a reference r0

We can start simple by defining a new origin r0

r0 = np.array([1, 2, 1])

and compute the distance to this new origin for all points, using **2 to square all numbers, perform the sum
over the coordinate (axis=2) and square-root everything with **0.5:

d = np.sum((r-r0)**2, axis=2)**0.5
print(d.shape)

(1000000, 10)

84

4.4. Distance computation

As expected the result is 10 numbers for each of the events, which can be easily plotted:

names = ['$d(r_{'+'{}'.format(i)+'},r_0)$' for i in range(1, 11)]
plt.hist(d, label=names)
plt.title('$10ˆ6$ entries, one per event')
plt.xlim(0.5, 3)
plt.legend();

4.4.2 Distance between ri and < r >i for each event

Another calculation is to compute the averaged position for each event and see how distant each vector is
from this position. To perform such a calculation, we will use numpy array broadcasting. Let’s first compute
the average position for every events:

r_mean = np.mean(r, axis=1)

Now, let’s broadcast this array of shape (1e6, 3) with the full dataset, i.e. an array of shape (1e6, 10, 3),
by computing the distance for each point:

try:
d_to_mean = np.sum((r-r_mean)**2, axis=2)**0.5

except ValueError :
print('Impossible for {} and {}'.format(r.shape, r_mean.shape))

85

Chapter 4. High dimensional data manipulation

Impossible for (1000000, 10, 3) and (1000000, 3)

There is one missing dimension, describing the 10 positions, which has to be created so that the array can be
copied 10 times over along this dimension:

r_mean_3d = r_mean[:, np.newaxis, :]

We can now retry the operation:

try:
d_to_mean = np.sum((r-r_mean_3d)**2, axis=2)**0.5
print('Possible for {} and {}'.format(r.shape, r_mean_3d.shape))

except ValueError :
print('Impossible for {} and {}'.format(r.shape, r_mean_3d.shape))

Possible for (1000000, 10, 3) and (1000000, 1, 3)

names = ['$d(r_{'+'{}'.format(i)+'},<r>)$' for i in range(1, 11)]
plt.hist(d_to_mean, label=names)
plt.title('$10ˆ6$ entries, one per event')
plt.legend();

86

4.5. Pairing 3D vectors for each observation, without a loop

4.5 Pairing 3D vectors for each observation, without a loop

Being able to pair objects is obviously important for many type of calculations. This allows to probe corre-
lations at the first order, to identify sub-systems, etc . . . In a traditional way, a pairing would involve a for
loop in which the combinatorics can be done for each event. Working with numpy, one has to perform the
combinatorics in a vectorized way and return a new numpy array containing all the pairs. Once done, one can
perform many types of computations on this new array.

4.5.1 Finding all possible (ri, rj) pairs for all events

One solution to perform such a task without for loop was found on stackoverflow. The idea is to simply
work on indices to build the pairs (since it doesn’t really matter what are the nature of the objects), and use
numpy fancy indexing. Let proceed step by step with a smallest array to understand the procedure (namely 2
observations of 5 positions):

a = r[0:2,0:5]
print(a)

[[[3.12646048e-01 4.55257576e-01 7.62120920e-01]
[7.57904883e-01 5.75783716e-01 9.85730373e-01]
[8.58351019e-01 9.97112982e-01 6.94945548e-02]
[3.97010641e-01 3.30452282e-01 4.76705513e-01]
[1.90192515e-01 8.46642981e-01 9.44922049e-01]]

[[4.89732288e-01 2.45947658e-01 5.24605965e-01]
[2.79684077e-01 1.75887137e-01 5.96777979e-01]
[6.36118572e-01 8.08656904e-01 5.67401037e-01]
[5.01315803e-01 3.79415584e-01 9.73566504e-05]
[8.04499847e-01 4.01132808e-01 2.73607136e-01]]]

Since we want to work with the indicies of the 5 vectors, we create a numpy array of integer going from 0 to 4
(a.shape[1] is the number of elements along the second dimension, i.e. 5):

array_indices = np.arange(a.shape[1])
print(array_indices)

[0 1 2 3 4]

Then, we use the package itertools to deal with the combinatorics. This will return an iterator that can
be turned into a numpy array using np.fromiter(). But this function requires to specify the data type dt,
which is done using a structured array synthax here (i.e. [(varName1,type1), (varName2,type2)]). For
more details on data type, check this documentation page.

dt = np.dtype([('index1', np.intp), ('index2', np.intp)])
print(dt)

87

https://stackoverflow.com/questions/16003217/n-d-version-of-itertools-combinations-in-numpy
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.dtypes.html

Chapter 4. High dimensional data manipulation

[(’index1’, ’<i8’), (’index2’, ’<i8’)]

array_indice_comb = np.fromiter(itertools.combinations(array_indices, 2), dt)
print(array_indice_comb)

[(0, 1) (0, 2) (0, 3) (0, 4) (1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)]

The next step is to format these numbers in a indices array with the proper dimension, so that when we
do a[indices], we get all the pairs. For instance, we need to have all 10 pairs, each with two elements
corresponding to a shape indices.shape=(10,2). We can achieved this in two steps:

1. array_indice_comb.view(np.intp) return the exact same data of array_indice_comb as a 1D
array of positive integer.

2. we reshape the resulting array with reshape(-1, 2), where -1 means "compute the size of the first
dimension to have 2 objects (we wants pair!) in the second dimension.

indices = array_indice_comb.view(np.intp).reshape(-1, 2)
print(indices)

[[0 1]
[0 2]
[0 3]
[0 4]
[1 2]
[1 3]
[1 4]
[2 3]
[2 4]
[3 4]]

The final steps is exploit fancy indexing along axis=1 i.e. the 5 spatial positions. In practice, for each obser-
vation iobs, we want to have a[iobs, indices]. There are two ways to do this: (a) a[:, indices] or (b)
using the numpy function np.take(a, indices, axis) which makes the code more independant from
the structure of a:

a_pairs = np.take(a, indices, axis=1)
print(a_pairs.shape)

(2, 10, 2, 3)

a_pairs = a[:,indices]
print(a_pairs.shape)

(2, 10, 2, 3)

88

4.5. Pairing 3D vectors for each observation, without a loop

We have now 2 events, each having 10 pairs, each having 2 objects (still a pair!), each having 3 coordinates
(spatial positions). We can print all the 10 pairs for the first observation:

print(a_pairs[0])

[[[0.31264605 0.45525758 0.76212092]
[0.75790488 0.57578372 0.98573037]]

[[0.31264605 0.45525758 0.76212092]
[0.85835102 0.99711298 0.06949455]]

[[0.31264605 0.45525758 0.76212092]
[0.39701064 0.33045228 0.47670551]]

[[0.31264605 0.45525758 0.76212092]
[0.19019251 0.84664298 0.94492205]]

[[0.75790488 0.57578372 0.98573037]
[0.85835102 0.99711298 0.06949455]]

[[0.75790488 0.57578372 0.98573037]
[0.39701064 0.33045228 0.47670551]]

