

#### CHACAL 2024 Statistics for HEP Lecture 1: intro & basic concepts

James Keaveney<sup>1</sup>

<sup>1</sup>james.keaveney@uct.ac.za

Jan 2024



<□ > < @ > < E > < E > E の Q @ 2/63

## Who am I?

## Details of these "lectures"

- 2  $\times$  90 minute sessions today and tomorrow
  - I will mainly talk from slides **but** I welcome interruptions/questions/discussion
  - pdf slides followed up with python notebook demos
  - accompanying *take-home* tutorial based on  $H \rightarrow ZZ$  analysis with ATLAS OpenData
- Two guiding principles:
  - statistics is vast...far too much for 180 minutes.
  - there is always a wide range of prior knowledge experience
- Hence I concentrate on **fundamentals** will set you up well to understand domain specific techniques in your analysis later...
- I make no reference to experiment-specific tools or conventions...

## Intro

- Statistics is
  - peculiar, counter-intuitive, often seems easier than it is
  - elusive: (you think you understand it, you realise you don't)<sup>N</sup>
  - fundamental to modern experimental particle physics
- Incorrect statistical analysis can mean the difference between a discovery and not a discovery



Figure: One of these *bumps* is a real discovery, the other is not...

## Intro

- Statistics is
  - peculiar, counter-intuitive, often seems easier than it is
  - elusive: (you think you understand it, you realise you don't)<sup>N</sup>
  - fundamental to modern experimental particle physics
- Incorrect statistical analysis can mean the difference between a discovery and not a discovery

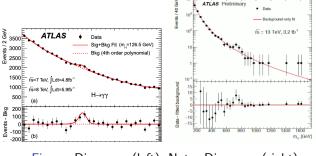


Figure: Discovery (left), Not a Discovery (right)

# Intro

- Statistics is
  - elusive: (you think you understand it, you realise you don't)<sup>N</sup>
- often need to refer back to textbooks...

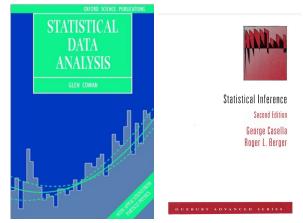
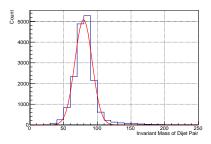


Figure: Books I love

▲□▶ ▲□▶ ▲≣▶ ▲≣▶ ■ ⑦�♡ 7/63

## Basic concepts: random variables

- **Results may vary** the reason why the field of statistics exists.
- Results of repeated "identical", experiments may vary.
  - Instability in apparatus/environment/experimenter
  - Fundamental QM unpredictability of the system
- A variable is **random** when it cannot be predicted with absolute certainty



### Basic concepts: statistical hypothesis

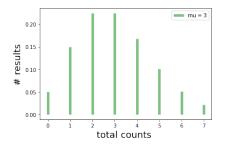
- A statistical hypothesis is a formal claim about a state of nature structured within the framework of a statistical model.
- To be useful and scientific, it should come with a prediction for an experiment so that the hypothesis can be tested.
- As results may vary the prediction should be probabilistic

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ = ∽ へ ○ 9/63

• Simple hypothesis - everything about the prediction is specified

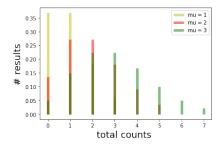
## Basic concepts: simple statistical hypotheses

- Simple hypothesis everything about the prediction is specified
- Poisson hypothesis with fixed mean for a counting experiment



## Basic concepts: composite statistical hypotheses

- **Composite hypothesis** not everything about the prediction is specified
- Poisson hypothesis with unknown mean for a counting experiment



## Basic concepts: probability

#### • Statistics and Probability: two definitions

- **Bayesian**: Given some data/evidence, we assign probability to some *hypothesis*, e.g. given this LHC data, how sure are we the Higgs boson exists?
- **Frequentist**: Given some *hypothesis*, how likely is the data we observe, e.g. assuming the Higgs boson exists, how likely is the data that we observe?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 12/63

