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Who am I?
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Details of these ”lectures”

• 2 × 90 minute sessions - today and tomorrow
• I will mainly talk from slides but I welcome

interruptions/questions/discussion
• pdf slides followed up with python notebook demos
• accompanying take-home tutorial based on H → ZZ analysis

with ATLAS OpenData

• Two guiding principles:
• statistics is vast...far too much for 180 minutes.
• there is always a wide range of prior knowledge experience

• Hence I concentrate on fundamentals will set you up well to
understand domain specific techniques in your analysis later...

• I make no reference to experiment-specific tools or
conventions...
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Intro

• Statistics is
• peculiar, counter-intuitive, often seems easier than it is
• elusive: (you think you understand it, you realise you don’t)N

• fundamental to modern experimental particle physics

• Incorrect statistical analysis can mean the difference between
a discovery and not a discovery

Figure: One of these bumps is a real discovery, the other is not...
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Intro
• Statistics is

• peculiar, counter-intuitive, often seems easier than it is
• elusive: (you think you understand it, you realise you don’t)N

• fundamental to modern experimental particle physics

• Incorrect statistical analysis can mean the difference between
a discovery and not a discovery

Figure: Discovery (left), Not a Discovery (right)
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Intro
• Statistics is

• elusive: (you think you understand it, you realise you don’t)N

• often need to refer back to textbooks...

Figure: Books I love
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Basic concepts: random variables
• Results may vary - the reason why the field of statistics

exists.
• Results of repeated ”identical”, experiments may vary.

• Instability in apparatus/environment/experimenter
• Fundamental QM unpredictability of the system

• A variable is random when it cannot be predicted with
absolute certainty
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Basic concepts: statistical hypothesis

• A statistical hypothesis is a formal claim about a state of
nature structured within the framework of a statistical model.

• To be useful and scientific, it should come with a prediction
for an experiment so that the hypothesis can be tested.

• As results may vary the prediction should be probabilistic

• Simple hypothesis - everything about the prediction is
specified
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Basic concepts: simple statistical hypotheses

• Simple hypothesis everything about the prediction is
specified

• Poisson hypothesis with fixed mean for a counting experiment
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Basic concepts: composite statistical hypotheses

• Composite hypothesis not everything about the prediction is
specified

• Poisson hypothesis with unknown mean for a counting
experiment
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Basic concepts: probability

• Statistics and Probability: two definitions
• Bayesian: Given some data/evidence, we assign probability to

some hypothesis, e.g. given this LHC data, how sure are we
the Higgs boson exists?

• Frequentist: Given some hypothesis, how likely is the data we
observe, e.g. assuming the Higgs boson exists, how likely is the
data that we observe?

• Frequentist approaches are more popular in particle physics

• I will mainly discuss frequentist ideas
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Basic concepts: random variables and probability

• Frequentist Probability
• interpreted as a limiting frequency??

• Imagine a repeatable experiment repeated n times, with S the
set of all possible results

• A is a subset of possible results

P(A) = lim
n→+∞

Nresult in A

n
• This definition satisfies the 3 axioms of probability:

1. P(A) > 0 for all A - probabilities can’t be negative

2.
∫
S
P(A) = 1 - something must happen

3. For two mutually exclusive sets A and B, (A ∩ B = 0),
P(A ∪ B) = P(A) + P(B).
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Ice-breaker 1

• What does the mean mean?



15/63

Python code / notebooks

• Code used to make the following plots (unless stated
otherwise) available at link to github

https://github.com/keaveney/StatisticsLectures/blob/master/lecture%201%20-%20basics.ipynb
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Basic concepts: probability density functions (pdf)
• Imagine an experiment with all possible results characterised

by a single continuous variable x
• S corresponds to the (1D) space of all possible results
• What is the probability of observing a result in the interval

[x , x + dx ]?
• given by f (x) (pdf)

P(x ∈ [x , x + dx ]) =

∫ x+dx

x
f (x)dx
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Basic concepts: cumulative density functions (cdf)

• cdf: F (x)
• probability for x ′ to have a value ≤ x

F (x) =

∫ x

−∞
f (x)dx ′
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Basic concepts: probability mass function (pmf)

• If x can only assume discrete values (xi ), we use a pmf to
describe its distribution

• pmf: p(xi ) = P(x = xi ) where P is a probability.

