

CHACAL 2024 Statistics for HEP Lecture 1: intro & basic concepts

James Keaveney¹

1 james.keaveney@uct.ac.za

Jan 2024

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q Q + 2/63

Who am I?

4 ロ → 4 @ ▶ 4 블 → 4 블 → 1 를 → 9 Q Q + 3/63

Details of these "lectures"

- 2×90 minute sessions today and tomorrow
	- I will mainly talk from slides but I welcome interruptions/questions/discussion
	- pdf slides followed up with python notebook demos
	- accompanying take-home tutorial based on $H \rightarrow ZZ$ analysis with ATLAS OpenData
- Two guiding principles:
	- \bullet statistics is vast. far too much for 180 minutes.
	- there is always a wide range of prior knowledge experience
- Hence I concentrate on **fundamentals** will set you up well to understand domain specific techniques in your analysis later...
- I make no reference to experiment-specific tools or conventions...

Intro

• Statistics is

- peculiar, counter-intuitive, often seems easier than it is
- elusive: (you think you understand it, you realise you don't)^N
- fundamental to modern experimental particle physics
- Incorrect statistical analysis can mean the difference between a discovery and not a discovery

Figure: One of these *bumps* is a real discovery, the other is not...

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q O + 5/63

Intro

- Statistics is
	- peculiar, counter-intuitive, often seems easier than it is
	- elusive: (you think you understand it, you realise you don't)^N
	- fundamental to modern experimental particle physics
- Incorrect statistical analysis can mean the difference between a discovery and not a discovery

Intro

- Statistics is
	- elusive: (you think you understand it, you realise you don't)^N
- often need to refer back to textbooks...

Figure: Books I love

YO → Y @ → Y ミ → Y ミ → 그 → 9 Q Q → 7/63

Basic concepts: random variables

- Results may vary the reason why the field of statistics exists.
- Results of repeated "identical", experiments may vary.
	- Instability in apparatus/environment/experimenter
	- Fundamental QM unpredictability of the system
- A variable is random when it cannot be predicted with absolute certainty

Basic concepts: statistical hypothesis

- A statistical hypothesis is a **formal** claim about a state of nature structured within the framework of a statistical model.
- To be useful and scientific, it should come with a prediction for an experiment so that the hypothesis can be tested.
- As results may vary the prediction should be probabilistic

4 ロ ▶ 4 레 ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 9 0 4 g/63

Simple hypothesis - everything about the prediction is specified

Basic concepts: simple statistical hypotheses

- **Simple hypothesis** everything about the prediction is specified
- Poisson hypothesis with fixed mean for a counting experiment

10/63

Basic concepts: composite statistical hypotheses

- **Composite hypothesis** not everything about the prediction is specified
- Poisson hypothesis with unknown mean for a counting experiment

Basic concepts: probability

• Statistics and Probability: two *definitions*

- Bayesian: Given some data/evidence, we assign probability to some hypothesis, e.g. given this LHC data, how sure are we the Higgs boson exists?
- Frequentist: Given some *hypothesis*, how likely is the data we observe, e.g. assuming the Higgs boson exists, how likely is the data that we observe?

10 → 1日 → 1월 → 1월 → 1월 → 10 0 → 12/63

- Frequentist approaches are more popular in particle physics
- I will mainly discuss frequentist ideas

Basic concepts: random variables and probability

- Frequentist Probability
	- interpreted as a limiting frequency??
- Imagine a *repeatable* experiment repeated *n* times, with S the set of all possible results
- \bullet A is a subset of possible results

$$
P(A) = \lim_{n \to +\infty} \frac{N_{\text{result in A}}}{n}
$$

- This definition satisfies the 3 axioms of probability:
	- 1. $P(A) > 0$ for all A probabilities can't be negative
	- 2. $\int_{S} P(A) = 1$ something must happen
	- 3. For two mutually exclusive sets A and B, $(A \cap B = 0)$, $P(A \cup B) = P(A) + P(B).$

13/63

Ice-breaker 1

 $\begin{picture}(180,10) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line($

• What does the *mean* mean?

