
Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

C++:
more advanced topics
Caterina Doglioni, CHACAL school @ Wits

Lectures from the PHYS30762 - OOP in C++ 2023 course at the University of Manchester

https://github.com/UofM-PHYS30762

Disclaimer: everyone’s C++ / OOP interpretation could be different, this is a personal view

In these slides:
OOP concepts “taught the
UofM PHYS30762 way”
♻ ♻ Slide recycling from the undergraduate course I teach ♻ ♻
Goal: have a first idea of more advanced C++ features that make the
language powerful and useful!

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

Elements of
Object-oriented programming

3

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

Most describe it in terms of these 4 principles:
What is Object-Oriented Programming?

4

•Abstraction 
separate interface and implementation (see: interfaces)

•Encapsulation: 
keep data private, alter properties via methods only

• Inheritance 

classes can be based on other classes to avoid code duplication

•Polymorphism 

can decide at run-time what methods to invoke for a certain
class, based on the object itself

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

Abstraction

5

Images from this website: https://khalilstemmler.com/articles/object-oriented/programming/4-principles/

• interface and implementation are separate

• the user doesn’t need to know how the remote control works to turn on the TV

• the interface should be sufficient for the user to understand how to turn on the TV

• interface contains method declaration, implementation
contains everything that is needed for its execution

https://khalilstemmler.com/articles/object-oriented/programming/4-principles/

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

Another example of abstraction

6

Images from this website: https://khalilstemmler.com/articles/object-oriented/programming/4-principles/

https://khalilstemmler.com/articles/object-oriented/programming/4-principles/

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

Encapsulation

7

Images from this website: https://khalilstemmler.com/articles/object-oriented/programming/4-principles/

• data members are private,
use accessor/mutator  
(or: getter/setter) functions to
modify them

• the user isn’t allowed to change the

state (data member) of the washing
machine 
 
 
 

• there are functions that do that, and
they check that everything makes
sense

users can be
full of bad

ideas

source:
wikihow

similarly, opening the door of the washing machine while
it is doing the washing cycle is a bad idea

https://khalilstemmler.com/articles/object-oriented/programming/4-principles/

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

Encapsulation in practice

8

• accessors and mutator functions provide a direct
way to change or just access private variables

• They must be written with the utmost care

• …after all these are providing the protection for the
data in the first place! So, add checks in member
functions to make sure your washing machine
doesn’t go in a funny state

• Remember the central theme of a class: data
members are hidden in the private section, and can
only be modified by public member functions which
dictate allowed changes

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

Most describe it in terms of these 4 principles:
What is Object-Oriented Programming?

9

•Abstraction 
separate interface  
and implementation 
(remote control example)

•Encapsulation: 

keep data private, alter properties  
via methods only (washing machine example)

• Inheritance: 
classes can be based on other classes to avoid code duplication

•Polymorphism: 

can decide at run-time what methods to invoke for a certain class, based
on the object itself

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

• Class name: cat

• properties = data members

• name: Bob

• fur color: ginger

• eye(s): yellow

• functionalities = member functions

• sleep()

• high_five_with_claws()

The real-life example

• Let’s try to think of interface and
implementation together as an
exercise

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

• Base class name: cat
• data members (name, fur color, eye(s))

• member functions (sleep())

• Derived class name: domestic_cat

• same data members / functions as base class

• functions can be overridden
• Bob the cat calls the snore() function inside sleep(),  

other derived feline classes don’t
• can also add specialized functions (high_five_with_claws)

• a quieter / more polite feline would not do this

• When you design your code (& before writing it!), think of

• What is common → base class

• You can also decide to do something different in the derived class’s function
(overriding), but the action is the same

• What is not specific → derived class

Inheritance generic cat
picture

Note that this way of writing

code about cats  

would make sense

if cloning cats was a thing

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

• Base class name: cat
• data members (name, fur color, eye(s))

• member functions (sleep(), react_to_being_pet())

• Derived class name: domestic_cat

• Derived class name: non_domestic_cat

• What if you want to let the user of your class decide whether to instantiate a
domestic or non-domestic cat at runtime?

- real life: you don’t know if someone tamed those bobcats roaming in your
yard, they look really cute and you want to (literally) try your hand at petting
them

- programming life: you want to have the freedom to decide what behaviour
your class will have depending on its type, e.g. when you are filling a vector
which can only have one type

• This is where polymorphism becomes useful

Polymorphism
generic cat

picture

} They will most likely react differently to human touch:

domestic_cat will most likely accept pets

non_domestic_cat may see the human as food

angry
bobcat
picture

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

• Base class name: cat
• data members (name, fur color, eye(s))

• member functions (sleep(), react_to_being_pet())

• Derived class name: domestic_cat

• Derived class name: non_domestic_cat

• A cat is either a domestic_cat or a non_domestic_cat

• (in this perspective, farm/feral cats are domestic cats)

