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Feature Selection




Feature Selection

Input variable: HT _jets Input variable: HT _all
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https://indico.cern.ch/event/766872/contributions/3357984/attachments/1831644/2999757/featureRanking.pdf
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lterative addition: start with n=1, take best training of all n options. Then take best

option of adding one more from remaining n-1 variables, etc. Ranking complexity
scales as O(n3).

lterative removal: start with training on all variables and remove iteratively remove the

one that degrades the performance the least, scales as O(n3).

Hypothesis: better consideration of variables that only add to performance in
combination with others.

Correlation based: rank the variables based on their correlation to the BDT score

computed with all variables. Computationally cheap, scales as O(n).

BDT selection frequency ‘TMVA ranking’: train once on all variables, rank by how
often a variables provided the optimal decision in the BDT, scales as O(n).

Separation based: rank by overlap of signal vs background shapes. Only method that
establishes ranking without performing any training.

Random choice: serves as reference, use a random subset of the variables. Repeat
and average over 1000 trials.

Here performance is measured as integral of the ROC curve.
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Deep Learning for Analy5|s
i i 1402.4735 Baldi, Sadowski, Whiteson N e =R AT
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MSSM at LHC : HY=>WWhbb vs tt=>WWbb
Low level variables:
3-momentum vectors

High level variables:
Pair-wise invariant masses

Compare shallow NN (1 hidden layer) with (not so) deep NN (3 hidden
layers)
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https://arxiv.org/abs/1402.4735
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Deep NN outperforms NN, and does not need high level variables
DNN learns the physics ??7?
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Deep learning for anaIyS|s (2)
W | 4103469 Baldi Sadowski Whiteson WAL /il

H tautau analysis at LHC: Hatautau vs Z->tautau
Low level variables (4-momenta)

High level variables (transverse mass, delta R, centrality, jet
variables, etc...)

Here, the DNN improves on NN but ...

7:— M PN INGHOIER. | Lenp RREWOIRS ...DNN still needs high level features

c Both analyses with Delphes fast

3 simulation ~100M events used for

’g training (very unusual>>100* full G4

@ simulation in ATLAS)

E No convincing proof so far deep dense NN
§ better than shallow NN or BDT, in realistic
.‘é’ consitions
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https://arxiv.org/abs/1410.3469

Deep Learnmg success : NOVA
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arXiv 1604.01444 Aurisano et al

.04595

1 Neural Network (GoogleNet)

10nna
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Convolut

ing

Actually used in physics results 1703.03328 and 1706

Neutrino interaction classification
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http://arxiv.org/abs/1604.01444

End to end Learning




| End o end Iearmn

Tra|n d|rectly for S|gnal on « raw » event ?
Start from RPV Susy search

ATLAS-CONF-2016-057
Fast Simulated events with Delphes

Project energies on 64x64 nXxdé
grid

Compare with usual jet
Reconstruction and physics
Analysis variables such as:

M- 3w

p1>200GeV
In1<2.0
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https://arxiv.org/abs/1711.03573

End to end Iearmng (2)
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End to end Iearnng (3)
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Background Efficiency
>x2 gain over BDT/shallow network using physics variable and 5 leading jet 4-
momenta
=»CNN extract information from energy grid which is lost in the jets ?

Not sure, they should comlv?are to agplyng DL on the jets
HEP ML Course avid Rousseau, Jan 2024, CHACAL



Systematlcs Aware Trammg




Systematlcs-aware training

el = = A 37 A See Victor Estrade CHEP 2018 /
Our experlmental measurement papers typically ends with

measurement = m £ o(stat) £+ o(syst)

o(syst) systematic uncertainty : known unknowns, unknown unknowns...
Name of the game is to minimize quadratic sum of :

o(stat) = o(syst)

ML techniques used so far to minimise o(stat)
Impact of ML on o(syst) or even better global optimisation of o(stat) +
o(syst) is an open problem

Worrying about o(syst) untypical of ML in industry (... until recently
fake news)

However, a hot topic in ML in industry: transfer learning

E.g. : train image labelling on a image dataset, apply on new images
(different luminosity, focus, angle etc...)

For HEP : we train with Signal and Background which are not the real
one (MC, control regions, etc...)=»source of systematics

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL




Experlmental blas
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- Systematlcal effect

Example of impact of the angle on handwritten digits
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Example mnggs measurement
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FIG. 3 (color online). The impacts émy (see text) of the nuisance parameter groups in Table I on the ATLAS (left), CMS (center), and
combined (right) mass measurement uncertainty. The observed (expected) results are shown by the solid (empty) bars.
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Syst Aware Trammg adversarlal

Signal vs Background

L, = cross,entropy(
targetsignal,predicted signal)
1

PPPPPPPPPPPPPPP

classifier
> [ Softma > rrrrrrrrrrr pYy(
tar get domaln predicted domain)

Do) [y J( S ]
T MC vs data
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Not concluswe yet

Ghosh & Nachman EPJC 82 46 (2022)

Without Decorrelation With Decorrelation

Estimated Uncertainty Estimated Uncertainty

Clearly

N.ature too0 small !
Sherpa

Pythia
®
Sherpa ®
® Next year’s
Next year’s generator
generator

Goodhart’s law ”When an indicator becomes an objective,

it 1s no more a good indicator >

Constraints by 70 years of
Particle Physics measurement

Hot topic!

