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Neural Net in a nutshell
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Neural Net ~1950!

But many many new tricks for learning

“Deep Neural Net” up to 100 layers and more

Computing power (DNN training can take days, GPT

months on thousands of GPU...)
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Universal Theorem




Umversal Apprommatlon theorem

Mathematlcal therem
1991 X | U y,

https://en.wikipedia.org/wiki/Universal_appro

ximation_theorem U . W,jk
Any continuous, bounded %\\ ;
function R"=>»RP ////“\\\\

‘::'A/III
... can be approximately i\: 07 \\

11 ““\‘:’/4'1 ‘l
sufficiently well (better .4\.9.\ .'.;O'/A. W ./;\
than a given ¢) ',”0/ '{/ N2 ) 1:/

. - “7"" k‘ AN/ 4, ('

.. with a sufficiently N XY ‘,;f;,f/
large single hidden layer . ;:" \\\\K \X
neural net "‘ “"
\\\ // ptla r
Uput ay
[nput layer

Addendum ResNet 1 neuron sufficient depth Hldden [ayer
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https://papers.nips.cc/paper/7855-resnet-with-one-neuron-hidden-layers-is-a-universal-approximator.pdf

Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions

AN

/ N

relu(x) = x if x>0 & 0 otherwise

Relu(ax + b)
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions
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{
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination

of translated/scaled ReLU functions
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination

of translated/scaled ReLU functions
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions

S

O

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL 13



Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions

A~ N\
AN <
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions
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Umversal Theorem at work

Universal approximation

We can approximate any f € €([a, b], R) with a linear combination
of translated/scaled ReLU functions

AN

i N

Y = ZRelu(ai X X + by)

R — R generalised to R" — R?
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activation function

— agTed
4 ——i

] w— R G

==) Output= O(bj - Z wz'jflfi)

h(x) = o (b + W2o(b" + Whe) D™

Now with dimensions

h(z(2)) = o (bf1y + W30 (ba) + Wis07(2))
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One neuron

NN at

Two neuron
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http //www W|IdmI com/2015/09/|mplement|ng -a-neural-network-from- scratch/
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4-class classification
2-hidden layer NN
RelLU activations

L2 norm regularization
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2-class classification
1-hidden layer NN
L2 norm regularization
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Loss function




Neural Network Model : h(w,x)
Need to optimise the w (weights), so that h does what
we want
=>define a « loss » function

For a regression, typically quadratic loss function ~ -,

L(w,z) = % Z(yz — h(w,z;))’

. 1
Beware notation :

sum on all examples of the training dataset

each y; is a vector which length is the number of output
variables to be regressed

each x; is a vector which length is the number of features
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Recall Lmear Regressm

J S -

Boskovic, Legendre, Laplace, Gauss
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Y=I(X)
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Loss classmcatlon

Desired answer (binary classification) : h(w,x) real close
to y=1 for signal, close to y=0 for background

Defining : p; = h(w, ;) € [0,1]

The cross-entropy loss is:

L(w, x,y) Zyz Inp; + (1 —y;) In(1 — p;)

L(w,x,y) Z Inp; + Z In(1 —pf,;))

signal background
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Regularizati
* L2 regularization: add 2(w) = | |w| | to loss
— Also called “weight decay”

on

Py
ey

¥ sl AN N

e g
s

— Gausslan prior on weights, keep weights from getting too
large and saturating activation function

* Regularization inside network, example: Dropout
— Randomly remove nodes during training
— Avold co-adaptation ot nodes
— Essentially a large model averaging procedure

(a) Standard Neural Net (b) After applying dropout. arXiv:1207.0580
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At thls pomt

We want the neuraI network model to do what we want
on X h(u)7 x)

We « just » need to find the correct values for w

To do this, we'll minimise the loss function according to
W L(w,z,y)

...using x,y from the training sample, e.g:

df = pd.read csv('assets/train.csv')

df.head()
Passengerld | Survived| Pclass | Name Sex Age | SibSp | Parch | Ticket Fare Cabin | Embarked
0f1 0 3 Braund, Mr. Owen Harris male [22.0|1 0 A/5 21171 7.2500 [NaN |S
1]2 1 1 Cumings, Mrs. John Bradley (Florence 1. 10 135 0|1 0 PC 17599 71.2833|C85 |C
Briggs Th...
s . . STON/O2.

2|3 1 3 Heikkinen, Miss. Laina female |26.0|0 0 3101282 7.9250 [NaN |S
3|4 1 1 ::;"e’ Mrs. Jacques Heath (Lily May | e|35.0(1 0 113803 53.1000|C123 |s
4|5 0 3 Allen, Mr. William Henry male |35.0|0 0 373450 8.0500 [NaN |[S
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* Minimize loss by repeated gradient steps

— Compute gradient w.r.t. parameters: oL (W)
ow
/ OL(w)
— Update parameters: w' < w — N

Computing Hessian not practical!