[[0.75790488 0.57578372 0.98573037]
[0.19019251 0.84664298 0.94492205]]

[[0.85835102 0.99711298 0.06949455]
[0.39701064 0.33045228 0.47670551]]

[[0.85835102 0.99711298 0.06949455]
[0.19019251 0.84664298 0.94492205]]

[[0.39701064 0.33045228 0.47670551]
[0.19019251 0.84664298 0.94492205]]]

Once understood, we can wrapp-up this code into a function where we generalize the number of objects we
want to group n and the axis along which we want to group axis:

def combs_nd(a, n, axis=0):
i = np.arange(a.shape[axis])
dt = np.dtype([('', np.intp)]*n)
i = np.fromiter(itertools.combinations(i, n), dt)
i = i.view(np.intp).reshape(-1, n)
return np.take(a, i, axis=axis)

As a sanity check, we can re-compute a_pair and compare with the previous results:

89

Chapter 4. High dimensional data manipulation

a_pairs = combs_nd(a=r[0:2,0:5], n=2, axis=1)
print(a_pairs[0])

[[[0.31264605 0.45525758 0.76212092]
[0.75790488 0.57578372 0.98573037]]

[[0.31264605 0.45525758 0.76212092]
[0.85835102 0.99711298 0.06949455]]

[[0.31264605 0.45525758 0.76212092]
[0.39701064 0.33045228 0.47670551]]

[[0.31264605 0.45525758 0.76212092]
[0.19019251 0.84664298 0.94492205]]

[[0.75790488 0.57578372 0.98573037]
[0.85835102 0.99711298 0.06949455]]

[[0.75790488 0.57578372 0.98573037]
[0.39701064 0.33045228 0.47670551]]

[[0.75790488 0.57578372 0.98573037]
[0.19019251 0.84664298 0.94492205]]

[[0.85835102 0.99711298 0.06949455]
[0.39701064 0.33045228 0.47670551]]

[[0.85835102 0.99711298 0.06949455]
[0.19019251 0.84664298 0.94492205]]

[[0.39701064 0.33045228 0.47670551]
[0.19019251 0.84664298 0.94492205]]]

It can be intersting to see that this operation takes less than a second for a million observations of 10 vectors,
meaning 45 pairs:

%timeit combs_nd(a=r, n=2, axis=1)

966 ms ± 33.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

4.5.2 Computing (minimum) distances on these pairs

Once we have these pairs, we can for example computes all the distances and find which pair has the closest
objects. Starting with the pairs:

90

4.5. Pairing 3D vectors for each observation, without a loop

pairs = combs_nd(a=r, n=2, axis=1)

We can then define the vectorial difference between the two position of a pair, and compute the euclidiean
distance:

dp = pairs[:, :, 0, :]-pairs[:, :, 1, :]
distances = (np.sum(dp**2, axis=2))**0.5

And get the minimum distance for each event:

smallest_distance = np.min(distances, axis=1)
print(smallest_distance.shape)

(1000000,)

All these instructions can be put into a function which can be timed:

def compute_dr_min(a):
pairs = combs_nd(a, 2, axis=1)
i1 = tuple([None, None, 0, None])
i2 = tuple([None, None, 1, None])
return np.min(np.sum((pairs[i1]-pairs[i2])**2, axis=2)**0.5, axis=1)

%timeit compute_dr_min(r)

980 ms ± 122 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Note that doing all operations in the less possible amount of lines can significantly speed up the process.
Let’s define another function where the difference between the pair elements is done separately:

def compute_dr_min_more_steps(a):
pairs = combs_nd(a, 2, axis=1)
dp = pairs[:, :, 0, :]-pairs[:, :, 1, :]
return np.min(np.sum(dp**2, axis=2)**0.5, axis=1)

And let’s compare the performance on 0.2 million observations:

%timeit compute_dr_min(a=r[:200000])
%timeit compute_dr_min_more_steps(a=r[:200000])

194 ms ± 1.77 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
606 ms ± 5.13 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Let’s now plot the distributions of all distances for all the pairs (using flatten() function which returns a 1D
array), and only the pair having the smallest distances:

91

Chapter 4. High dimensional data manipulation

plot_style = {
'bins': np.linspace(0, 2, 100),
'alpha': 0.5,
'density': True,

}

plt.hist(distances.flatten(), label='All pairs' ,**plot_style)
plt.hist(smallest_distance, label='Closest pair', **plot_style)
plt.xlabel('Distance')
plt.ylabel('Arbitrary Unit')
plt.legend();

4.6 Selecting a subset of ri based on (x, y, z) values, without loop

The next step in our exploration “loop-less calculations” is to be able to perform the same kind of computation
described above but only on a subset of positions, selected according to a given criteria. For example, we
might want to keep particles only if there have positive charge. Many obvious application can be found in
other physics field and/or machine learning. Let’s start with accessing the three arrays of coordinates in order
to select points based on some easy criteria.

92

4.6. Selecting a subset of ri based on (x, y, z) values, without loop

x, y, z = r[:, :, 0], r[:, :, 1], r[:, :, 2]

4.6.1 Counting number of points amont the 10 with xi > yi in each event

We will use the numpy masking feature described in the first chapter, defining a index of boolean based on x
and y arrays:

idx = x > y
print(idx.shape)

(1000000, 10)

We can quickly check the distribution for the selected coordinates: x and y are anty correlated - as expected -
while z is flat - as expected.

plt.hist(x[idx], bins=100, alpha=0.2, label='x')
plt.hist(y[idx], bins=100, alpha=0.2, label='y')
plt.hist(z[idx], bins=100, alpha=0.3, label='z')
plt.legend();

If we want to better understand how this selection affect our data, one might want to count the number of
points per event satisfying this selection, using np.count_nonzero() on the boolean array along the axis
representing the 10 vectors axis=1:

93

Chapter 4. High dimensional data manipulation

c = np.count_nonzero(idx, axis=1)
print(c.shape)

(1000000,)

We can then plot the distribution of this number over all the events:

plt.hist(c, bins=20, alpha=0.5);

4.6.2 Plotting z for the two types of population (x > y and x < y)

This is obviously useful to inspect the different populations - something we want to do very often. For the
plotting purpose, let’s consider only the 500 first observations that we dump into sx, sy, sz (s for small):

sx, sy, sz = x[0:500, ...], y[0:500, ...], z[0:500, ...]