Python code / notebooks

• Code used to make the following plots (unless stated otherwise) available at [link to github](https://github.com/keaveney/StatisticsLectures/blob/master/lecture%201%20-%20basics.ipynb)

1日 N 1日 N 4 E N 4 E N 2 E N 9 Q 0 15/63

Basic concepts: probability density functions (pdf)

- Imagine an experiment with all possible results characterised by a single continuous variable x
- S corresponds to the $(1D)$ space of all possible results
- What is the probability of observing a result in the interval $[x, x + dx]$?
	- given by $f(x)$ (pdf)

Basic concepts: cumulative density functions (cdf)

• cdf: $F(x)$

• probability for x' to have a value $\leq x$

$$
F(x) = \int_{-\infty}^{x} f(x) dx'
$$

10→ 1日→ 1월→ 1월→ 1월 1990 17/63

Basic concepts: probability mass function (pmf)

- If x can only assume discrete values (x_i) , we use a pmf to describe its distribution
- pmf: $p(x_i) = P(x = x_i)$ where P is a probability.

• Many examples of discrete observables in particle physics!

18/63 18/63 18/64 18/64 18/63

Basic concepts: quantiles

- the quantile x_{α} is the value of x such that $F(x_{\alpha}) = \alpha$
- simply the inverse of the cdf

$$
x_{\alpha} = \mathcal{F}^{-1}(\alpha)
$$

10 H (日) (정 H (정 H (정 H) 정 전 정 제 국 (19/63

Basic concepts: median

- x_0 $\overline{5}$ is a special case known as the **median**
- median often interpreted as the typical location of x
- when can this interpretation break down?

4 ロ → 4 個 → 4 로 → 4 로 → 20 로 → 9 Q Q + 20/63

Basic concepts: median

- The median often interpreted as the typical location of x
- when can this interpretation break down?

4 ロ → 4 @ ▶ 4 할 > 4 할 > 2 후 → 9 Q Q + 21/63

Basic concepts: mode

- The mode is the value of x for which $pdf(x)$ is maximal
	- The typical location of the variable is often better captured by the mode

4 ロ → 4 @ ▶ 4 ミ → 4 ミ → 22 = 22/63

Basic concepts: mode

- mode is the value of x for which $pdf(x)$ is maximal
- when can this breakdown?

4 ロ → 4 @ ▶ 4 로 → 4 로 → 23 로 → 9 Q Q + 23/63

Basic concepts: expectation value

- The expectation value $E[x]$ of a variable x distributed according to $f(x)$ is often referred to as the mean μ .
- $E[x]$ is **not** a function of x, rather depends on form of $f(x)$.

- If the $f(x)$ is concentrated in one region, $E[x]$ represents a measure of where values of x are likely to be observed.
- When can this interpretation break down?

Basic concepts: expectation value

• What if $f(x)$ is multimodal?, e.g, two gaussian peaks

$$
E[x] = \int_{-\infty}^{\infty} x.f(x)dx = \mu
$$

4 ロ → 4 @ ▶ 4 로 → 4 로 → 25 로 → 9 Q Q + 25/63

Basic concepts: variance

- Functions of x also have expectation values
	- e.g. squared difference between x and μ .
- $E[(x \mu)^2]$ is called the variance V
	- *V* measures how *spread out* $f(x)$ is
	- Note $E[(x-\mu)^2]=E[x^2]-\mu^2$
- usually use the standard deviation σ instead

$$
\bullet \ \sigma = \sqrt{V}
$$

Figure: The two pdfs have the same μ but different σ

4 ロ ▶ 4 @ ▶ 4 블 ▶ 4 콜 ⊁ - 툴 - 9040 - 26/63

- When the pdf has fat tails, μ and σ stop being useful
	- e.g. the Cauchy pdf

$$
f(x; x_0, \gamma) = \frac{1}{\pi \gamma} \left[\frac{\gamma^2}{(x - x_0)^2 + \gamma^2} \right],
$$

- This pdf comes up a lot in physics
- $E[x]$ is undefined!
- $E[(x \mu)^2]$ is undefined!