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL


https://link.springer.com/article/10.1140/epjc/s10052-022-10012-w
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Extension of previous HiggsML challenge from 2014 g

When High Energy Physics meets Machine Learning

(which was a classification problem for Higgs decaying
to Tau leptons in an ATLAS simulation based on
momenta of decay particles and derived quantities)
Larger dataset, and include systematic variations

Tau Energy Scale, Jet Energy Scale, MET,

backgrounds or simulators - TBD)

Systematics implemented both using in Delphes

detector simulation and post-hoc scripts to compare
Participants submit methods that go beyond
classification: predict signal strength () and an
uncertainty interval

ARTIFICIAL INTELLIGENCE AND THE UNCERTAINTY

Metric/score on precision and accuracy CHALLENGE, IN FUNGANENTAL Hics

To run on Codabench summer 2024 as a NeurlPS .
competition

QANAS LAL Lo keggle B @] Google

HEP ML Course 3, David Rousseau, Ja


https://github.com/delphes/delphes/tree/master/cards
https://github.com/delphes/delphes/tree/master/cards

Generative Models
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this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

.

the flower has petals that this white and yellow flower
are bright pinkish purple have thin white petals and a
with white stigma round yellow stamen

Here is the image of the small bird with a pink breast and crown, and black primaries

and secondaries.
“Actually using diffusion model rather than GAN

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL



PLAY ABOUT METHODS LEARN PRESS CONTACT BOOK CALLING BS

https://www.whichfaceisreal.com/

Click on the person who is real.

HE



https://www.whichfaceisreal.com/
https://www.whichfaceisreal.com/
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B Half of LHC grid computers (~300.000

; . GAN showers cores) are crunching Geant4 simulation
TR AT . . 24/24 365/365

’ (JU'St cell energles) ...while LHC experiments are collecting
more and more events

=>reducing CPU consumption of

Geant4 | simulation is very important
X
. G Imagine training a GAN on single particle
Cells CNCIZICs showers of all types and energies
0 Then when an event is simulated it would

ask for GAN showers on request
(superfast by 3-4 order of magnitude)

Z Would replace current fast simulation,
frozen shower libraries....

If/when it works, would require large GPU
clusters
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https://arxiv.org/abs/2210.06204
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i

Applicati

Real data

Simulation

Style Transfer to correct Simulation
=>resuce systematic uncertainties




Recurrent Neural
Network
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Recurrent Neural Network
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XB_I_DT a:n’cAI Llsual N xpectAa' fix number o inut.Wh t do -.when
the number of inputs is not fixed like list of particles ?

Can be used to treat list of particles define ptl pt2 pt3... phil phi2
phi3... OK for 1 and 2 particles but does not scale

Recurrent Neural Networks have seen outstanding performance for
processing sequence data, typically to treat text.

Take data at several “time-steps”, and use previous time-step
information in processing next time-steps data feed into RNN

Take list of particles, with well defined order (e.g. decreasing energy
or distance to originS and feed the RNN
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| RNNfor jet taggmg

=

S =L S e IrSS—== ATL-PHYS-PUB-2017-003
Used in phyS|cs for identification of jets from b-quarks from the
list of particles associated to the jet

Basic track information like dO, z0, pt-Fraction of jet, ...
Physics inspired ordering by dO-significance
RNN outperforms other IP algorithms

No explicit vertexing, still excellent performance
First combinations with other algorithms in progress
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Transformers
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Remforcement Iearmng




Apprentlssage par renforcement
- pB T R : _,;' : =

[l E

Alpha Zero : a appris tout seul contre lui-méme en quelques jours
a jouer (séparément) au Go, aux échecs ou aux échecs japonais, et

bat tout le mond]gEm

ourse awg’gousseau Jan 2024, CHACAL



States & Actions

Curent state of the system Actions of the player
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Rewards & value

Immediate reward total Value (including the future)

Reward rt = score at time t as a result of the action

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL



Rewards & value

Immediate reward total Value (including the future)

Reward rt = score at time t as a result of the action

(0]

the “Value” of the position  y/({, <) = T

includes future rewards ({ P t}) Zty ()
=

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL



Appllclon of jet groommg

Proton [
'

beam

Nnecr vik VUUIDEC O , dVIU NNuudStdu, Jdlil £UL4, UINAUVAL


https://arxiv.org/abs/1903.09644

(l ‘-L 1' § If}.f.fk —

« reward » : best jet mass
Impact : more precise jet reconstruction
(no follow up to the best of my knowledge)
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Possmle RL appllcatlon experlment de5|gn

Experiment design
Data collection
Success/failure ?