We define the mask computed on these small arrays smask:

smask = sx>sy

And we can plot the result in the 2D plane (x, y)with the z coordinate as marker size, for instance 1/(z + 10−3).
The two populations are defined using both smask and ~smask to make sure the union of the two is the
original dataset:

94

4.6. Selecting a subset of ri based on (x, y, z) values, without loop

plt.scatter(sx[smask], sy[smask], s=(sz[smask]+1e-3)**-1, label='$x>y$')
plt.scatter(sx[~smask], sy[~smask], s=(sz[~smask]+1e-3)**-1, label='$x\leq y$')
plt.xlabel('x')
plt.ylabel('y')
plt.xlim(-0.03, 1.3)
plt.legend();

4.6.3 Computation of xi + yi + zi sum over a subset of the 10 positions

Once we are able to isolate a subset of points, we might to computes new numbers only based on those. This
is what is proposed here with the sum of the three coordintates. Let’s first compute and the sum, called ht,
over all the 10 points:

ht1 = np.sum(x+y+z, axis=1)
print(ht1.shape)

(1000000,)

Apply now a selection, which multiply the value by 0 (i.e. False) if the condition is not satistifed:

95

Chapter 4. High dimensional data manipulation

selection = x>y
ht2 = np.sum((x+y+z)*selection, axis=1)

Of course, this works only for computation which is not affected by a 0: if we want to compute the product of
coordinate, this approach will obvioulsy not work.

prod = np.product((x+y+z)*selection, axis=1)
eff = np.count_nonzero(prod>0)/len(prod)
print('Efficiency of prod>0: {:.5f}'.format(eff))

Efficiency of prod>0: 0.00093

In a more general manner, we should use masked arrays which completely remove the masked elements from
any computations:

mx = np.ma.array(x, mask=selection)
my = np.ma.array(y, mask=selection)
mz = np.ma.array(z, mask=selection)
prod = np.product((mx+my+mz), axis=1)
eff = np.count_nonzero(prod>0)/len(prod)
print('Efficiency of prod>0: {:.5f}'.format(eff))

Efficiency of prod>0: 1.00000

Finally one can plot the result, removing the observation with ht2==0 (case where all the 10 points have
x ≤ y):

plt.hist(ht1, bins=100, alpha=0.4, label='All points')
plt.hist(ht2[ht2>0], bins=100, alpha=0.4, label='Only x>y')
plt.xlabel('$\sum_{i} \; (x_i+y_i+z_i)$')
plt.legend();

96

4.6. Selecting a subset of ri based on (x, y, z) values, without loop

4.6.4 Pairing with a subset of ri verifying xi > yi only

Another computation would be to redo the pairing on the subset of selected position. In order to do so,
we follow the same logic, expect that we will directly replace removed values by nan in order to be easily
identifiable in after the pairing. It’s very important to copy the orignal data with the module copy, otherwise,
the orignal data will be modifed in the following piece of code:

import copy
selection = x>y
selected_r = copy.copy(r)
selected_r[selection] = np.nan
print(selected_r[0])

[[0.31264605 0.45525758 0.76212092]
[nan nan nan]
[0.85835102 0.99711298 0.06949455]
[nan nan nan]
[0.19019251 0.84664298 0.94492205]
[0.22862638 0.53271327 0.05861196]
[nan nan nan]
[nan nan nan]
[0.79224346 0.99216086 0.52295289]
[0.59060146 0.85733496 0.57643278]]

97

Chapter 4. High dimensional data manipulation

On can now calling the paring function on the filtered dataset:

selected_pairs = combs_nd(selected_r, n=2, axis=1)

And compute the distances, but replacing back the np.nan by a default values that will not be seen on a plot.

p1, p2 = pairs[:, :, 0, :], pairs[:, :, 1, :]
dp = np.sum((p1-p2)**2, axis=2)**0.5
dp[np.isnan(dp)] = 999

And plotting the distributions of both all distances and minimum distances for pairs made out of points
verifying x > y:

plot_style = {'bins': np.linspace(0, 2, 200), 'alpha':0.3}
plt.hist(dp.flatten(), label='$|r_i-r_j|$ for all pairs', **plot_style)
plt.hist(np.min(dp, axis=1), label='min$(|r_i-r_j|)$', **plot_style)
plt.legend();

4.7 Some comments

Manipulating numpy array is quite powerful and fast for both computation and plotting, at the condition that
we use numpy optimization, namely vectorization, indexing and broadcasting. This is ofter possible when this
has also some limitations as we saw above. Namely, we add to play a bit with “patchwork approaches” to

98

4.7. Some comments

achieve what we want without loops in the last two sections. Typically, what will work for one computation
will not work for another (replacing rejected values by 0 works for an addition and not for a product). For the
pairing as well, we had to replace all rejected values by np.nan in order to filter them later on. This kind of
practice makes things less readable when complexity increases - according to me. Or maybe there are smarter
ways to do things.

99

Chapter 4. High dimensional data manipulation

100

Chapter 5

Introduction to image processing

Skills to take away

• basic: load/plot an image (data type), color/grey scale, add/subtract two images
• medium: zone modification, filters (kernels/blocks/windows), apply them (given functions)
• expert: filter application function (notion/use of numpy strides, 2D convolutions)

5.1 Motivations

Image processing has an important role in data science and in science in general. The typical digit recognition
problem is one (classic) example of image processing. The notion of convolutional neural networks (CNN) is
also a keep point in image processing based on machine learning algorithm. Another one, more recent, is the
generative adversial neural networks (GAN) which are able to generate image of a given nature, after beeing
properly trained. You can check out https://thispersondoesnotexist.com which shows generated image of
people . . . which doesn’t exist.

The very first step is to understand how an image is encoded in numpy and how to manipulate it - even without
talking about sophisticated algorithms. This is the goal of this notebook, which is split into three different
sections:

1. Basic investigations: load/plot/write an image, get image histogram, grey scale, croping, . . .
2. Numerical operations: addition, subtraction, masking some pixel based on a given condition, . . .
3. Applying basic filters: image split in blocks versus windows, bluring, sharpening, edge detection, . . .

Note that for there few python pacakages dedicated to image processing, such as Pillow or scikit-image. The
package scipy also has a module ndimage dedicated to image processing (cf. this online lecture). I choose
to not use these tools here in order to not increase the number of libraries (very easy to do in python), so
only NumPy and matplotlib will be used in this chapter. However, if you are intersted in doing intensive image
processing, I would recommand to look at pillow. Another tool, more oriented toward machine learning and
computer vision, is OpenCV - good to keep in mind depending on your applications.

