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Details of these "lectures”

2 x 90 minute sessions - today and tomorrow

® | will mainly talk from slides but | welcome

interruptions/questions/discussion

pdf slides followed up with python notebook demos

® accompanying take-home tutorial based on H — ZZ analysis
with ATLAS OpenData

Two guiding principles:

® statistics is vast...far too much for 180 minutes.
® there is always a wide range of prior knowledge experience

Hence | concentrate on fundamentals will set you up well to
understand domain specific techniques in your analysis later...

I make no reference to experiment-specific tools or
conventions...



Intro

e Statistics is
® peculiar, counter-intuitive, often seems easier than it is
® elusive: (you think you understand it, you realise you don't)"
® fundamental to modern experimental particle physics
® |ncorrect statistical analysis can mean the difference between
a discovery and not a discovery

Figure: One of these bumps is a real discovery, the other is not...



Intro
e Statistics is
® peculiar, counter-intuitive, often seems easier than it is
® elusive: (you think you understand it, you realise you don't)V
® fundamental to modern experimental particle physics
® |ncorrect statistical analysis can mean the difference between
a discovery and not a discovery
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Intro
e Statistics is
® elusive: (you think you understand it, you realise you don't)V
® often need to refer back to textbooks...

STATISTICAL
DATA

Statistical Inference
Second Edition

George Casella
Roger L. Berger

Figure: Books | love



Basic concepts: random variables

® Results may vary - the reason why the field of statistics
exists.
® Results of repeated "identical”, experiments may vary.
® |nstability in apparatus/environment/experimenter
® Fundamental QM unpredictability of the system
® A variable is random when it cannot be predicted with
absolute certainty

Count

——

200 2
Invariant Mass of Dijet Pair



Basic concepts: statistical hypothesis

A statistical hypothesis is a formal claim about a state of
nature structured within the framework of a statistical model.

To be useful and scientific, it should come with a prediction
for an experiment so that the hypothesis can be tested.

As results may vary the prediction should be probabilistic

Simple hypothesis - everything about the prediction is
specified



Basic concepts: simple statistical hypotheses

e Simple hypothesis everything about the prediction is
specified
® Poisson hypothesis with fixed mean for a counting experiment

mu=3

# results

0 1 2 3 4 5 6 7
total counts



Basic concepts: composite statistical hypotheses

® Composite hypothesis not everything about the prediction is
specified

® Poisson hypothesis with unknown mean for a counting
experiment

# results

020
015
010
005
0 1 2 3

1 3 6 7
total counts




Basic concepts: probability

e Statistics and Probability: two definitions
® Bayesian: Given some data/evidence, we assign probability to
some hypothesis, e.g. given this LHC data, how sure are we
the Higgs boson exists?
® Frequentist: Given some hypothesis, how likely is the data we
observe, e.g. assuming the Higgs boson exists, how likely is the
data that we observe?

® Frequentist approaches are more popular in particle physics

e | will mainly discuss frequentist ideas



Basic concepts: random variables and probability

® Frequentist Probability
® interpreted as a limiting frequency??

Imagine a repeatable experiment repeated n times, with S the
set of all possible results

A is a subset of possible results

N .
P(A) — lim result in A

n—-+o0o n

This definition satisfies the 3 axioms of probability:
1. P(A) > 0 for all A - probabilities can't be negative

2. [¢ P(A) =1 - something must happen

3. For two mutually exclusive sets A and B, (AN B =0),
P(AUB) = P(A) + P(B).



lce-breaker 1

® \What does the mean mean?



Python code / notebooks

¢ Code used to make the following plots (unless stated
otherwise) available at link to github


https://github.com/keaveney/StatisticsLectures/blob/master/lecture%201%20-%20basics.ipynb

Basic concepts: probability density functions (pdf)

® |Imagine an experiment with all possible results characterised
by a single continuous variable x

® S corresponds to the (1D) space of all possible results
® What is the probability of observing a result in the interval

[x, x + dx]?

® given by f(x) (pdf)

Xx+dx
P(x € [x,x 4+ dx]) = / f(x)dx
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Basic concepts: cumulative density functions (cdf)

e cdf: F(x)

® probability for x” to have a value < x

Flx) = / T
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plx:)

Basic concepts: probability mass function (pmf)

® If x can only assume discrete values (x;), we use a pmf to
describe its distribution

® pmf: p(x;) = P(x = x;) where P is a probability.

pmf

010 Z p(xj) =1

Xi

o 1 2 3 4 5 B 7

Xi (eg Njets)

® Many examples of discrete observables in particle physics!