∑
xi

p(xi ) = 1

• Many examples of discrete observables in particle physics!



19/63

Basic concepts: quantiles

• the quantile xα is the value of x such that F (xα) = α

• simply the inverse of the cdf

xα = F−1(α)
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Basic concepts: median

• x0.5 is a special case known as the median

• median often interpreted as the typical location of x

• when can this interpretation break down?
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Basic concepts: median

• The median often interpreted as the typical location of x

• when can this interpretation break down?



22/63

Basic concepts: mode

• The mode is the value of x for which pdf (x) is maximal
• The typical location of the variable is often better captured by

the mode
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Basic concepts: mode

• mode is the value of x for which pdf (x) is maximal

• when can this breakdown?
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Basic concepts: expectation value

• The expectation value E [x ] of a variable x distributed
according to f (x) is often referred to as the mean µ.

• E [x ] is not a function of x , rather depends on form of f (x).

E [x ] =

∫ ∞
−∞

x .f (x)dx = µ

• If the f (x) is concentrated in one region, E [x ] represents a
measure of where values of x are likely to be observed.

• When can this interpretation break down?
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Basic concepts: expectation value

• What if f (x) is multimodal?, e.g, two gaussian peaks

E [x ] =

∫ ∞
−∞

x .f (x)dx = µ

• x is never equal to µ!
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Basic concepts: variance
• Functions of x also have expectation values

• e.g. squared difference between x and µ.
• E [(x − µ)2] is called the variance V

• V measures how spread out f (x) is
• Note E [(x − µ)2] = E [x2]− µ2

• usually use the standard deviation σ instead
• σ =

√
V

Figure: The two pdfs have the same µ but different σ
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Basic concepts: mean & standard deviation limitations
• When the pdf has fat tails, µ and σ stop being useful

• e.g. the Cauchy pdf

f (x ; x0, γ) =
1

πγ

[
γ2

(x − x0)2 + γ2

]
,

• This pdf comes up a lot in physics

• E [x ] is undefined!

• E [(x − µ)2] is undefined!
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Basic concepts: mean & standard deviation limitations
• E [x ] is undefined!
• E [(x − µ)2] is undefined!
• Taking the µ and σ of random numbers distributed according

to a Cauchy does not work
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Basic concepts: mean & standard deviation limitations

• E [x ] is undefined!

• E [(x − µ)2] is undefined!

• Taking the µ and σ of random numbers distributed according
to a Cauchy does not work
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Basic concepts: mean & standard deviation limitations

• E [x ] is undefined!

• E [(x − µ)2] is undefined!

• Taking the µ and σ of random numbers distributed according
to a Cauchy does not work
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Basic concepts: mean & standard deviation limitations

• E [x ] is undefined!

• E [(x − µ)2] is undefined!

• Taking the µ and σ of random numbers distributed according
to a Cauchy does not work
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Basic concepts: mean & standard deviation limitations

• E [x ] is undefined!

• E [(x − µ)2] is undefined!

• Taking the µ and σ of random numbers distributed according
to a Cauchy does not work
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Basic concepts: alternatives: median and MAD
• If you suspect your data has fat tails, it’s can be better to

avoid the µ and σ
• Instead of µ how about the median?
• Instead of σ how about something MAD? (Mean Absolute

Deviation)

MAD =
1

n

n∑
i=1

|xi − µ(x)|
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Basic concepts: alternatives: mode
• When does the median fail?

Figure: Source: Who are the middle class in South Africa? Does it
matter for policy? Visagie 2013
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Basic concepts: random numbers

• We have been talking about abstract notions of probability
• but what about real data?
• imagine some data xi : n observations of some quantity x
• what then is the µ and σ of xi?