101

https://thispersondoesnotexist.com
https://pillow.readthedocs.io/en/stable/
https://scikit-image.org/
http://scipy-lectures.org/advanced/image_processing/
https://opencv-python-tutroals.readthedocs.io/en/latest/index.html

Chapter 5. Introduction to image processing

5.2 Basic investigations

An image is a numpy array of 8-bits integers with a shape (Nx, Ny, 3)with Nx (Ny) pixels in the x (y) direction
and three colors being a interger in [0, 255] interval (RBG). The low pixel values correspond to dark areas while
values close to %255$ are clear pixels. An usual image format (png, jpg, . . .) can be loaded as numpy array
using plt.imread() function:

Usual import
import numpy as np
import matplotlib.pyplot as plt

Load a test image
im = plt.imread('../data/image_test.jpg')

Indeed, we can investigate the numpy array we loaded:

Print caracteristics
print('Object : {}'.format(type(im)))
print('Shape : {}'.format(im.shape))
print('Data type : {}'.format(im.dtype))

Print the values of four first pixels along x (for y=0):
print('pixels(x<5, y=0): \n{}'.format(im[0:4, 0, :]))

Object : <class ’numpy.ndarray’>
Shape : (3008, 4008, 3)
Data type : uint8
pixels(x<5, y=0):
[[18 18 8]
[21 21 9]
[31 31 19]
[29 29 17]]

5.2.1 Plotting

The obvious first thing we want to do with an image is to see it! This can be acheived using plt.imshow()
function. Below, we write a function which uses plt.imshow(), with arbitrary figure size keeping the figure
ratio:

def plot_image(im, h=5, **kwargs):
lx, ly = im.shape[:2]
w = (ly/lx)*h
plt.figure(figsize=(w,h))
plt.imshow(im, interpolation=None, **kwargs)
return

102

5.2. Basic investigations

plot_image(im, h=7)

5.2.2 Histograms

The histogram of an image is often shown on a camera or on post-processing picture software. This allow to
appreciate how all pixels are distributed in term of intensity. This can be obtained with a rather straightforward
function:

def plot_histogram(image):

Get the 2D array for each of the three colors, and flat it.
pixels = [p.ravel() for p in np.array_split(image, 3, axis=2)]

Produce the histogram for each color and stack them
style_hist = {'bins': np.arange(-0.5, 256.5, 1.0), 'alpha': 0.7, 'stacked':True}
plt.hist(pixels, color=['tab:red', 'tab:green', 'tab:blue'], **style_hist)
return

plot_histogram(im)

103

Chapter 5. Introduction to image processing

5.2.3 Color and gray scale

This is also possible to plot each channel (color) separately. First, we can crop the picture to focus on the
intersting part of it: the Clermont-Ferrand cathedral. Since the image is a numpy array, croping is just taking a
sub-array using numpy indexing:

image = im[500:1500, 1500:3000]
plot_image(image)

104

5.2. Basic investigations

For instance, we can plot the histogram of this new image and check that the dark parts corresponding to
surrounding trees (low values) are significantly decreased:

plot_histogram(image)

In order to investigate how the colors are spatially distributed, one can plot each channel sperately using the
appropriated color map. This this what the next function does:

105

Chapter 5. Introduction to image processing

def plot_RGB(image):
'''Plot each color channel'''

Get each color channel
R, G, B = image[...,0], image[...,1], image[...,2]

Figure shape preserving the image ratio
lx, ly = image.shape[:2]
w = (ly/lx)*3
fig = plt.figure(figsize=(w*3.5,5))

One subplot per channel (Nrow, Ncol, Nplot)
for i, (pixel, color) in enumerate(zip([R, G, B], ['Reds_r', 'Greens_r', 'Blues_r'])):

plt.subplot(1, 3, i+1)
plt.imshow(pixel, interpolation=None, cmap=color)

return

plot_RGB(image)

Another usual operation is to switch from colored to gray scale picture. This can be done in several ways
(check for e.g. the corresponding wikipedia article), but one which is relatively simple to implement is based
on luminensce preservation:

def get_gray_scale(image):

Get RGB individual values
R, G, B = image[...,0], image[...,1], image[...,2]

Get gray scale from RGB colors: PIX = 0.299 R + 0.587 G + 0.114 B
pixels = np.array(0.299*R + 0.587*G + 0.114*B, dtype=np.uint8)

Replace each channel by this gray scale
im_gs = np.stack([pixels, pixels, pixels], axis=2)

Retrun the gray image
return im_gs

Get the gray scale image
gray_image = get_gray_scale(image)

106

https://en.wikipedia.org/wiki/Grayscale

5.3. Numerical operations on images

Plot the result
plot_image(gray_image, h=7)

5.3 Numerical operations on images

Since images are numpy arrays, we can perform numerical operations very easily. Not all of them have a
proper meaning though, but it is intersting to explore the possibilities. First, we define two images which are
the Clermont-Ferrand cathedral slightly shifted:

Create the two images
image1 = im[500:1500, 1500:3000]
image2 = im[500:1500, 1600:3100]

Plot the two images side-by-side
plt.figure(figsize=(15, 5))
plt.subplot(1, 2, 1)
plt.imshow(image1)
plt.subplot(1, 2, 2)
plt.imshow(image2);

107

Chapter 5. Introduction to image processing

5.3.1 Addition & subtraction

What if we add or subtract these pictures? One has to define what happens if the sum (or the difference) is out
of the permitted range [0, 255]. Let’s take the following convention: if the pixel is below 0, we set it to 0 and if
it is above 255, we set it to 255. This can be done by taking the image with float (allowing above values) and
operate the truncation after end. The two following functions implement this “image addition/subtraction”:

def add_pictures(im1, im2):
s = im1.astype(float) + im2.astype(float)
s[s>255] = 255
s[s<0] = 0
return s.astype(np.uint8)

def subtract_pictures(im1, im2):
s = im1.astype(float) - im2.astype(float)
s[s>255] = 255
s[s<0] = 0
return s.astype(np.uint8)

Let’s try to plot the added and subtracted images:

Perform the operations
s12 = add_pictures(image1, image2)
d12 = subtract_pictures(image1, image2)
d21 = subtract_pictures(image2, image1)

Plot the results side-by-side
plt.figure(figsize=(20, 5))
plt.subplot(1, 3, 1)
plt.imshow(s12)
plt.subplot(1, 3, 2)
plt.imshow(d12)
plt.subplot(1, 3, 3)
plt.imshow(d21);

108

5.3. Numerical operations on images

When we sum the two picture, we get something very bright (as expected) and we see the echo of the cathedral.
After the subtraction (middle), we still see the echo but we get something every dark. The last plot show the
other difference, looking quite cool especially at the bottom of the Cathedral!

5.3.2 Modifying certain pixels

Another useful operation we can easily do with NumPy is to mask pixel statisfying a given condition. Let say
we want to mask all pixel which as its red level higher than it’s blue level summed to the green level:

Get the copy of colors (to be modifed latter)
r, g, b = image[...,0].copy(), image[..., 1].copy(), image[..., 2].copy()

Get the mask
th = add_pictures(g, b)
to_black = r>=th

Perform the mask
r[to_black] = 0
g[to_black] = 0
b[to_black] = 0

One can also decide to set to white the too dark regions, say r+g+b<=60, whithout touching the previous pixels:

Get the new indices to set to white
to_white = r+b+g<=60

White only pixel that were didn't touch by the previous mask
to_white = to_white * ~to_black

Perform the whitening
r[to_white] = 255
g[to_white] = 255
b[to_white] = 255

Combine the three colors together
image_masked = np.stack([r, g, b], axis=2)

Plot the results side-by-side
plt.figure(figsize=(15, 5))

109

Chapter 5. Introduction to image processing

plt.subplot(1, 2, 1)
plt.imshow(image1)
plt.subplot(1, 2, 2)
plt.imshow(image_masked);