Basic concepts: quantiles

e the quantile x, is the value of x such that F(x,) = «

® simply the inverse of the cdf

Xo = F ()
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Basic concepts: median

® xo.5 is a special case known as the median
® median often interpreted as the typical location of x

® when can this interpretation break down?

0.025
greenarea =a =05
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Basic concepts: median

® The median often interpreted as the typical location of x

® when can this interpretation break down?

=== x'.ndof=2
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Basic concepts: mode

® The mode is the value of x for which pdf(x) is maximal
® The typical location of the variable is often better captured by

05 ) === Xi.ndof=2 0.40 ~ —-- Gaussian, n=3.0, a=1.0
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Basic concepts: mode

® mode is the value of x for which pdf(x) is maximal

when can this breakdown?

x=mode?

=== Bimodal PDF




Basic concepts: expectation value

® The expectation value E[x] of a variable x distributed
according to f(x) is often referred to as the mean p.

® E[x] is not a function of x, rather depends on form of f(x).

X=Ex=p e

- Gaussian u=30,0=10

0 2 ]

e If the f(x) is concentrated in one region, E[x] represents a
measure of where values of x are likely to be observed.

® When can this interpretation break down?



Basic concepts: expectation value

e What if f(x) is multimodal?, e.g, two gaussian peaks

025 -~ Bimodal PDF

x=E[x]=u

® x is never equal to !



Basic concepts: variance

® Functions of x also have expectation values
® e.g. squared difference between x and p.
® E[(x — p)?] is called the variance V
® V/ measures how spread out f(x) is
* Note E[(x — p)’] = E[x*] —
® usually use the standard deviation o instead

e 5=V

040 -~ Gaussion, 11=00, 0=10
/ === Gaussian, p=0.0,0=3.0

Figure: The two pdfs have the same p but different o



Basic concepts: mean & standard deviation limitations

® When the pdf has fat tails, p and o stop being useful
® e.g. the Cauchy pdf

1 72

® This pdf comes up a lot in physics
¢ E[x] is undefined!
® E[(x — p)?] is undefined!

a7

s cauchy (=0, s=1)
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Basic concepts: mean & standard deviation limitations

¢ E[x] is undefined!

® E[(x — p)?] is undefined!

® Taking the y and o of random numbers distributed according
to a Cauchy does not work

ar

o cauchy (t=0, s=1)

a5
04
%= o3
0z

a1

it}




Basic concepts: mean & standard deviation limitations

® E[x] is undefined!
® E[(x — p)?] is undefined!

® Taking the p and o of random numbers distributed according
to a Cauchy does not work

o7

e cauchy (xg=0, y=1)
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Basic concepts: mean & standard deviation limitations

e E[x] is undefined!
® E[(x — p)?] is undefined!

® Taking the p and o of random numbers distributed according
to a Cauchy does not work

o7

s cauchy (xg=0, y=1)
--- ptoys =055
as
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Basic concepts: mean & standard deviation limitations

® E[x] is undefined!
® E[(x — p)?] is undefined!

® Taking the p and o of random numbers distributed according
to a Cauchy does not work
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Basic concepts: mean & standard deviation limitations

® E[x] is undefined!
® E[(x — p)?] is undefined!

® Taking the p and o of random numbers distributed according
to a Cauchy does not work

o7

s cauchy (xo=0, y=1)
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Basic concepts: alternatives: median and MAD

® If you suspect your data has fat tails, it's can be better to
avoid the p and ¢

® Instead of x how about the median?

® Instead of o how about something MAD? (Mean Absolute
Deviation)

a7

cauchy (xp=0, y=1)

08
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Basic concepts: alternatives: mode
® When does the median fail?

Figure 1: The spread of households within the income distribution in South Africa, 2008

Spread of households in South Africa
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Source: NIDS 2008, own estimates

Figure: Source: Who are the middle class in South Africa? Does it
matter for policy? Visagie 2013



Basic concepts: random numbers

® We have been talking about abstract notions of probability
® but what about real data?
® imagine some data x;: n observations of some quantity x
® what then is the p and o of x;?

- Gaussian (u=0, o=1)
I Random numbers (x_{i})

N
p=1Y0x o= 1N 06— )
® |et's think about how these definitions correspond to the
defns. for pdfs



Basic concepts: random numbers

® Random numbers are useful in simulating data that is
governed by a pdf

® Software tools can generate random numbers that are
governed by any pdf...

