

Machine Learning Course 3 Neural Networks

David Rousseau IJCLab-Orsay

david.rousseau@in2p3.fr

@dhpmrou

CHACAL, Johannesburg, Jan 2024

Neural Net in a nutshell

- Neural Net ~1950!
- But many many new tricks for learning
- "Deep Neural Net" up to 100 layers and more
- Computing power (DNN training can take days, GPT months on thousands of GPU...)

Universal Theorem

Universal Approximation theorem

https://en.wikipedia.org/wiki/Universal_approximation_theorem

- Any continuous, bounded function Rⁿ→R^p
- ... can be approximately sufficiently well (better than a given ε)
- ... with a sufficiently large single hidden layer neural net

Addendum ResNet 1 neuron sufficient depth

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL

Universal approximation

We can approximate any $f\in \mathscr{C}([a,b],\mathbb{R})$ with a linear combination of translated/scaled ReLU functions

therwise

Relu(ax + b)

relu(x) = x if x>0 & 0 otherwise

Universal approximation

Universal approximation

We can approximate any $f \in \mathcal{C}([a,b],\mathbb{R})$ with a linear combination of translated/scaled ReLU functions

$$y = \sum_{i} \text{Relu}(a_i \times x + b_i)$$

 $\mathbb{R} \to \mathbb{R}$ generalised to $\mathbb{R}^n \to \mathbb{R}^p$

Simple NN

$$h(x) = \sigma(b^2 + W^2\sigma(b^1 + W^1x))^{\text{Beware: superscript}}_{\text{are layer indices!}}$$

Now with dimensions

$$h(x_{(2)}) = \sigma(b_{(1)}^2 + W_{(1,3)}^2 \sigma(b_{(3)}^1 + W_{(3,2)}^1 x_{(2)}))$$

Bias

□ Biases sometimes indicated as an additional node of value 1, and then can integrate the bias in the matrix of weight

NN at work

Loss function

Loss: regression

- □ Neural Network Model : h(w,x)
- Need to optimise the w (weights), so that h does what we want
- ☐ → define a « loss » function
- \Box For a regression, typically quadratic loss function ~ $\frac{1}{2}\chi^2$

$$L(w,x) = \frac{1}{2} \sum_{i} (y_i - h(w,x_i))^2$$

- each y_i is a vector which length is the number of output variables to be regressed
- o each x_i is a vector which length is the number of features

Recall: Linear Regression

Boskovic, Legendre, Laplace, Gauss

Loss: classification

- Desired answer (binary classification): h(w,x) real close to y=1 for signal, close to y=0 for background
- lacksquare Defining : $p_i = h(w, x_i) \in [0, 1]$
- ☐ The *cross-entropy* loss is:

$$L(w, x, y) = -\sum_{i} y_{i} \ln p_{i} + (1 - y_{i}) \ln(1 - p_{i})$$

$$L(w, x, y) = -\left(\sum_{\text{signal}} \ln p_i + \sum_{\text{background}} \ln(1 - p_i)\right)$$

Regularization

- L2 regularization: add $\Omega(\mathbf{w}) = |\mathbf{w}||^2$ to loss
 - Also called "weight decay"
 - Gaussian prior on weights, keep weights from getting too large and saturating activation function
- Regularization inside network, example: **Dropout**
 - Randomly remove nodes during training
 - Avoid co-adaptation of nodes
 - Essentially a large model averaging procedure

arXiv:1207.0580

At this point

- $\hfill \square$ We want the neural network model to do what we want on x h(w,x)
- We « just » need to find the correct values for w
- $\hfill\Box$ To do this, we'll minimise the loss function according to $\hfill W = L(w,x,y)$
- ...using x,y from thé training sample, e.g:

df = pd.read_csv('assets/train.csv')
df.head()

	Passengeric	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Minimisation

- Minimize loss by repeated gradient steps
 - Compute gradient w.r.t. parameters: $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$
 - Update parameters: $\mathbf{w}' \leftarrow \mathbf{w} \eta \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$

Computing Hessian not practical!

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL

Stochastic Gradient Descent

Minimising the cost function by gradients descent

$$\vec{\theta}^{t+1} = \vec{\theta}^t - \gamma \nabla R(\vec{\theta}^t)$$

If y small enough, converge to a (possible local) minima

Stochastic (or « mini-batch") gradient descent

Compute the gradient by averaging the derivative of the loss in a mini-batch

- 1) Divide the training set into P batch of size B
- 2) For each batch, do

$$\vec{\theta}^{t+\frac{1}{P}} = \vec{\theta}^t - \gamma \sum_{i \text{ in mini batch}} \frac{1}{B} \nabla l(\vec{\theta}^t; \vec{x}_i, y_i)$$

3) One « epoch » (t->t+1) means running the algorithm through all minibatches

SGD (2)

Mini-batch gradient descent

- Example of optimization progress while training a neural network
- Showing loss over mini-batches as it goes down over time

SGD(3)

- Example of optimization progress while training a neural network
- Epoch = one full pass of the training dataset through the network

(Advanced algorithms have adaptive learning rate)

The effects of step size (or "learning rate")

Tricky Loss

- Loss is minimised but can be tricky
- One need to look at performance plot (AUC) to chose the epoch

Tricky Score distributions

Remember BDT score

Score distribution can be much more tricky:

Optimisation

- ☐ Up to trillion of parameters to optimise....
- Wealth of newish algorithms in particular Stochastic Gradient Descent (SGD) and more

Alec Radford

Addendum on optimisation

Many minima but....

More on activation functions

~classic XXth century

- Vanishing gradient problem
 - Derivative of sigmoid:

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

- Nearly 0 when x is far from 0!
- Gradient descent difficult!

Rectified Linear Unit (ReLU)

- $ReLU(x) = max\{0, x\}$
- Derivative is constant!

$$\frac{\partial \operatorname{Re} LU(x)}{\partial x} = \begin{cases} 1 & \text{when } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

- ReLU gradient doesn't vanish

Neural Network software

- - Essentially TensorFlow (Google) and PyTorch (Facebook)
 - Free Open Source software
 - Python, interface nicely to numpy arrays and pandas dataframe
 - Heavy duty done in C
 - Define and train a NN in a few lines
 - ☐ Uses GPU if available (performance boost 5-20)
 - Run on laptop as well as supercomputers
 - In general, NN more complex and heavy to train than Boosted Decision Tree

NN Hyper-Parameter Optimisation

- - NN optimising much more complex than BDT, plus much slower to train
 - ==>always start with BDT if not dealing with images
 - Access to computing resources
 - Incomplete list of HPO (for dense NN)
 - Width (Start with anything between like 32 to 128)
 - Depth (start with 1)
 - Epochs: track "validation loss" to decide this but often the significance might improve even though the loss does not
 - Batch Size (default is 32)
 - Activation (Start with Relu/LeakyRelu)
 - Early Stopping (Start with it off)
 - Optimiser (Start with Adam (momentum + learning rate manipulation))
 - Learning Rate (Default already present in optimiser, try to lower it by orders of mag)
 - Drop Out (Start with it off)
 - Batch Norm (Start with Off)
 - O Etc...etc.... HEP ML Course 3, David Rousseau, Jan 2024, CHACAL