- $E[x]$ is undefined!
- $E[(x \mu)^2]$ is undefined!
- Taking the μ and σ of random numbers distributed according to a Cauchy does not work

- $E[x]$ is undefined!
- $E[(x \mu)^2]$ is undefined!
- Taking the μ and σ of random numbers distributed according to a Cauchy does not work

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9040 - 29/63

- $E[x]$ is undefined!
- $E[(x \mu)^2]$ is undefined!
- Taking the μ and σ of random numbers distributed according to a Cauchy does not work

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 0 - 30/63

- $E[x]$ is undefined!
- $E[(x \mu)^2]$ is undefined!
- Taking the μ and σ of random numbers distributed according to a Cauchy does not work

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 9 Q 2 - 31 /63

- $E[x]$ is undefined!
- $E[(x \mu)^2]$ is undefined!
- Taking the μ and σ of random numbers distributed according to a Cauchy does not work

32/63

Basic concepts: alternatives: median and MAD

- If you suspect your data has fat tails, it's can be better to avoid the μ and σ
- Instead of μ how about the median?
- Instead of σ how about something MAD? (Mean Absolute Deviation)

$$
MAD = \frac{1}{n}\sum_{i=1}^{n}|x_i - \mu(x)|
$$

Basic concepts: alternatives: mode

• When does the median fail?

Figure 1: The spread of households within the income distribution in South Africa, 2008

Source: NIDS 2008, own estimates

Figure: Source: Who are the middle class in South Africa? Does it matter for policy? Visagie 2013

- We have been talking about abstract notions of probability
	- but what about real data?
	- imagine some data x_i : *n* observations of some quantity x
	- what then is the μ and σ of x_i ?

$$
\mu = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{N} (x_i - \mu)^2}
$$

• Let's think about how these definitions correspond to the defns. for pdfs

- Random numbers are useful in simulating data that is governed by a pdf
- Software tools can generate random numbers that are governed by any pdf...

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q O + 36/63

• Random numbers are useful in simulating data that is governed by a pdf

4 ロ → 4 @ → 4 할 → 4 할 → 1 할 → 9 Q → 37/63

• Random numbers are useful in simulating data that is governed by a pdf

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 9 Q 2 - 38/63

• Random numbers are useful in simulating data that is governed by a pdf

39/63

• Random numbers are useful in simulating data that is governed by a pdf

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ _ 로 _ ⊙ Q Q = 40/63

Basic concepts: joint pdf

- A result can correspond to more than one quantity, e.g, (x, y)
- toy example:
	- \times and \times both obey Gaussian pdfs
	- \bullet imagine each result as a point (x_i, y_i)

Figure: 5000 toy experiments with results (x_i, y_i) distributed as a 2-d Gaussian

- A = x observed in $[x, x + dx]$
- B = y observed in $[y, y + dy]$ $P(A \cap B) = f(x, y)dx dy$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 9 Q + 41/63

Basic concepts: joint pdf

• pdf of multiple observables (x, y) is known as a joint pdf

Figure: underlying pdf $f(x, y)$ of (x_i, y_i) dataset in 2- and 3-D

- $f(x, y)$ corresponds to the density of points in the limit of infinite points
- 4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q O + 42/63 • any experiment (x_i, y_i) must assume some value, one has the condition $\int \int f(x, y) dx dy = 1$