5.3.3 Modifying regions

We can use the fency indexing of numpy to define a shape and modify only pixels which are within this shape.
For the example, let’s consider a circle with a given center position r0 = (x0, y0) and radius R in which we
will decrease the luminosity - i.e scale down all pixels together. To start, let’s write a function which return
a boolean 2D array which tell us whether a give (x, y)-pixel is in the circle or not. This will, again, involve a
meshgrid:

def idx_in_circle(im, x0, y0, R):
lx, ly = im.shape[:2]
X, Y = np.meshgrid(np.arange(0, ly), np.arange(0, lx))
radius = ((X-x0)**2 + (Y-y0)**2)**0.5
return radius<=R

We will now use this function to change to add 10 random shadowed circles that we generate using
np.random.randint() function for the center and the radius of circles. Note the use packing/unpacking of
arguments to call the idx_in_circle() function in a more consise and clear way (together with the zip()
syntax):

Copy original image and modify it
result = image.copy()

Get 10 random circles (in position and radius)
x0 = np.random.randint(low=100, high=1000, size=10)
y0 = np.random.randint(low=100, high=1500, size=10)
R0 = np.random.randint(low=50 , high=300 , size=10)

For each of them, modify the picture
for circle in zip(x0, y0, R0):

110

5.4. Image filters with NumPy

idx = idx_in_circle(image, *circle)
result[idx] = result[idx]*0.7

Plot the result
plt.figure(figsize=(10, 5))
plt.imshow(result);

5.4 Image filters with NumPy

5.4.1 Kernels, image blocks v.s. windows

In image processing, a filter is a small 2D array n× n (also called kernel) which is used to modify the value of
each pixel using a convolution between a portion of the image and the kernel. These portions can be either
use every pixel only once - split the image in (n× n) blocks - or they can use every pixel several times - sliding
(n× n) overlapping windows. The mathematical operation behind the name convolution is a simple sum
over all elements from the window, waited by the elements of the kernel.

In order to better understand the concept of kernels, blocks and windows, let’s now take an exemple of a
12x12 image and build up both the blocks and sliding windows:

Image definition
image = np.arange(12*12).reshape(12, 12)
print('image = \n{}'.format(image))

111

Chapter 5. Introduction to image processing

Build-up 3x3 independant blocks
step3 = range(0, 12, 3)
blocks_3x3 = np.array([image[i:i+3, j:j+3] for i in step3 for j in step3])
blocks_3x3 = blocks_3x3.reshape(4, 4, 3, 3) # Organize the 16 blocks into a 4x4 grid
print('\nBlock[1, 1] = \n{}'.format(blocks_3x3[1, 1]))

Built-up 3x3 windows for pixel far from the border (to avoid technical issues)
windows_3x3 = np.array([image[i-1:i+2, j-1:j+2] for i in range(1, 11) for j in range(1, 11)]

)↪→

windows_3x3 = windows_3x3.reshape(10, 10, 3, 3) # Organize the 100 blocks into a 10x10 grid
print('\nWindow[3, 2] = \n{}'.format(windows_3x3[3, 2]))

image =
[[0 1 2 3 4 5 6 7 8 9 10 11]
[12 13 14 15 16 17 18 19 20 21 22 23]
[24 25 26 27 28 29 30 31 32 33 34 35]
[36 37 38 39 40 41 42 43 44 45 46 47]
[48 49 50 51 52 53 54 55 56 57 58 59]
[60 61 62 63 64 65 66 67 68 69 70 71]
[72 73 74 75 76 77 78 79 80 81 82 83]
[84 85 86 87 88 89 90 91 92 93 94 95]
[96 97 98 99 100 101 102 103 104 105 106 107]
[108 109 110 111 112 113 114 115 116 117 118 119]
[120 121 122 123 124 125 126 127 128 129 130 131]
[132 133 134 135 136 137 138 139 140 141 142 143]]

Block[1, 1] =
[[39 40 41]
[51 52 53]
[63 64 65]]

Window[3, 2] =
[[38 39 40]
[50 51 52]
[62 63 64]]

For instance, the number 39 can only be on a edge of a block (used once) while it can be everywhere for the
sliding windows (used several times). Let’s now define a 3x3 kernel and apply it to blocks_3x3[1,1]:

Definition
kernel = np.arange(9).reshape(3, 3)/20
print('kernel = \n{}'.format(kernel))

Convolution with the block[1, 1]
this_block = blocks_3x3[1, 1]
new_pixel = np.sum(kernel * this_block)
print('\nProduct of elements = \n{}'.format(kernel * this_block))
print('\nNew pixel = {:.1f} (vs an old pixel of {})'.format(new_pixel, this_block[1, 1]))

112

5.4. Image filters with NumPy

kernel =
[[0. 0.05 0.1]
[0.15 0.2 0.25]
[0.3 0.35 0.4]]

Product of elements =
[[0. 2. 4.1]
[7.65 10.4 13.25]
[18.9 22.4 26.]]

New pixel = 104.7 (vs an old pixel of 52)

Let’s now apply the kernel defined above to both blocks and sliding windows. We can also represent the
image before filter, after block-based filter and window-based filter.

Apply block-based filter
block_filtered = np.sum(blocks_3x3*kernel[np.newaxis, np.newaxis], axis=(2, 3))
block_filtered[block_filtered>255]=255
block_filtered[block_filtered<0]=0

Apply window-based filter
window_filtered = np.sum(windows_3x3*kernel, axis=(2, 3))
window_filtered[window_filtered>255]=255
window_filtered[window_filtered<=0]=0

Plot the results side-by-side
plt.figure(figsize=(18, 7))
plt.subplot(1, 3, 1)
plt.imshow(image, cmap='gray')
plt.subplot(1, 3, 2)
plt.imshow(block_filtered, cmap='gray')
plt.subplot(1, 3, 3)
plt.imshow(window_filtered, cmap='gray');

Important comment. The block view is not too gridy in memory but the the windows view can explode quite
rapidely. Indeed, for a kernel of n× n, the windows view is n2 larger than the original array. If you manipulate
millions of images this can be problematic. For this reason, we will use a buildin scipy.signal function to

113

Chapter 5. Introduction to image processing

perform the “sliding windows application”, called convolved2D(). However in the next section, we will study
how efficiently perform the “block approach” using a deeper numpy feature: the strides.

Generalisation to RGB image. Before moving forward, we need to consider the 3 colors of an image to apply
a filter, which has some implication in term of broadcasting structure. First, let’s define a dummy RGB image
using a meshgrid (careful x and y are reversed wrt imshow) and three function for each color:

Create a shaped image
def get_dummy_image(nx=600, ny=1200):

X, Y = np.meshgrid(np.linspace(0, 10, ny), np.linspace(0, 5, nx))
f = lambda n: np.abs(np.sin(X)**n+np.cos(Y)**n)
im = np.stack([2*f(1), 0.5*f(3), 0.5*f(2)], axis=2)*255
return im.astype(np.uint8)

im = get_dummy_image(nx=60, ny=120)
plot_image(im)

In order to get the proper broadcasting, we need to extend the kernel with a third dimension for the colors,
which can be done via the syntax kernel[:,:,np.newaxis]. In that way, the kernel will be automatically
duplicated for each color and its application can be properly vectorized.