- Frequentist approaches are more popular in particle physics
- I will mainly discuss frequentist ideas

## Basic concepts: random variables and probability

- Frequentist Probability
  - interpreted as a limiting frequency??
- Imagine a *repeatable* experiment repeated *n* times, with *S* the set of all possible results
- A is a subset of possible results

$$P(A) = \lim_{n \to +\infty} \frac{N_{\text{result in } A}}{n}$$

- This definition satisfies the 3 axioms of probability:
  - 1. P(A) > 0 for all A probabilities can't be negative
  - 2.  $\int_{S} P(A) = 1$  something must happen
  - 3. For two mutually exclusive sets A and B,  $(A \cap B = 0)$ ,  $P(A \cup B) = P(A) + P(B)$ .

#### Ice-breaker 1

<□ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = うへで 14/63

• What does the *mean* mean?

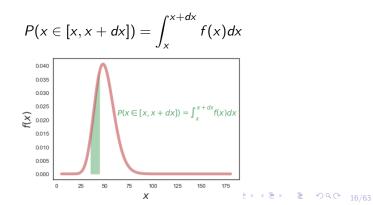
## Python code / notebooks

• Code used to make the following plots (unless stated otherwise) available at link to github

< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ Ξ → ○ Q (~ 15/63

# Basic concepts: probability density functions (pdf)

- Imagine an experiment with all possible results characterised by a single continuous variable *x*
- S corresponds to the (1D) space of all possible results
- What is the probability of observing a result in the interval [x, x + dx]?
  - given by f(x) (pdf)

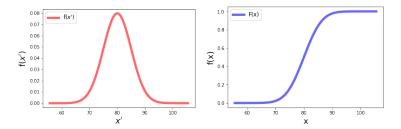


Basic concepts: cumulative density functions (cdf)

• cdf: *F*(*x*)

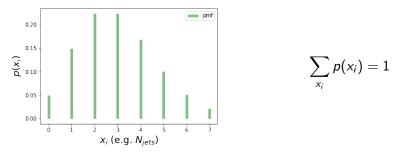
• probability for x' to have a value  $\leq x$ 

$$F(x) = \int_{-\infty}^{x} f(x) dx'$$



## Basic concepts: probability mass function (pmf)

- If x can only assume discrete values (x<sub>i</sub>), we use a *pmf* to describe its distribution
- pmf:  $p(x_i) = P(x = x_i)$  where P is a probability.



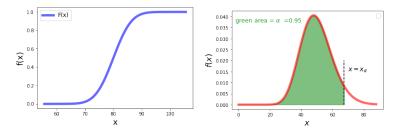
Many examples of discrete observables in particle physics!

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ⑦ Q ○ 18/63

#### Basic concepts: quantiles

- the quantile  $x_{\alpha}$  is the value of x such that  $F(x_{\alpha}) = \alpha$
- simply the inverse of the cdf

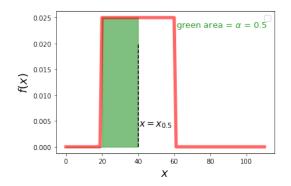
$$x_{\alpha} = F^{-1}(\alpha)$$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 19/63

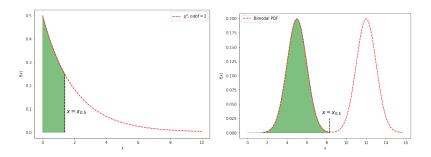
#### Basic concepts: median

- x<sub>0.5</sub> is a special case known as the **median**
- median often interpreted as the *typical location of x*
- when can this interpretation break down?



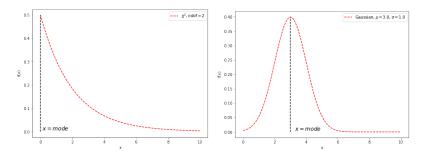
#### Basic concepts: median

- The median often interpreted as the *typical location of x*
- when can this interpretation break down?