µ = 1
n

∑n
i=1 xi , σ =

√
1
n

∑N
i=1(xi − µ)2

• Let’s think about how these definitions correspond to the
defns. for pdfs
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Basic concepts: random numbers

• Random numbers are useful in simulating data that is
governed by a pdf

• Software tools can generate random numbers that are
governed by any pdf...
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Basic concepts: random numbers

• Random numbers are useful in simulating data that is
governed by a pdf
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Basic concepts: random numbers

• Random numbers are useful in simulating data that is
governed by a pdf



39/63

Basic concepts: random numbers

• Random numbers are useful in simulating data that is
governed by a pdf
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Basic concepts: random numbers

• Random numbers are useful in simulating data that is
governed by a pdf



41/63

Basic concepts: joint pdf

• A result can correspond to more than one quantity, e.g, (x , y)
• toy example:

• x and y both obey Gaussian pdfs
• imagine each result as a point (xi , yi )

Figure: 5000 toy experiments with
results (xi , yi ) distributed as a 2-d
Gaussian

• A = x observed in [x , x + dx ]

• B = y observed in [y , y + dy ]

P(A ∩ B) = f (x , y)dxdy
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Basic concepts: joint pdf
• pdf of multiple observables (x , y) is known as a joint pdf

Figure: underlying pdf f (x , y) of (xi , yi ) dataset in 2- and 3-D

• f (x , y) corresponds to the density of points in the limit of
infinite points
• any experiment (xi , yi ) must assume some value, one has the

condition
∫ ∫

f (x , y)dxdy = 1
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Basic concepts: marginal pdf

• If you know the joint pdf f (x , y), you might want to know the
pdf of x regardless of the value of y
• this is given by the marginal pdf fx(x)

fx(x) =

∫ ∞
−∞

f (x , y)dy

similarly-

fy (y) =

∫ ∞
−∞

f (x , y)dx
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Basic concepts: marginal pdf

• If you know the joint pdf f (x , y), you might want to know the
pdf of x regardless of the value of y
• this is given by the marginal pdf fx(x)

∫ ∞
−∞

fx(x)dx = 1

similarly-∫ ∞
−∞

fy (y)dy = 1
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Basic concepts: conditional probability I
• What if you want to know the pdf of x but you do care

about the value of y?
• conditional probability:

• probability for y to be in [y , y + dy ] (B) with any x given that
x is in [x , x + dx ] with any y (A)

• usually referred to as P(B|A), ”probability of B given ”A”

Figure: 5000 toy experiments with
results (xi , yi ) distributed as a 2-d
Gaussian

• A = x observed in [x , x + dx ]

• B = y observed in [y , y + dy ]

P(A ∩ B) = f (x , y)dxdy
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Basic concepts: conditional probability II
• What if you want to know the pdf of x but you do care

about the value of y?
• conditional probability:

• probability for y to be in [y , y + dy ] (B) with any x given that
x is in [x , x + dx ] with any y (A)

• usually referred to as P(B|A), ”probability of B given ”A”

Figure: 5000 toy experiments with
results (xi , yi ) distributed as a 2-d
Gaussian

P(B|A) =
P(A ∩ B)

P(A)
=

f (x , y)dxdy

fx(x)dx
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Basic concepts: covariance

• Often a result corresponds to multiple quantities, e.g., x and y

• The covariance of x and y (Vxy ) is defined as

Vxy = E [(x − µx)(y − µy )] = E [xy ]− E [x ]E [y ]

• Suppose
• x being greater than µx increases the probability to find y

greater than µy

• x being less than µx increases the probability to have y less
than µy .

• Then Vxy > 0, and the variables are said to be positively
correlated or just ”correlated”.
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Basic concepts: covariance

• Often a result corresponds to multiple quantities, e.g., x and y

• The covariance of x and y (Vxy ) is defined as

Vxy = E [(x − µx)(y − µy )] = E [xy ]− E [x ]E [y ]

• Suppose
• x being greater than µx increases the probability to find y

less than µy

• x being less than µx increases the probability to have y
greater than µy .