• no need to instantiate a “cat” object  
→ make the base class abstract so it’s only an interface

Abstract base classes
generic cat

picture

angry
bobcat
picture

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

Useful for designing before coding
Bonus: Unified Markup Language (UML)

Wikipedia: The Unified Modeling Language (UML) is a
general-purpose, developmental modeling language in the
field of software engineering that is intended to provide a
standard way to visualize the design of a system.[1]

We can use it in OOP C++ to represent the structure of our code in terms of classes and
relationships - class diagrams

A good tutorial: https://developer.ibm.com/articles/the-class-diagram/

Free drawing online: https://www.lucidchart.com

https://en.wikipedia.org/wiki/Class_diagram
https://developer.ibm.com/articles/the-class-diagram/

https://en.wikipedia.org/wiki/Modeling_language
https://en.wikipedia.org/wiki/Software_engineering
https://developer.ibm.com/articles/the-class-diagram/
https://www.lucidchart.com
https://en.wikipedia.org/wiki/Class_diagram
https://developer.ibm.com/articles/the-class-diagram/

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course 15

Elements of
RAII and smart pointers

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

• RAII = Resource Acquisition Is Initialization
• This is a programming idiom that ensures ensure that resource acquisition

happens at the same time as the object is initialised

• All resources needed for the object are created and made ready in a single

line of code, leading to correct out-of-scope behaviour 

• Practically this means that smart pointers (and the like) implementing RAII:

• Give ownership of any allocated resource (e.g. dynamically allocated

memory) to a (lvalue) object whose destructor contains the code to delete/
free the resource and do the cleanup 

• This is slightly less efficient than using raw pointers, but it’s better as there is no
chance of memory leaks

• if you really have to initialise a raw pointer or resource handle to point to an

actual resource, you should still pass the pointer to a smart pointer
immediately.  

• In modern C++, raw pointers should not be used (or only used in small code blocks of limited
scope, loops, or helper functions where performance is critical and there is no chance of confusion about ownership).

The RAII idiom
https://medium.com/swlh/what-is-raii-e016d00269f9

https://medium.com/swlh/what-is-raii-e016d00269f9

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

The RAII idiom https://medium.com/swlh/what-is-raii-e016d00269f9

• A smart pointer is helping this happen “behind the scenes”  
for the C++ object you create!

https://medium.com/swlh/what-is-raii-e016d00269f9

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

Difference between unique and shared ptr

• if you find this really funny, let’s collaborate, we’ll have a blast

• Jokes aside, this is useful to explain how pointers/memory work

https://dev.to/10xlearner/memory-management-and-raii-4f20

https://dev.to/10xlearner/memory-management-and-raii-4f20

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

On the slides from the same course we’ve looked at today:

https://github.com/hsf-training/cpluspluscourse/raw/download/
talk/C++Course_essentials.pdf

• check the topic index and follow the links

• we may be able to go through 1-2 advanced topics of your
choice, depending on how everyone is doing with the intro
material and exercises

Where do I find material (lectures/exercises) for these topics?

https://github.com/hsf-training/cpluspluscourse/raw/download/talk/C++Course_essentials.pdf
https://github.com/hsf-training/cpluspluscourse/raw/download/talk/C++Course_essentials.pdf

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

Final words

20

Caterina Doglioni, PHYS30762 - OOP in C++ 2023, Lecture 3

Useful skills for life
How to ask for help with debugging
your installation or code

15

Caterina Doglioni, PHYS30762 - OOP in C++ 2023, Lecture 3 16

• I have an error in printing
things out in my code, can
you help?

This only works if there is a demonstrator sitting near you,
and even then it’s not ideal

Caterina Doglioni, PHYS30762 - OOP in C++ 2023, Lecture 3 17

• I have an error in printing
things out in my code

• I am using the printf
function like this:
printf(current_year,
“%s");

• It does not compile

• Can you help?

This only works if your demonstrator remembers the syntax of printf

Caterina Doglioni, PHYS30762 - OOP in C++ 2023, Lecture 3 18

• I have an issue with the printf function

• This is a standalone C++ code where
I have isolated the issue

int main (){
 int current_year = 2023;
 printf(current_year, “%s");
 return 0;
}

• You can reproduce my error if you
“Build task” in Visual Studio Code
with g++11 on a mac with Big Sur OS
and an Intel chip

This way a demonstrator can just copy paste the code,
look at your error with the compiler,
and advise on what’s going wrong!

https://stackoverflow.com/help/minimal-reproducible-example

Caterina Doglioni, CHACAL school / from PHYS30762 - OOP in C++ 2023 course

Some unsolicited coding advice
• Practice, practice, practice

• Think and design before implementing

• Split problem into smaller pieces

• ie don’t write all your code then compile it, rather build it up

• Treat every challenge/problem like a puzzle - and have fun!

• Never use goto (here is why)

•

• How did you like this course/tutorials?

25

http://david.tribble.com/text/goto.html