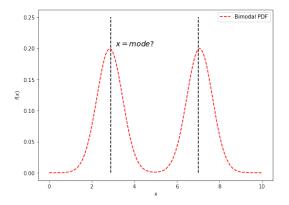
#### Basic concepts: mode

- The **mode** is the value of x for which pdf(x) is maximal
  - The *typical location of the variable* is often better captured by the mode



#### Basic concepts: mode

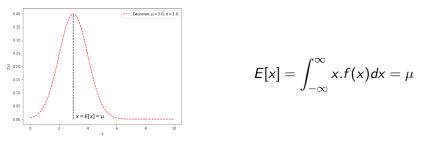
- mode is the value of x for which pdf(x) is maximal
- when can this breakdown?



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○ 23/63

#### Basic concepts: expectation value

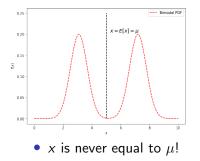
- The expectation value *E*[*x*] of a variable *x* distributed according to *f*(*x*) is often referred to as the mean μ.
- E[x] is **not** a function of x, rather depends on form of f(x).



- If the f(x) is concentrated in one region, E[x] represents a measure of where values of x are likely to be observed.
- When can this interpretation break down?

#### Basic concepts: expectation value

• What if f(x) is multimodal?, e.g., two gaussian peaks



$$E[x] = \int_{-\infty}^{\infty} x.f(x)dx = \mu$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで 25/63

#### Basic concepts: variance

- Functions of x also have expectation values
  - e.g. squared difference between x and  $\mu$ .
- $E[(x \mu)^2]$  is called the **variance** V
  - V measures how spread out f(x) is
  - Note  $E[(x \mu)^2] = E[x^2] \mu^2$
- usually use the standard deviation  $\sigma$  instead

• 
$$\sigma = \sqrt{V}$$

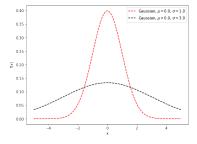


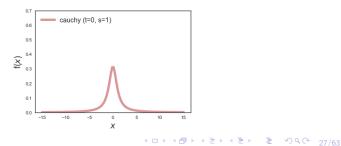
Figure: The two pdfs have the same  $\mu$  but different  $\sigma$ 

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ◆ ○ へ ○ 26/63

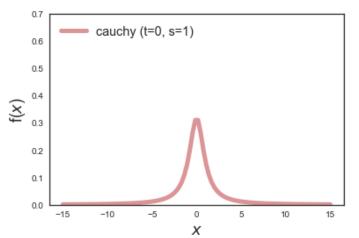
- When the pdf has fat tails,  $\mu$  and  $\sigma$  stop being useful
  - e.g. the Cauchy pdf

$$f(x; x_0, \gamma) = \frac{1}{\pi \gamma} \left[ \frac{\gamma^2}{(x - x_0)^2 + \gamma^2} \right],$$

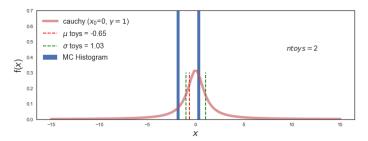
- This pdf comes up a lot in physics
- *E*[*x*] is undefined!
- $E[(x \mu)^2]$  is undefined!