L — 'l I 1 1 — ] 1 1
5 10 15 20 25 30 35 40 45 50
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Minimising the cost function by gradients descent

G — i VR

If y small enough, converge to a (possible local) minima

Stochastic (or « mini-batch") gradient descent

Compute the gradient by averaging the derivative of the loss in a mini-batch

1) Divide the training set into P batch of size B
2) For each batch, do

Nt+ -5 Nt 1 nt. =
0T =0'—y Y, VU T )
¢ in mini batch
3) One « epoch » (t->t+1) means running the algorithm through all mini-
batches
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Mini-batch gradient descent

« Example of optimization progress while training a neural
network
« Showing loss over mini-batches as it goes down over time

25

20

15

10

05

0.0
0

0 a0 &0 B0 100
Epach
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« Example of optimization progress while training a neural
network

« Epoch = one full pass of the training dataset through the
network
(Advanced algorithms have adaptive learning rate)

The effects of step size (or “learning rate”)
A

loss

low learning rate

high learning rate

good learning rate

2 ¥

Epcch

0

X

100

>
epoch
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: rlcky Loss k

| L055|s m|n|m|sed but can be trlcky
One need to look at performance plot (AUC) to chose the epoch

I T T

Loss

0.85 F DL1
| == training set

validation set

0.80

0.75 F

—— —————————————————— - —
——

1 1
0 20 40 60 80 100
Number of training epochs
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-
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0.70
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fraction of jets per flavour
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XGboost Hist
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Remember BDT score 4 = o

& B (test)

Arbitrary units

0.0 0.2 0.4 0.6 0.8 1.0
XGboost Hist score

Score distribution can be much more tricky:

51 i I ) DL1discriminant —

T x T 1 T T — T
85% 77%: 70% 60% \/.~=13TeV. tt

— light-flavour jets
— cjets
—— bjets

—6 —1 -2 0 2 4 6 3 10

DL 1 discriminant
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Opthsatlon

Up to tr|II|on of parameters to optlmlse

Wealth of newish algorithms in partlcular

Stochastic Gradient Descent (SGD) and more
Alec Radford

= momentum [

- nag

- adagrad
adadelta |5

—  rmsprop i

O

4 =]

Y = SGD -
-  Momentum [

~— NAG
- Adagrad

Adadelta
—| — Rmsprop |

80 | 1

0 26 4'0 eb 810 160 120
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https://www.reddit.com/r/MachineLearning/comments/2gopfa/visualizing_gradient_optimization_techniques/cklhott/

Addendum on optlmlston

| Many minima but

This local minimum

performs nearly as well as
the global one,

so it is an acceptable
halting point.

Ideally, we would like
to arrive at the global

minimum, but this
might not be possible.

f(z)

This local minimum performs
poorly and should be avoided.

X

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL 36



More on actlvatlon functlons

.-
SWXS
yRe e\U,
Mafy
-1.0 : : : : — tanh(z)
. L — - - : - | XXIth century
~classic XXth century
* Vanishing gradient problem * Rectified Linear Unit (ReLU)
— Derivative of sigmoid: — ReLU(x) = max {0, x}
— Derivative 1s constant!
90 _ ()1 - a(x)
ox OReLU(x) | 1 whenx>0
— Nearly 0 when x 1s far from 0! dx { 0 otherwise
— Gradient descent difficult! — ReLU gradient doesn’t vanish
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Neu ral Network software

Essentlally Tenso‘rFIow'(GoogIe) and Pyorch
(Facebook)

Free Open Source software

Python, interface nicely to numpy arrays and pandas
dataframe

Heavy duty done in C
Define and train a NN in a few lines
Uses GPU if available (performance boost 5-20)
Run on laptop as well as supercomputers

In general, NN more complex and heavy to train than
Boosted Decision Tree
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N N Hyper-Parameter Optlmlsatlon
HE 3 ,;;;-}“
*:’ﬂ—%-fg "W Jw‘ii’il : =3 'I' =t " - V'r // ‘."‘ I

' NN optimising much more complex than BDT pIus much slower to
train

==>always start with BDT if not dealing with images
Access to computing resources

Incomplete list of HPO (for dense NN)
Width (Start with anything between like 32 to 128)
Depth (start with 1)

Epochs : track “validation loss” to decide this but often the significance
might improve even though the loss does not

Batch Size (default is 32)

Activation (Start with Relu/LeakyRelu)

Early Stopping (Start with it off)

Optimiser (Start with Adam (momentum + learning rate manipulation))

Learning Rate (Default already present in optimiser, try to lower it by
orders of mag)

Drop Out (Start with it off)
Batch Norm (Start with Off)
Etc...etc.... HEP ML Course 3, David Rousseau, Jan 2024, CHACAL 39