• Then Vxy < 0, and the variables are said to be negatively
correlated or anti-correlated.
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Basic concepts: linear correlation coefficient

• One often thinks of the dimensionless correlation coefficient
or ”correlation”

ρxy =
Vxy

σxσy
• correlation coefficient is covariance divided by the product of

the standard deviations (−1.0 < ρxy < 1.0)
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Basic concepts: linear correlation coefficient

• often don’t know the pdf of (x , y) but instead have a sample
of N measurements

• we define r as the sample correlation coefficient by
inserting estimates of Vx , Vy and Vxy into the formula for ρxy
• Recall: Vxy = E [xy ]− E [x ]E [y ]

ρxy =
Vxy

σxσy

rxy =

(1/n)
∑
n
xiyi − (µxµy )√

(1/n)
∑

(xi − µx)2
√

(1/n)
∑

(yi − µy )2
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Basic concepts: linear correlation coefficient

• often don’t know the pdf of (x , y) but instead have a sample
of N measurements

• we define r as the sample correlation coefficient by
inserting estimates of Vx , Vy and Vxy into the formula for ρxy
• Recall: Vxy = E [xy ]− E [x ]E [y ]

ρxy =
Vxy

σxσy

rxy =

∑
n
xiyi − (µxµy )√∑

(xi − µx)2
√∑

(yi − µy )2
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Basic concepts: correlation coefficient examples

• Testing our intuition about rxy
• Generate N random (x , y) points according to some pdf (x , y)
• We can calculate rxy and compare to expectation from scatter

plot of x and y

• rxy =?
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Basic concepts: correlation coefficient examples

• Testing our intuition about rxy
• Generate N random (x , y) points according to some pdf (x , y)
• We can calculate rxy and compare to expectation from scatter

plot of x and y

• rxy ≈ 0.0
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Basic concepts: correlation coefficient examples

• Testing our intuition about rxy
• Generate N random (x , y) points according to some pdf (x , y)
• We can calculate rxy and compare to expectation from scatter

plot of x and y

• rxy =?
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Basic concepts: correlation coefficient examples

• Testing our intuition about rxy
• Generate N random (x , y) points according to some pdf (x , y)
• We can calculate rxy and compare to expectation from scatter

plot of x and y

• rxy ≈ 1.0
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Basic concepts: correlation coefficient examples

• Testing our intuition about rxy
• Generate N random (x , y) points according to some pdf (x , y)
• We can calculate rxy and compare to expectation from scatter

plot of x and y

• rxy =?
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Basic concepts: correlation coefficient examples

• Testing our intuition about rxy
• Generate N random (x , y) points according to some pdf (x , y)
• We can calculate rxy and compare to expectation from scatter

plot of x and y

• rxy ≈ −1.0
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Basic concepts: correlation coefficient examples

• Testing our intuition about rxy
• Generate N random (x , y) points according to some pdf (x , y)
• We can calculate rxy and compare to expectation from scatter

plot of x and y

• rxy =???
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Basic concepts: correlation coefficient examples

• Testing our intuition about rxy
• Generate N random (x , y) points according to some pdf (x , y)
• We can calculate rxy and compare to expectation from scatter

plot of x and y

• rxy ≈ 0.0 !!!

• x and y are clearly related, but
have rxy vanishes due to the
symmetry of f (x , y) about 0

• shows the limitation of considering
rxy only
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Basic concepts: mutual information

• The mutual information, I (x ; y), captures the
inter-dependence of variables much better

I(x ; y) =
∑
y∈Y

∑
x∈X

P(x , y) log

(
P(x , y)

P(x)P(y)

)
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Basic concepts: mutual information
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Basic concepts: correlation ! = causation

• Just because x and y have rxy > 0, it doesn’t guarantee that
changes in x cause changes in y

• Should we eat more chocolate?

• Unfortunately (probably) not.
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Basic concepts: correlation ! = causation

• Just because x and y have rxy > 0, it doesn’t guarantee that
changes in x cause changes in y

• Should we bring back
pirates?

• Unfortunately (probably)
not.