- *E*[*x*] is undefined!
- $E[(x \mu)^2]$  is undefined!
- Taking the  $\mu$  and  $\sigma$  of random numbers distributed according to a Cauchy does not work

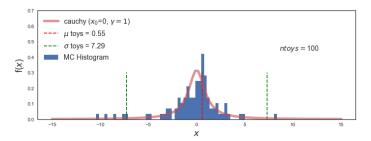


- *E*[*x*] is undefined!
- $E[(x \mu)^2]$  is undefined!
- Taking the  $\mu$  and  $\sigma$  of random numbers distributed according to a Cauchy does not work



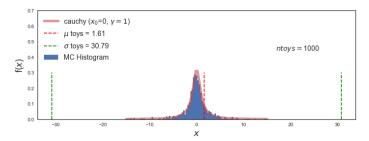
<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ C 29/63

- *E*[*x*] is undefined!
- $E[(x \mu)^2]$  is undefined!
- Taking the  $\mu$  and  $\sigma$  of random numbers distributed according to a Cauchy does not work

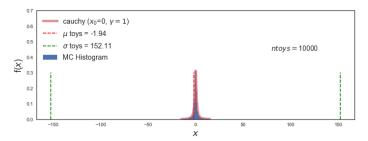


< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ · ∽ Q ℃ 30/63

- *E*[*x*] is undefined!
- $E[(x \mu)^2]$  is undefined!
- Taking the  $\mu$  and  $\sigma$  of random numbers distributed according to a Cauchy does not work



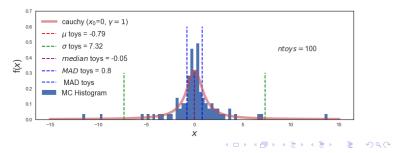
- *E*[*x*] is undefined!
- $E[(x \mu)^2]$  is undefined!
- Taking the  $\mu$  and  $\sigma$  of random numbers distributed according to a Cauchy does not work



## Basic concepts: alternatives: median and MAD

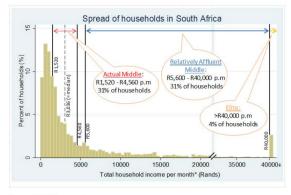
- If you suspect your data has fat tails, it's can be better to avoid the  $\mu$  and  $\sigma$
- Instead of  $\mu$  how about the median?
- Instead of  $\sigma$  how about something MAD? (Mean Absolute Deviation)

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |x_i - \mu(x)|$$



# Basic concepts: alternatives: modeWhen does the median fail?

Figure 1: The spread of households within the income distribution in South Africa, 2008

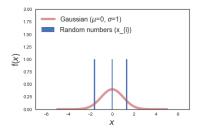


Source: NIDS 2008, own estimates

Figure: Source: Who are the middle class in South Africa? Does it matter for policy? Visagie 2013

## Basic concepts: random numbers

- We have been talking about abstract notions of probability
  - but what about real data?
  - imagine some data x<sub>i</sub>: n observations of some quantity x
  - what then is the  $\mu$  and  $\sigma$  of  $x_i$ ?

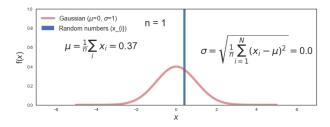


$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i, \qquad \qquad \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{N} (x_i - \mu)^2}$$

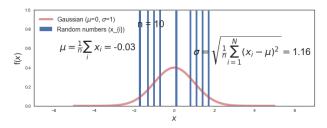
Let's think about how these definitions correspond to the defns. for pdfs

### Basic concepts: random numbers

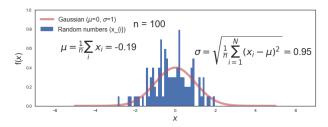
- *Random* numbers are useful in simulating data that is governed by a pdf
- Software tools can generate random numbers that are governed by any pdf...