Kernel application with the proper broadcasting over colors only for the first block
kernel = np.arange(9).reshape(3, 3)/20
new_pixel = np.sum(im[0:3, 0:3, :]*kernel[:,:,np.newaxis], axis=(0,1), dtype=np.uint8)
print(new_pixel)

Plotting the 9 considered pixels and the result
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.imshow(im[0:3, 0:3, :])

114

5.4. Image filters with NumPy

plt.subplot(1, 2, 2)
plt.imshow(new_pixel.reshape(1, 1, 3));

[188 218 223]

5.4.2 Image blocks: intuitive but inefficient approach

The most intuitive approach is to apply the filter to each block, involving an explicit loop over all the blocks of
the image. Let’s follow this approach for now, defining a function which apply the kernel to the block indexed
by (i, j). Note that we didn’t handle properly the boundaries, i.e. if the size of the image is not exactly n times
the size of the kernel.

def apply_filter_one_block(im, kn, i, j):
dx, dy = kn.shape
start_i, end_i = i*dx, (i+1)*dx
start_j, end_j = j*dy, (j+1)*dy
indices = (slice(start_i, end_i), slice(start_j, end_j), slice(None, None))
pixel = np.sum(im[indices].astype(float)*kn[:, :, np.newaxis], axis=(0, 1))
pixel[pixel<0]=0
pixel[pixel>255]=255
return pixel.astype(np.uint8)

Testing with a dummy image and averaging filter (1 every where)
im = get_dummy_image(nx=12, ny=12)
kernel = np.ones(shape=(3, 3))/9.
print('new pixel = {}'.format(apply_filter_one_block(im, kernel, 1, 1)))

new pixel = [98 57 79]

Let’s now try to applyt the strategy to a real image 1200× 1200with the two kernel sizes 3× 3 and 6× 6:

115

Chapter 5. Introduction to image processing

Testing with a real image
image_full = plt.imread('../data/image_test.jpg')
im = image_full[500:1700, 1500:2700]

3x3 kernel with all ones
kernel = np.ones(shape=(3, 3))/(3*3)
im3x3 = np.array([[apply_filter_one_block(im, kernel, i, j) for j in range(0, 400)] for i in

range(0, 400)])↪→

6x6 kernel with all ones
kernel = np.ones(shape=(6, 6))/(6*6)
im6x6 = np.array([[apply_filter_one_block(im, kernel, i, j) for j in range(0, 200)] for i in

range(0, 200)])↪→

12x12 kernel with all ones
kernel = np.ones(shape=(12, 12))/(12*12)
im12x12 = np.array([[apply_filter_one_block(im, kernel, i, j) for j in range(0, 100)] for i

in range(0, 100)])↪→

Plotting the result
fig = plt.figure(figsize=(40, 10))
for i, this_im in enumerate([im, im3x3, im6x6, im12x12]):

plt.subplot(1, 4, i+1)
plt.imshow(this_im)

This is also possible to time the loop operation with the %timeit magic command. Let’s do it in the full
picture:

im_test = image_full[:3006, :4008]
kernel = np.ones(shape=(3, 3))/(3*3)
%timeit np.array([[apply_filter_one_block(im_test, kernel, i, j) for j in range(0, 1336)] for

i in range(0, 1002)])↪→

19.6 s ± 1.27 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

It takes then ~20s to process a 12 Mpixels image. This shows that this approach is way too long for a systematic
treatement, especially if you think of a larger number of image to process. This was expected since we already
mentioned that explicit loops in python are just too slow. The goal of the next section is to use the power of
numpy to remove the loop and speed-up this computation.

116

5.4. Image filters with NumPy

5.4.3 Image blocks : fast numpy-based approach

The idea is to first turn the image array from the dimension (Nx, Ny, 3) to (Nx_new, Ny_new,
Nx_kernel, Ny_kernel, 3), where (Nx_new, Ny_new) is the dimension of the “image of blocks”. Once
this is done, one can simply multiply and sum over the axis 2 and 3.

The other approach is quite advance but also quite powerful: numpy.lib.stride_tricks.as_strided().
Strides are basically a tuple of bytes of memory to jump from on element to another in each dimension. In
other words, it’s the byte-separation between consecutive items for each dimension. This bytes manipulation
doesn’t duplicate the data but rather view them as a different way, which is much more efficient from the
memory point of view. This is the approach behind the broadcasting and is, by far, the fastest approach. Let’s
go step by step to understand the strides concept.

Small image as a copy of a sub-image from out favorite test
im_small = image_full[1000:1006, 1000:1006].copy()

Print few information, including the number of bytes 6x6x3x1 = 108
print('Shape : {}'.format(im_small.shape))
print('Dtype : {}'.format(im_small.dtype))
print('Item size : {}'.format(im_small.itemsize))
print('Nbytes : {}'.format(im_small.nbytes))

Shape : (6, 6, 3)
Dtype : uint8
Item size : 1
Nbytes : 108

Reminder: 1 byte (or octet) is 8 bits. One bit is a single number being 0 and 1. The 8-bits image we are looking
at in this lecture is then 1 byte per color and per pixel. The above number then makes perfect sense.

Let’s try to compute the byte jump by hand first. In the third axis (color) axis, the jump between two consecutive
items is just the item size so 1 byte. For the y-axis you jump 3 by 3 element to jump over all colors and reach
the next position. This lead to a byte jump of 3 bytes. Finally, to jump over the next x-axis value, one needs to
loop over all y-values and 3 colors, which makes 6× 3 = 18. So the im.strides command should give (18,
3, 1).

print(im_small.strides)

(18, 3, 1)

Now, we can manipulate these jumps to organize the numbers differently. Let’s do it for on one color only and
just 4× 4 array, to have a smaller array and follow numbers individually.

4x4 array and getting strides
a = im_small[:4, :4, 0].copy()
jumps = a.strides
print('a = \n{}'.format(a))
print('strides = {}'.format(jumps))

117

Chapter 5. Introduction to image processing

a =
[[124 120 114 111]
[123 119 115 112]
[122 119 115 113]
[120 118 116 115]]

strides = (4, 1)

Let’s say that we want to make an array of 2x2 blocks each 2x2 elements, so a new shape of (2, 2, 2, 2).
The first block would look like:

[124, 120]
[123, 119]

In term of strides, this means that the memory jump between two elements along the before-the-last axis is
equivalent to a jump of 4 bytes. This corresponds to the jump between two elements along the first axis of
the original array. In order to have the second block like:

[114 111]
[115 112]

One needs to jump along the second axis by 2 bytes, which is the size of the jump to go from 124 to 114. Finally,
for a jump along the first axis, we need to go from 124 to 122, which account for 8 bytes (correspondong to
the two first lines of a).