Gaussian (u=0, o=1) n=1
os | HEEE Random numbers (x_{i}}

1 - N
. ,u—ﬁZx,—OGT o= %z (x;—H)? =0.0




Basic concepts: random numbers

® Random numbers are useful in simulating data that is
governed by a pdf

Gaussian (=0, o=1)
oe | HEE Random numbers (x_{i})

—1 - N
’;uﬁ u—ﬁ'x,—-0.0S L %Z(X,—u)2=1.16




Basic concepts: random numbers

® Random numbers are useful in simulating data that is
governed by a pdf

Gaussian (=0, o=1)
oe | HEE Random numbers (x_{i})

n =100

o u=1> x;=-0.19




Basic concepts: random numbers

® Random numbers are useful in simulating data that is
governed by a pdf

Gaussian (=0, o=1) _
os | EEE Random numbers (x_{i}) n=1000
1 N
=23 x=0.01 _.J1 2
- W=F2xi =113 (64— m? =102




Basic concepts: random numbers

® Random numbers are useful in simulating data that is
governed by a pdf

Gaussian (=0, o=1)
op | EEE Random numbers (x_| (l)li1

= 10000

o U=1> x=0.0




Basic concepts: joint pdf

® A result can correspond to more than one quantity, e.g, (x,y)
® toy example:

® x and y both obey Gaussian pdfs
® imagine each result as a point (x;, ;)

® A = x observed in [x, x + dx]
® B =y observed in [y, y + dy]
P(AN B) = f(x, y)dxdy

Figure: 5000 toy experiments with
results (x;, y;) distributed as a 2-d
Gaussian



Basic concepts: joint pdf
e pdf of multiple observables (x, y) is known as a joint pdf

10

0140

0.050

0010

0.005

0.001

10

Figure: underlying pdf f(x, y) of (x;,y;) dataset in 2- and 3-D

® f(x,y) corresponds to the density of points in the limit of
infinite points

® any experiment (x;, y;) must assume some value, one has the
condition [ [ f(x,y)dxdy =1



Basic concepts: marginal pdf

e If you know the joint pdf f(x, y), you might want to know the
pdf of x regardless of the value of y

® this is given by the marginal pdf 7(x)

e

(&g;_ 00
s f(x) = / f(x,y)dy

—00
similarly-

G0) = |y

— 00



Basic concepts: marginal pdf

e If you know the joint pdf f(x, y), you might want to know the
pdf of x regardless of the value of y

® this is given by the marginal pdf f(x)

similarly-

| sar=1

—00




Basic concepts: conditional probability |

® What if you want to know the pdf of x but you do care

about the value of y?
® conditional probability:
® probability for y to be in [y,y + dy] (B) with any x given that
x is in [x, x + dx] with any y (A)
® usually referred to as P(B|A), " probability of B given "A”

® A = x observed in [x, x + dx]
® B =y observed in [y, y + dy]
P(AN B) = f(x, y)dxdy

Figure: 5000 toy experiments with
results (x;, y;) distributed as a 2-d
Gaussian



Basic concepts: conditional probability Il

® What if you want to know the pdf of x but you do care
about the value of y?
¢ conditional probability:
® probability for y to be in [y, y + dy] (B) with any x given that
x is in [x, x + dx] with any y (A)
® usually referred to as P(B|A), " probability of B given "A”

P(ANB) _ f(x,y)dxdy

PBIA = =5ty = " f(xdx

Figure: 5000 toy experiments with
results (x;, y;) distributed as a 2-d
Gaussian



Basic concepts: covariance

Often a result corresponds to multiple quantities, e.g., x and y

The covariance of x and y (V) is defined as
Vig = El(x = 1)(y — ny)l = Elxy] — E[x]E[y]

Suppose

® x being greater than u, increases the probability to find y
greater than p,

® x being less than py increases the probability to have y less
than p,,.

Then V,, > 0, and the variables are said to be positively
correlated or just " correlated”.



Basic concepts: covariance

Often a result corresponds to multiple quantities, e.g., x and y

The covariance of x and y (V) is defined as
Vig = El(x = 1)y — py)] = Eloy] — EIX]E]Y]

Suppose

® x being greater than p, increases the probability to find y
less than p,

® x being less than pu, increases the probability to have y
greater than u,.