• *Random* numbers are useful in simulating data that is governed by a pdf

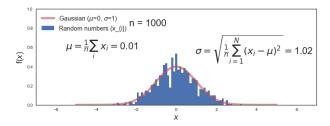


• *Random* numbers are useful in simulating data that is governed by a pdf



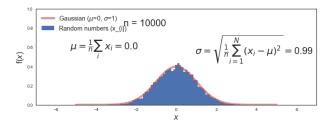
◆□▶ < @ ▶ < E ▶ < E ▶ E ⑦ Q ℃ 38/63</p>

• *Random* numbers are useful in simulating data that is governed by a pdf



◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

• *Random* numbers are useful in simulating data that is governed by a pdf



<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ ○ ♀ ♡ ♀ ♡ 40/63

# Basic concepts: joint pdf

- A result can correspond to more than one quantity, e.g. (x, y)
- toy example:
  - x and y both obey Gaussian pdfs
  - imagine each result as a point (x<sub>i</sub>, y<sub>i</sub>)

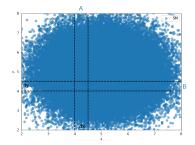


Figure: 5000 toy experiments with results  $(x_i, y_i)$  distributed as a 2-d Gaussian

- A = x observed in [x, x + dx]
- B = y observed in [y, y + dy]P(A  $\cap$  B) = f(x, y)dxdy

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 41/63

# Basic concepts: joint pdf

• pdf of multiple observables (x, y) is known as a **joint** pdf

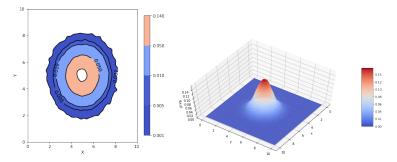
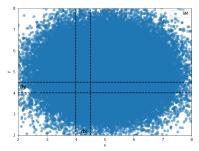


Figure: underlying pdf f(x, y) of  $(x_i, y_i)$  dataset in 2- and 3-D

- f(x, y) corresponds to the **density** of points **in the limit of infinite points**
- any experiment  $(x_i, y_i)$  must assume some value, one has the condition  $\int \int f(x, y) dx dy = 1$

## Basic concepts: marginal pdf

- If you know the joint pdf f(x, y), you might want to know the pdf of x regardless of the value of y
  - this is given by the marginal pdf  $f_x(x)$



$$f_x(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

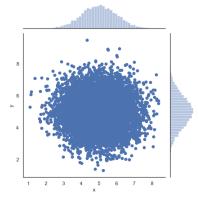
similarly-

$$f_y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

イロト ( 同 ) ( ヨ ) ( ヨ ) ヨ ) のの

### Basic concepts: marginal pdf

- If you know the joint pdf f(x, y), you might want to know the pdf of x **regardless** of the value of y
  - this is given by the marginal pdf  $f_x(x)$



$$\int_{-\infty}^{\infty} f_x(x) dx = 1$$

similarly-

$$\int_{-\infty}^{\infty} f_y(y) dy = 1$$

<ロト < @ ト < 臣 ト < 臣 ト 三 の へ で 44/63

## Basic concepts: conditional probability I

- What if you want to know the pdf of x **but you do care** about the value of *y*?
- conditional probability:
  - probability for y to be in [y, y + dy] (B) with any x given that x is in [x, x + dx] with any y (A)
  - usually referred to as P(B|A), "probability of B given "A"

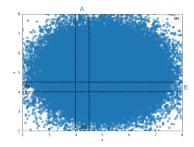


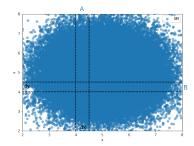
Figure: 5000 toy experiments with results  $(x_i, y_i)$  distributed as a 2-d Gaussian

- A = x observed in [x, x + dx]
- B = y observed in [y, y + dy] $P(A \cap B) = f(x, y)dxdy$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ E りへで 45/63

## Basic concepts: conditional probability II

- What if you want to know the pdf of x **but you do care** about the value of *y*?
- conditional probability:
  - probability for y to be in [y, y + dy] (B) with any x given that x is in [x, x + dx] with any y (A)
  - usually referred to as P(B|A), "probability of B given "A"



$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{f(x, y)dxdy}{f_x(x)dx}$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 46/63

Figure: 5000 toy experiments with results  $(x_i, y_i)$  distributed as a 2-d Gaussian

#### Basic concepts: covariance

- Often a result corresponds to multiple quantities, e.g., x and y
- The covariance of x and y  $(V_{xy})$  is defined as

$$V_{xy} = E[(x - \mu_x)(y - \mu_y)] = E[xy] - E[x]E[y]$$

- Suppose
  - x being greater than μ<sub>x</sub> increases the probability to find y greater than μ<sub>y</sub>
  - x being less than μ<sub>x</sub> increases the probability to have y less than μ<sub>y</sub>.
- Then V<sub>xy</sub> > 0, and the variables are said to be **positively** correlated or just "correlated".