Re-agencemement using the strides
new_shape = (2, 2, 2, 2)
new_jumps = (8, 2, 4, 1)

Create the new array
from numpy.lib.stride_tricks import as_strided
a_new = as_strided(a, strides=new_jumps, shape=new_shape)

Print the result
print('a_new = \n{}'.format(a_new))
print('strides = {}'.format(new_jumps))

a_new =
[[[[124 120]

[123 119]]

[[114 111]
[115 112]]]

[[[122 119]
[120 118]]

[[115 113]
[116 115]]]]

strides = (8, 2, 4, 1)

118

5.4. Image filters with NumPy

Once we did this by hand, we can try to automatize it given the size of the blocks we want to make and the
size of the image. Let’s take the example of (100, 100) image with a (3, 3) block:

100x100 image
im100x100 = image_full[:100, :100, 0].copy()

Convering each shape into numpy array for element-wise operation
im_shape = np.array(im100x100.shape) # image dimensions
bl_shape = np.array((3, 3)) # block dimensions

Shape of the "image of blocks", as floor division
im_blocks_shape = im_shape // bl_shape
print(im_blocks_shape)

Full dimension is a concatenation of corresponding shapes
new_shape = tuple(im_blocks_shape) + tuple(bl_shape)
print(new_shape)

[33 33]
(33, 33, 3, 3)

Now, it is matter to get automatically the new strides knowing the image and block sizes. The jumps corre-
sponding to the two first dimensions are directly the orignal picture jumps times the block shape. Indeed, we
want the following:

• along y-axis (2nd axis): take the 1st element, then the 1+Ny_block’s one, etc . . . so memory jump is
old_jump_y * Ny_block.

• along x-axis (1st axis): take the 1st element then the 1+Nx_block’s one, so memory jump is also
old_jump_x * Nx_block

Concerning the two last axis, i.e. the navigation inside a block, this is just the original memory jumps.

Get old strides as numpy array
old_strides = np.array(im100x100.strides)
print(old_strides)

Form new strides
new_strides = tuple(old_strides*bl_shape) + tuple(old_strides)
print(new_strides)

[100 1]
(300, 3, 100, 1)

Form the blocks and check this is correct for the first few
im100x100_blocked = as_strided(im100x100, strides=new_strides, shape=new_shape,

writeable=False)↪→

119

Chapter 5. Introduction to image processing

Print the original image
print('Original image: \n{}'.format(im100x100[:6, :6]))

Print the first few blocks
print('\nFirst 3x3 blocks: \n',format(im100x100_blocked[:2, :2]))

Original image:
[[18 18 22 26 23 21]
[21 23 19 21 29 30]
[31 31 17 13 25 24]
[29 24 15 17 28 31]
[25 12 12 19 20 23]
[13 2 12 27 28 38]]

First 3x3 blocks:
[[[[18 18 22]

[21 23 19]
[31 31 17]]

[[26 23 21]
[21 29 30]
[13 25 24]]]

[[[29 24 15]
[25 12 12]
[13 2 12]]

[[17 28 31]
[19 20 23]
[27 28 38]]]]

We are now ready to build-up a function which apply a kernel per block (accounting for the additional axis for
colors - not taken into account above), where the last step is just operating the sum:

def apply_filter_strides(image, kernel):
from numpy.lib.stride_tricks import as_strided

Get the new shape
m_shape, image_shape = np.array(kernel.shape), np.array(image.shape)
new_shape = tuple(image_shape[:2] // m_shape) + tuple(m_shape) + (image_shape[-1],)

Get the new strides
new_strides = tuple(image.strides[:2] * m_shape) + image.strides

Get the new blocked image (Nx_new, Ny_new, Nx_mask, Ny_mask, 3)
blocked_image = as_strided(image, shape=new_shape, strides=new_strides, writeable=False)

120

5.5. Few typical filters

Apply the mask with the proper broadcasting
kernel_reshaped = kernel[np.newaxis, np.newaxis, :, :, np.newaxis]
result = np.sum(blocked_image*kernel_reshaped, axis=(2, 3))

Cleaning
result[result<0] = 0
result[result>255] = 255

Return
return result.astype(np.uint8)

It is worth to mention that all this code is already written in some of the tools mentioned at the begining of
this chapter, but the goal here is to learn how the tools are made (and possible make new ones!). To finalize
the process, we can first compare we get the same result as the explicit loop function, and then compare the
timing for those two functions:

Check compatibility with the previous function
im = image_full[500:1700, 1500:2700]
kernel = np.ones(shape=(12, 12))/(12*12)
im12x12_loop = np.array([[apply_filter_one_block(im, kernel, i, j) for j in range(0, 100)]

for i in range(0, 100)])↪→

im12x12_strides = apply_filter_strides(im, kernel)

Check that all pixels are the same in both images
print('Are the two results equal? {}'.format(np.all(im12x12_strides==im12x12_loop)))

Are the two results equal? True

Exectution time
kernel = np.ones(shape=(3, 3))/(3*3)
%timeit apply_filter_strides(image_full, kernel)

866 ms ± 6.46 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

The fully vectorized approach based on stride manipulations is more than 20 times faster than the explicit
loop.

5.5 Few typical filters

5.5.1 Few utility functions

In order to perfom image processing in a systematic way, we need to build up few helper functions which
are written below. They are all based on the above developpements, except the sliding windows application
using scipy.signal.convolve2d() function. The full documentation of this function, together with some
examples, can be found here and will not be discussed in this lecture.

121

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html

Chapter 5. Introduction to image processing

Note: there is slight difference in the definition of convolve2d() function and the weighted sum used in the
blocks approach. The convolve2d() peform the weighted sum using the transposed kernel, which explain
the the considered kernel in the below function is kernel.T.

Clean image (value and data type):

def clean_image(image):
image[image < 0] = 0
image[image > 255] = 255
return image.astype(np.uint8)

Normalise the kernel values:

def normalize_filter(kernel):
if np.sum(kernel) != 0:

return kernel/np.sum(kernel)
else:

return kernel

Apply filter with sliding windows (based on scipy.signal 2D convolution function)

def apply_filter_windows(image, kernel):
from scipy.signal import convolve2d

Performing 2D convolution on every color
args = {'mode': 'same', 'boundary': 'fill', 'fillvalue': 0}
r, g, b = image[..., 0], image[..., 1], image[..., 2]
filtered_colors = [convolve2d(ch, kernel.T, **args) for ch in [r, g, b]]

Stacking all colors together
filtered_image = np.stack(filtered_colors, axis=2)

Result
return clean_image(filtered_image)

Applying filter with blocks (based in stride-based manipulation)

def apply_filter_blocks(image, kernel):
from numpy.lib.stride_tricks import as_strided

Get the new shape
m_shape, image_shape = np.array(kernel.shape), np.array(image.shape)
new_shape = tuple(image_shape[:2] // m_shape) + tuple(m_shape) + (image_shape[-1],)

Get the new strides
new_strides = tuple(image.strides[:2] * m_shape) + image.strides

Get the new blocked image (Nx_new, Ny_new, Nx_mask, Ny_mask, 3)

122

5.5. Few typical filters

blocked_image = as_strided(image, shape=new_shape, strides=new_strides, writeable=False)

Filtered image
kernel_reshaped = kernel[np.newaxis, np.newaxis, :, :, np.newaxis]
filtered_image = np.sum(blocked_image*kernel_reshaped, axis=(2, 3))

Result
return clean_image(filtered_image)

Test image definition:

image = image_full[500:1500, 1500:3000]

5.5.2 Blurry filter

The blurry filter just perform an average of all surrouding pixels. The corresponding kernel is a constant
value in at position, with a sum of 1.0. Below, the blurry filter is applied for both sliding window and bloc
approaches. Caution: the sliding window for a (100× 100) kernel takes several minutes.