Then V,, <0, and the variables are said to be negatively
correlated or anti-correlated.



Basic concepts: linear correlation coefficient

® QOne often thinks of the dimensionless correlation coefficient
or " correlation”

Vi
X0y
e correlation coefficient is covariance divided by the product of

the standard deviations (—1.0 < p,, < 1.0)

Pxy =



Basic concepts: linear correlation coefficient

often don’t know the pdf of (x, y) but instead have a sample
of N measurements

we define r as the sample correlation coefficient by
inserting estimates of V, V), and V,, into the formula for p,,

Recall: Vi, = E[xy] — E[x]E[y]

(1/n)zn:X;y:‘ = (1xpy)
RV EVISD S TR Y/ (VIO b ) (7 2




Basic concepts: linear correlation coefficient

often don't know the pdf of (x,y) but instead have a sample
of N measurements

we define r as the sample correlation coefficient by
inserting estimates of V, V), and V,, into the formula for p,,

Recall: Vi, = E[xy] — E[x]E[y]

Vi

OxOy

Pxy =
an Xiyi — (Kxtty)
V(i = 1x)? /(i — iy )?

Ixy =




Basic concepts: correlation coefficient examples

® Testing our intuition about ry,
® Generate N random (x,y) points according to some pdf(x,y)
® We can calculate r,, and compare to expectation from scatter
plot of x and y

[ J er:

-15




Basic concepts: correlation coefficient examples

® Testing our intuition about ry,
® Generate N random (x,y) points according to some pdf(x,y)
® We can calculate r,, and compare to expectation from scatter
plot of x and y

®r,~00

-15




Basic concepts: correlation coefficient examples

® Testing our intuition about ry,
® Generate N random (x, y) points according to some pdf(x,y)
® We can calculate r,, and compare to expectation from scatter
plot of x and y

L er :?




Basic concepts: correlation coefficient examples

® Testing our intuition about ry,
® Generate N random (x, y) points according to some pdf(x,y)
® We can calculate r,, and compare to expectation from scatter
plot of x and y

*r,~10




Basic concepts: correlation coefficient examples

® Testing our intuition about ry,
® Generate N random (x, y) points according to some pdf(x,y)
® We can calculate r,, and compare to expectation from scatter
plot of x and y

L er :?




Basic concepts: correlation coefficient examples

® Testing our intuition about ry,
® Generate N random (x, y) points according to some pdf(x,y)
® We can calculate r,, and compare to expectation from scatter
plot of x and y

®r,~-10




Basic concepts: correlation coefficient examples

® Testing our intuition about ry,
® Generate N random (x,y) points according to some pdf(x,y)
® We can calculate r,, and compare to expectation from scatter
plot of x and y

o ry =177
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Basic concepts: correlation coefficient examples

® Testing our intuition about ry,
® Generate N random (x,y) points according to some pdf(x,y)
® We can calculate r,, and compare to expectation from scatter
plot of x and y

® ry~ 00!l

; ® x and y are clearly related, but
have r,, vanishes due to the
symmetry of f(x,y) about 0

P o
L)

® shows the limitation of considering
Ixy only

T T T T T T T T
-z0 -15 -10 -05 0.0 05 10 15
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Basic concepts: mutual information

® The mutual information, I(x; y), captures the
inter-dependence of variables much better

=22 s (i)

yEY xeX



Basic concepts: mutual information



Basic concepts: correlation | = causation

® Just because x and y have r,, > 0, it doesn’t guarantee that
changes in x cause changes in y

B sweden Switzerland
%0
r=0.791
el Denmark
= L)
Austria SRR L

== Norway

I United Kingdom

5 ® Should we eat more chocolate?

freland
The Netherlands M ptate L1 Sy

& Mg,um..gi""i“_'_ » e Unfortunately (probably) not.

Canada

s potand 1* Rl Australia

Portugal GTeece

15 u Italy

Nobel Laureates per 10 Million Population

o E= = spain
of g s [3
China Brazil

H 10 15
Chocolate Consumption (kg/yr/capita)

Figure 1. Correlation between Countries’ Annual Per Capita Chocolate Consumption and the Number of Nobel
Laureates per 10 Million Population.




Basic concepts: correlation | = causation

® Just because x and y have r,, > 0, it doesn’t guarantee that
changes in x cause changes in y

® Should we bring back
pirates?

¢ Unfortunately (probably)
not.