#### Basic concepts: covariance

- Often a result corresponds to multiple quantities, e.g., x and y
- The covariance of x and y (V<sub>xy</sub>) is defined as

$$V_{xy} = E[(x - \mu_x)(y - \mu_y)] = E[xy] - E[x]E[y]$$

- Suppose
  - x being greater than  $\mu_x$  increases the probability to find y less than  $\mu_y$
  - x being less than μ<sub>x</sub> increases the probability to have y greater than μ<sub>y</sub>.
- Then V<sub>xy</sub> < 0, and the variables are said to be negatively correlated or anti-correlated.

## Basic concepts: linear correlation coefficient

 One often thinks of the dimensionless correlation coefficient or "correlation"

$$\rho_{xy} = \frac{V_{xy}}{\sigma_x \sigma_y}$$

• correlation coefficient is covariance divided by the product of the standard deviations  $(-1.0 < \rho_{xy} < 1.0)$ 

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ C 49/63

#### Basic concepts: linear correlation coefficient

- often don't know the pdf of (x, y) but instead have a sample of N measurements
- we define r as the sample correlation coefficient by inserting estimates of V<sub>x</sub>, V<sub>y</sub> and V<sub>xy</sub> into the formula for ρ<sub>xy</sub>
- Recall:  $V_{xy} = E[xy] E[x]E[y]$

$$\rho_{xy} = \frac{V_{xy}}{\sigma_x \sigma_y}$$

$$r_{xy} = \frac{(1/n) \sum_n x_i y_i - (\mu_x \mu_y)}{\sqrt{(1/n) \sum_n (x_i - \mu_x)^2} \sqrt{(1/n) \sum_n (y_i - \mu_y)^2}}$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 50/63

### Basic concepts: linear correlation coefficient

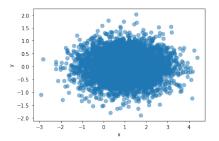
- often don't know the pdf of (x, y) but instead have a sample of N measurements
- we define r as the sample correlation coefficient by inserting estimates of V<sub>x</sub>, V<sub>y</sub> and V<sub>xy</sub> into the formula for ρ<sub>xy</sub>

• Recall: 
$$V_{xy} = E[xy] - E[x]E[y]$$

$$\rho_{xy} = \frac{V_{xy}}{\sigma_x \sigma_y}$$
$$r_{xy} = \frac{\sum\limits_n x_i y_i - (\mu_x \mu_y)}{\sqrt{\sum (x_i - \mu_x)^2} \sqrt{\sum (y_i - \mu_y)^2}}$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ ○ ○ 51/63

- Testing our intuition about r<sub>xy</sub>
  - Generate N random (x, y) points according to some pdf(x, y)
  - We can calculate  $r_{xy}$  and compare to expectation from scatter plot of x and y



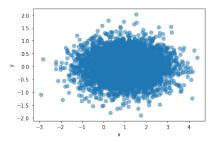
• 
$$r_{xy} = ?$$

4 ロト 4 部 ト 4 注 ト 4 注 ト 注 の 4 で 52/63

- Testing our intuition about r<sub>xy</sub>
  - Generate N random (x, y) points according to some pdf(x, y)
  - We can calculate  $r_{xy}$  and compare to expectation from scatter plot of x and y