Windows application
plt.figure(figsize=(20, 5))
for i, n in enumerate([3, 10, 20, 100]):

kernel = normalize_filter(np.ones(shape=(n, n)))
result = apply_filter_windows(image, kernel)
plt.subplot(1, 4, i+1)
plt.imshow(result)

Block application
plt.figure(figsize=(20, 5))
for i, n in enumerate([3, 10, 20, 100]):

kernel = normalize_filter(np.ones(shape=(n, n)))
result = apply_filter_blocks(image, kernel)
plt.subplot(1, 4, i+1)
plt.imshow(result)

123

Chapter 5. Introduction to image processing

5.5.3 Edge detection

filter_border = np.array([
[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1]

])

filter_border = normalize_filter(filter_border)
border_windows = apply_filter_windows(image, filter_border)
border_blocks = apply_filter_blocks(image, filter_border)

Plotting the result
plt.figure(figsize=(15, 5))
plt.subplot(1, 2, 1)
plt.imshow(border_windows)
plt.subplot(1, 2, 2)
plt.imshow(border_blocks);

Border which are direction-dependent: top-left
filter_topleft = np.array([

[0, 0, -1],
[0, 1, 0],
[0, 0, 0]

])

filter_topright = normalize_filter(filter_topleft)
border_windows = apply_filter_windows(image, filter_topleft)
border_blocks = apply_filter_blocks(image, filter_topleft)

Plotting the result
plt.figure(figsize=(15, 5))
plt.subplot(1, 2, 1)
plt.imshow(border_windows)
plt.subplot(1, 2, 2)
plt.imshow(border_blocks);

124

5.5. Few typical filters

Border which are direction-dependent: top-right
filter_topright = np.array([

[-1, 0, 0],
[0, 1, 0],
[0, 0, 0]

])

filter_topleft = normalize_filter(filter_topright)
border_windows = apply_filter_windows(image, filter_topright)
border_blocks = apply_filter_blocks(image, filter_topright) # Still a difference between

block/window-approaches↪→

Plotting the result
plt.figure(figsize=(15, 5))
plt.subplot(1, 2, 1)
plt.imshow(border_windows)
plt.subplot(1, 2, 2)
plt.imshow(border_blocks);

Playing with intensity of the border
filter_topleft = np.array([

[0, 0, -3],
[0, 3, 0],
[0, 0, 0]

])

125

Chapter 5. Introduction to image processing

filter_topleft = normalize_filter(filter_topleft)
border_windows = apply_filter_windows(image, filter_topleft)
border_blocks = apply_filter_blocks(image, filter_topleft)

Plotting the result
plt.figure(figsize=(15, 5))
plt.subplot(1, 2, 1)
plt.imshow(border_windows)
plt.subplot(1, 2, 2)
plt.imshow(border_blocks);

5.5.4 Sharpen filter

filter_sharpen = np.array([
[0, -1, 0],
[-1, 5, -1],
[0, -1, 0]

])

filter_sharpen = normalize_filter(filter_sharpen)
sharpen_windows = apply_filter_windows(image, filter_sharpen)
sharpen_blocks = apply_filter_blocks(image, filter_sharpen)

Plotting the result
plt.figure(figsize=(15, 5))
plt.subplot(1, 2, 1)
plt.imshow(sharpen_windows)
plt.subplot(1, 2, 2)
plt.imshow(sharpen_blocks);

126

5.5. Few typical filters

127

	Preamble
	General scope of the lecture
	Content of the lecture
	How to get prepared

	Practical Introduction to Python
	General information
	Object types
	Object collections
	Loops
	Few python synthax tips
	Functions
	File manipulation
	Plotting data: the very first step

	Basic introduction to NumPy
	Motivations
	The core object: arrays
	Main differences with usual python lists
	Memory management in python and NumPy
	Main caracteristics of an array

	The three key features of NumPy
	Vectorization
	Broadcasting
	Working with sub-arrays: slicing, indexing and mask (or selection)

	Few useful NumPy tips
	Example of simple gradient descent: NumPy v.s. pure python
	Gradient descent: what (for) is this?
	Pure python implementation
	Numpy implementation

	Example of a vectorized grid scan with NumPy
	Context : the brut force grid scan
	Pure python approach : nested loops
	NumPy approach : broadcasting + vectorizaton
	Timing comparison for 2 parameters

	Three important tools to know
	A word of caution
	Graphical respresentation of data : matplotlib
	Example of 1D plots and histograms
	Example of 2D scatter plot
	Example of 3D plots
	Example of 2D function z=f(x, y): notion of meshgrid

	import and manipulate data as numpy array: pandas
	Data importation
	Cleaning the dataset using numpy syntax
	Extracting numpy arrays and plotting
	Add information in a dataframe
	Data visualization with pandas

	Mathematics, physics and engineering: scipy
	General overview
	Curve fitting example

	High dimensional data manipulation
	Introduction
	Data model and goals
	Mean over the differents axis
	Mean over observations (axis=0)
	Mean over the 10 vectors (axis=1)
	Mean over the coordintates (axis=2)

	Distance computation
	Distance to a reference r_0
	Distance between r_i and <r>_{i} for each event

	Pairing 3D vectors for each observation, without a loop
	Finding all possible (r_{i}, r_{j}) pairs for all events
	Computing (minimum) distances on these pairs

	Selecting a subset of r_i based on (x,y,z) values, without loop
	Counting number of points amont the 10 with x_i>y_i in each event
	Plotting z for the two types of population (x>y and x<y)
	Computation of x_i+y_i+z_i sum over a subset of the 10 positions
	Pairing with a subset of r_i verifying x_i>y_i only

	Some comments

	Introduction to image processing
	Motivations
	Basic investigations
	Plotting
	Histograms
	Color and gray scale

	Numerical operations on images
	Addition & subtraction
	Modifying certain pixels
	Modifying regions

	Image filters with NumPy
	Kernels, image blocks v.s. windows
	Image blocks: intuitive but inefficient approach
	Image blocks : fast numpy-based approach

	Few typical filters
	Few utility functions
	Blurry filter
	Edge detection
	Sharpen filter