Basic concepts: marginal pdf

- If you know the joint pdf $f(x, y)$, you might want to know the pdf of \times regardless of the value of y
	- this is given by the **marginal** pdf $f_x(x)$

$$
f_{x}(x)=\int_{-\infty}^{\infty}f(x,y)dy
$$

similarly-

$$
f_y(y) = \int_{-\infty}^{\infty} f(x, y) dx
$$

K □ ▶ K @ ▶ K 글 X K 글 X _ 글 / ⊙ Q Q

43/63

Basic concepts: marginal pdf

- If you know the joint pdf $f(x, y)$, you might want to know the pdf of \times regardless of the value of y
	- this is given by the **marginal** pdf $f_x(x)$

$$
\int_{-\infty}^{\infty} f_{\mathsf{x}}(\mathsf{x}) d\mathsf{x} = 1
$$

similarly-

$$
\int_{-\infty}^{\infty} f_y(y) dy = 1
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익(연) 44/63

Basic concepts: conditional probability I

- What if you want to know the pdf of \times but you do care about the value of v ?
- conditional probability:
	- probability for y to be in $[y, y + dy]$ (B) with any x given that x is in $[x, x + dx]$ with any y (A)
	- usually referred to as $P(B|A)$, "probability of B given "A"

Figure: 5000 toy experiments with results (x_i, y_i) distributed as a 2-d Gaussian

- A = x observed in $[x, x + dx]$
- B = y observed in $[y, y + dy]$ $P(A \cap B) = f(x, y)dx dy$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ 그로 → 9 Q O + 45/63

Basic concepts: conditional probability II

- What if you want to know the pdf of \times but you do care about the value of v ?
- conditional probability:
	- probability for y to be in $[y, y + dy]$ (B) with any x given that x is in $[x, x + dx]$ with any y (A)
	- usually referred to as $P(B|A)$, "probability of B given "A"

$$
P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{f(x, y) \, dx \, dy}{f_x(x) \, dx}
$$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 9 Q 46/63

Figure: 5000 toy experiments with results (x_i, y_i) distributed as a 2-d Gaussian

Basic concepts: covariance

- Often a result corresponds to multiple quantities, e.g., x and y
- The covariance of x and y (V_{xy}) is defined as

$$
V_{xy} = E[(x - \mu_x)(y - \mu_y)] = E[xy] - E[x]E[y]
$$

- Suppose
	- x being **greater** than μ_x increases the probability to find y **greater** than μ_{ν}
	- x being less than μ_x increases the probability to have y less than $\mu_{\mathbf{v}}$.
- Then $V_{xy} > 0$, and the variables are said to be **positively** correlated or just "correlated".

Basic concepts: covariance

- Often a result corresponds to multiple quantities, e.g., x and y
- The covariance of x and y (V_{xy}) is defined as

$$
V_{xy} = E[(x - \mu_x)(y - \mu_y)] = E[xy] - E[x]E[y]
$$

- Suppose
	- x being **greater** than μ_x increases the probability to find y less than $\mu_{\mathbf{v}}$
	- x being less than μ_x increases the probability to have y **greater** than μ_{ν} .
- Then V_{xy} $<$ 0, and the variables are said to be **negatively** correlated or anti-correlated.

Basic concepts: linear correlation coefficient

• One often thinks of the dimensionless correlation coefficient or "correlation"

$$
\rho_{xy} = \frac{V_{xy}}{\sigma_x \sigma_y}
$$

• correlation coefficient is covariance divided by the product of the standard deviations $(-1.0 < \rho_{xy} < 1.0)$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 Q + 49/63

Basic concepts: linear correlation coefficient

- often don't know the pdf of (x, y) but instead have a sample of N measurements
- we define r as the sample correlation coefficient by inserting estimates of V_x , V_y and V_{xy} into the formula for ρ_{xy}
- Recall: $V_{xy} = E[xy] E[x]E[y]$

$$
\rho_{xy} = \frac{V_{xy}}{\sigma_x \sigma_y}
$$

$$
r_{xy} = \frac{(1/n)\sum_{n} x_i y_i - (\mu_x \mu_y)}{\sqrt{(1/n)\sum_{i} (x_i - \mu_x)^2} \sqrt{(1/n)\sum_{i} (y_i - \mu_y)^2}}
$$