 $r_{xy} \approx 0.0$ 

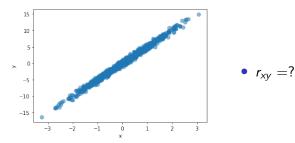
・ロト・日本・モト・モー・ ヨー のくで



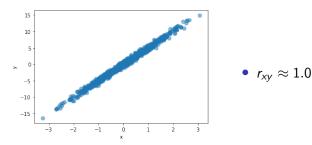
• Testing our intuition about r<sub>xy</sub>

- Generate N random (x, y) points according to some pdf(x, y)
- We can calculate  $r_{xy}$  and compare to expectation from scatter plot of x and y

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ のへで 54/63



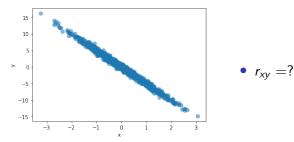
- Testing our intuition about r<sub>xy</sub>
  - Generate N random (x, y) points according to some pdf(x, y)
  - We can calculate  $r_{xy}$  and compare to expectation from scatter plot of x and y



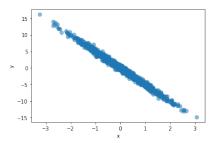
Testing our intuition about r<sub>xy</sub>

- Generate N random (x, y) points according to some pdf(x, y)
- We can calculate r<sub>xy</sub> and compare to expectation from scatter plot of x and y

▲□▶ ▲□▶ ▲ ≧▶ ▲ ≧▶ ≧ ∽ Q ℃ 56/63

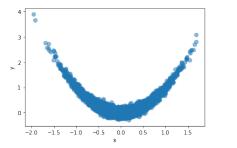


- Testing our intuition about r<sub>xy</sub>
  - Generate N random (x, y) points according to some pdf(x, y)
  - We can calculate r<sub>xy</sub> and compare to expectation from scatter plot of x and y



• 
$$r_{xy} \approx -1.0$$

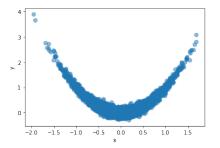
- Testing our intuition about r<sub>xy</sub>
  - Generate N random (x, y) points according to some pdf(x, y)
  - We can calculate  $r_{xy}$  and compare to expectation from scatter plot of x and y



• 
$$r_{xy} = ???$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ● 58/63

- Testing our intuition about r<sub>xy</sub>
  - Generate N random (x, y) points according to some pdf(x, y)
  - We can calculate r<sub>xy</sub> and compare to expectation from scatter plot of x and y



- $r_{xy} \approx 0.0$  !!!
- x and y are clearly related, but have r<sub>xy</sub> vanishes due to the symmetry of f(x, y) about 0
- shows the limitation of considering  $r_{xy}$  only

#### Basic concepts: mutual information

• The *mutual information*, *I*(*x*; *y*), captures the inter-dependence of variables much better

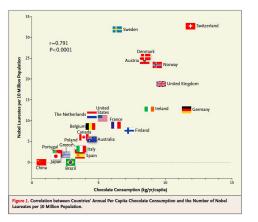
$$I(x; y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} P(x, y) \log \left( \frac{P(x, y)}{P(x) P(y)} \right)$$

## Basic concepts: mutual information

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ∽ Q ○ 61/63

### Basic concepts: correlation ! = causation

 Just because x and y have r<sub>xy</sub> > 0, it doesn't guarantee that changes in x cause changes in y



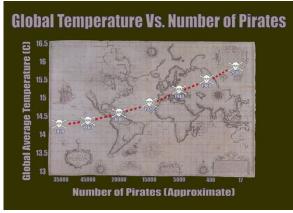
Should we eat more chocolate?

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 \_ のへで、

• Unfortunately (probably) not.

### Basic concepts: correlation ! = causation

 Just because x and y have r<sub>xy</sub> > 0, it doesn't guarantee that changes in x cause changes in y



 Should we bring back pirates?

イロト (母) (ヨ) (ヨ) (ヨ) () ()

• Unfortunately (probably) not.