

Machine Learning Course 3 Neural Networks

David Rousseau IJCLab-Orsay

david.rousseau@in2p3.fr

@dhpmrou

CHACAL, Johannesburg, Jan 2024

Neural Net in a nutshell

- Neural Net ~1950!
- But many many new tricks for learning
- "Deep Neural Net" up to 100 layers and more
- Computing power (DNN training can take days, GPT months on thousands of GPU...)

Universal Theorem

Universal Approximation theorem

https://en.wikipedia.org/wiki/Universal_approximation_theorem

- Any continuous, bounded function Rⁿ→R^p
- ... can be approximately sufficiently well (better than a given ε)
- ... with a sufficiently large single hidden layer neural net

Addendum ResNet 1 neuron sufficient depth

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL

Universal approximation

We can approximate any $f\in \mathscr{C}([a,b],\mathbb{R})$ with a linear combination of translated/scaled ReLU functions

therwise

Relu(ax + b)

relu(x) = x if x>0 & 0 otherwise

Universal approximation

Universal approximation

Universal approximation

Universal approximation

Universal approximation

Universal approximation

Universal approximation

Universal approximation

Universal approximation

Universal approximation

Universal approximation

Universal approximation

Universal approximation

Universal approximation

We can approximate any $f \in \mathcal{C}([a,b],\mathbb{R})$ with a linear combination of translated/scaled ReLU functions

$$y = \sum_{i} \text{Relu}(a_i \times x + b_i)$$

 $\mathbb{R} \to \mathbb{R}$ generalised to $\mathbb{R}^n \to \mathbb{R}^p$

Simple NN

$$h(x) = \sigma(b^2 + W^2\sigma(b^1 + W^1x))^{\text{Beware: superscript}}_{\text{are layer indices!}}$$

Now with dimensions

$$h(x_{(2)}) = \sigma(b_{(1)}^2 + W_{(1,3)}^2 \sigma(b_{(3)}^1 + W_{(3,2)}^1 x_{(2)}))$$

Bias

□ Biases sometimes indicated as an additional node of value 1, and then can integrate the bias in the matrix of weight

NN at work

Loss function

Loss: regression

- □ Neural Network Model : h(w,x)
- Need to optimise the w (weights), so that h does what we want
- ☐ → define a « loss » function
- \Box For a regression, typically quadratic loss function ~ $\frac{1}{2}\chi^2$

$$L(w,x) = \frac{1}{2} \sum_{i} (y_i - h(w,x_i))^2$$

- each y_i is a vector which length is the number of output variables to be regressed
- o each x_i is a vector which length is the number of features

Recall: Linear Regression

Boskovic, Legendre, Laplace, Gauss

Loss: classification

- Desired answer (binary classification): h(w,x) real close to y=1 for signal, close to y=0 for background
- lacksquare Defining : $p_i = h(w, x_i) \in [0, 1]$
- ☐ The *cross-entropy* loss is:

$$L(w, x, y) = -\sum_{i} y_{i} \ln p_{i} + (1 - y_{i}) \ln(1 - p_{i})$$

$$L(w, x, y) = -\left(\sum_{\text{signal}} \ln p_i + \sum_{\text{background}} \ln(1 - p_i)\right)$$

Regularization

- L2 regularization: add $\Omega(\mathbf{w}) = |\mathbf{w}||^2$ to loss
 - Also called "weight decay"
 - Gaussian prior on weights, keep weights from getting too large and saturating activation function
- Regularization inside network, example: **Dropout**
 - Randomly remove nodes during training
 - Avoid co-adaptation of nodes
 - Essentially a large model averaging procedure

arXiv:1207.0580

At this point

- $\hfill \square$ We want the neural network model to do what we want on x h(w,x)
- We « just » need to find the correct values for w
- $\hfill\Box$ To do this, we'll minimise the loss function according to $\hfill W = L(w,x,y)$
- ...using x,y from thé training sample, e.g:

df = pd.read_csv('assets/train.csv')
df.head()

	Passengeric	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Minimisation

- Minimize loss by repeated gradient steps
 - Compute gradient w.r.t. parameters: $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$
 - Update parameters: $\mathbf{w}' \leftarrow \mathbf{w} \eta \frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$

Computing Hessian not practical!

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL

Stochastic Gradient Descent

Minimising the cost function by gradients descent

$$\vec{\theta}^{t+1} = \vec{\theta}^t - \gamma \nabla R(\vec{\theta}^t)$$

If y small enough, converge to a (possible local) minima

Stochastic (or « mini-batch") gradient descent

Compute the gradient by averaging the derivative of the loss in a mini-batch

- 1) Divide the training set into P batch of size B
- 2) For each batch, do

$$\vec{\theta}^{t+\frac{1}{P}} = \vec{\theta}^t - \gamma \sum_{i \text{ in mini batch}} \frac{1}{B} \nabla l(\vec{\theta}^t; \vec{x}_i, y_i)$$

3) One « epoch » (t->t+1) means running the algorithm through all minibatches

SGD (2)

Mini-batch gradient descent

- Example of optimization progress while training a neural network
- Showing loss over mini-batches as it goes down over time

SGD(3)

- Example of optimization progress while training a neural network
- Epoch = one full pass of the training dataset through the network

(Advanced algorithms have adaptive learning rate)

The effects of step size (or "learning rate")

Tricky Loss

- Loss is minimised but can be tricky
- One need to look at performance plot (AUC) to chose the epoch

Tricky Score distributions

Remember BDT score

Score distribution can be much more tricky:

Optimisation

- ☐ Up to trillion of parameters to optimise....
- Wealth of newish algorithms in particular Stochastic Gradient Descent (SGD) and more

Alec Radford

Addendum on optimisation

Many minima but....

More on activation functions

~classic XXth century

- Vanishing gradient problem
 - Derivative of sigmoid:

$$\frac{\partial \sigma(x)}{\partial x} = \sigma(x)(1 - \sigma(x))$$

- Nearly 0 when x is far from 0!
- Gradient descent difficult!

Rectified Linear Unit (ReLU)

- $ReLU(x) = max\{0, x\}$
- Derivative is constant!

$$\frac{\partial \operatorname{Re} LU(x)}{\partial x} = \begin{cases} 1 & \text{when } x > 0 \\ 0 & \text{otherwise} \end{cases}$$

- ReLU gradient doesn't vanish

Neural Network software

- - Essentially TensorFlow (Google) and PyTorch (Facebook)
 - Free Open Source software
 - Python, interface nicely to numpy arrays and pandas dataframe
 - Heavy duty done in C
 - Define and train a NN in a few lines
 - ☐ Uses GPU if available (performance boost 5-20)
 - Run on laptop as well as supercomputers
 - In general, NN more complex and heavy to train than Boosted Decision Tree

NN Hyper-Parameter Optimisation

- - NN optimising much more complex than BDT, plus much slower to train
 - ==>always start with BDT if not dealing with images
 - Access to computing resources
 - Incomplete list of HPO (for dense NN)
 - Width (Start with anything between like 32 to 128)
 - Depth (start with 1)
 - Epochs: track "validation loss" to decide this but often the significance might improve even though the loss does not
 - Batch Size (default is 32)
 - Activation (Start with Relu/LeakyRelu)
 - Early Stopping (Start with it off)
 - Optimiser (Start with Adam (momentum + learning rate manipulation))
 - Learning Rate (Default already present in optimiser, try to lower it by orders of mag)
 - Drop Out (Start with it off)
 - Batch Norm (Start with Off)
 - O Etc...etc.... HEP ML Course 3, David Rousseau, Jan 2024, CHACAL