4 ロ ▶ 4 @ ▶ 4 할 ▶ 4 할 ⊁ → 할 → 9 º Q + 50/63

Basic concepts: linear correlation coefficient

- often don't know the pdf of (x, y) but instead have a sample of N measurements
- we define r as the sample correlation coefficient by inserting estimates of V_x , V_y and V_{xy} into the formula for ρ_{xy}
- Recall: $V_{xy} = E[xy] E[x]E[y]$

$$
\rho_{xy} = \frac{V_{xy}}{\sigma_x \sigma_y}
$$

$$
r_{xy} = \frac{\sum_{n} x_i y_i - (\mu_x \mu_y)}{\sqrt{\sum (x_i - \mu_x)^2} \sqrt{\sum (y_i - \mu_y)^2}}
$$

51/63

- Testing our intuition about r_{xy}
	- Generate N random (x, y) points according to some $pdf(x, y)$
	- We can calculate r_{xy} and compare to expectation from scatter plot of x and y

$$
\bullet \ \ r_{xy} = ?
$$

(ロ) (@) (평) (평) (평) (평) 9 9 0 - 52/63

- Testing our intuition about r_{xy}
	- Generate N random (x, y) points according to some $pdf(x, y)$
	- We can calculate r_{xy} and compare to expectation from scatter plot of x and y

• $r_{xy} \approx 0.0$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 9 Q + 53/63

• Testing our intuition about r_{xy}

- Generate N random (x, y) points according to some $pdf(x, y)$
- We can calculate r_{xy} and compare to expectation from scatter plot of x and y

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 9 Q + 54/63

- Testing our intuition about r_{xy}
	- Generate N random (x, y) points according to some $pdf(x, y)$
	- We can calculate r_{xy} and compare to expectation from scatter plot of x and y

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 Q - 55/63

- Testing our intuition about r_{xy}
	- Generate N random (x, y) points according to some $pdf(x, y)$
	- We can calculate r_{xy} and compare to expectation from scatter plot of x and y

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 9 Q 0 - 56/63

- Testing our intuition about r_{xy}
	- Generate N random (x, y) points according to some $pdf(x, y)$
	- We can calculate r_{xy} and compare to expectation from scatter plot of x and y

•
$$
r_{xy} \approx -1.0
$$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 9 9 Q + 57/63

- Testing our intuition about r_{xy}
	- Generate N random (x, y) points according to some $pdf(x, y)$
	- We can calculate r_{xy} and compare to expectation from scatter plot of x and y

$$
\bullet \ \ r_{xy} = ???
$$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - ① 9 Q (* 58/63)

- Testing our intuition about r_{xy}
	- Generate N random (x, y) points according to some $pdf(x, y)$
	- We can calculate r_{xy} and compare to expectation from scatter plot of x and y

- $r_{xy} \approx 0.0$!!!
- \times and \times are clearly related, but have r_{xy} vanishes due to the symmetry of $f(x, y)$ about 0
- shows the limitation of considering r_{xy} only

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ - 로 - 90 Q + 59/63

Basic concepts: mutual information

• The mutual information, $I(x; y)$, captures the inter-dependence of variables much better

$$
I(x; y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} P(x, y) \log \left(\frac{P(x, y)}{P(x) P(y)} \right)
$$

4 ロ ▶ 4 @ ▶ 4 로 ▶ 4 로 ▶ _ 로 _ 9 º Q ^ 60/63

Basic concepts: mutual information

4 미 4 - 4 - 4 - 4 - 4 - 5 - 4 - 4 - 61/63

Basic concepts: correlation $!=$ causation

• Just because x and y have $r_{xy} > 0$, it doesn't guarantee that changes in x cause changes in y

• Should we eat more chocolate?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ → 할 → 9 Q Q + 62/63

• Unfortunately (probably) not.

Basic concepts: correlation $!=$ causation

• Just because x and y have $r_{xy} > 0$, it doesn't guarantee that changes in x cause changes in y

Should we bring back pirates?

63/63

• Unfortunately (probably) not.