=»could be used to
optimise trigger menu,
which can be easily
virtualised

MODE collaboration
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https://mode-collaboration.github.io/

Example of a bad ML idea:
SuperTML




SuperML prmclple

Tabular Data Image Folder
Samples v V1 9 v v
2D-Embedding ,1'1 . ,2’1 ,2’2
Sample 1 gl V13 V14 V23 V2.4

2D-Embedding  L1_0001.jpg $12_0002.jpg

Sample_2 v,; v, vy3 vyu L2 e —
2D-Embedding  [MEREEREW
SamPIE_3 V3’1 V3’2 V3’3 V3'4 L3 [ \’3,3 \’3’4
L3_0003.jpg
2D-Embedding
Sample_n Va1l Yn2 Vn3 Vna Ln Ln_000n.jpg

...then analyse image with fine tuned a
pre-trained CNN (on cats and dogs)
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"1— J'J\J 22 Jfl

Super TML’ on nggsML dataset

103. 706 2.618

50. 754 0. 602 160. 937
SaeRet i 103. 235
33. 558 1. 251
2. 047 617. 204 42.014
2. 606 0. 945
495. 832 0. 693
134. 523 1.986
1.973 686. 787
93. 708 2.214
1.12 426. 564
0 0.191 ;
238 39.975 999. 0
4. 582 500. 637
' 1.552

(a) SuperTML_EF back- (b) SuperTML_VF signal
ground event example. event example.

igure 4. Examples of SuperTML images for Higgs Boson .
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‘ SuperTML results

Table 3. Comparison of AMS score on Higgs Boson. The first two
rows are winners in the Higgs Boson Challenge.

Methods AMS
DNN by Gabor Meli 3.806
XGBoost 3.761

SuperTML_EF(224x224) | 3.979 | No Way!
SuperTML_VF (224x224) | 3.838 | Overtraining ?

...unreproducible....
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ChatGPT, a brilliant but messy intern

Caveat : Most experiments from June 2023



GPT m one sllde B

prowded by (not at aII Open) OpenAI funded ma|nIy by Mlcrosoft (hence
connection to Bing and github Copilot)

Generative Pre-Trained Transformer : trained to guess the next word

learned from a well curated dataset (details unknown). Certainly not “the
whole web”, but wikipedia, arXiv, books etc. Multilingual. Frozen in Sep
2021. =»now (Jan 2024) April 2023

Fine Tuned to specific task (now GPTSs)

RLHF : Reinforcement Learning from Human Feedback to provide structured
answers

safeguards against hate speech etc... Kids can use it

GPT3.5 ~1011 parameters. Memory 10.000 “tokens” (entity a bit smaller
than a word)

GPT4~1012 parameters. Memory 25.000 tokens
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ChatGPand Bmg m one sllde

ChatGPT https //chat opena| com/chat reglster
GPT3.5 free, GPT4 for 24$/month.
Does not look up the web, knowledge frozen in Sep 21 (but evidence earlier arXiv are missing)
No sources. Reference and citation often wrong
On the prompt one can reference a paper giving its title/authors (NOT the http! Wrong paper)
Tends to be very verbose
History of all different chats are kept and can be continued
https://platform.openai.com/ai-text-classifier supposed to detect code written with GPT

Bing : simply tag @bing in skype or within MS Edge
uses GPT4

my feeling: looks up on the web and interpret the first few hits
=»sources are often quoted and correct
=>»not as thorough as ChatGPT

newtopic =starts new conversation and forgets the current one (which is still visible skype mode, however
Bing answers are deleted after ~10 days)

only text input but it is possible to indicate a web page with a pdf (arXiv or on google drive)
for more details this set of rules seems to be followed still, and help understands Bing’s behavior
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https://www.theverge.com/23599441/microsoft-bing-ai-sydney-secret-rules

B ATLAS study -

Call for contributions within ATLAS collaboration (1992 created,
international, ~3000 physicists including ~200 with Al experience)

=~ 20 stories from experienced users of ChatGPT/Bing

Beyond anecdotes, can ChatGPT/Bing be useful to physicist’ daily work ?
=» a clear yes !

However one always has to stay on top of it
However would benefit a specialised fine-tune
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Publlc knowledge database
ChatGPT more thorough than Bing, but sources mlssmg are a reaI
problem (plus ChatGPT's training DN frozen in Sep 2021) =»now
(Jan 2024) essentially fixed

Very good for textbook knowledge on A or B

Not so good to treat A and B, especially if cutting-edge (i.e. science
and Al)

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL



Prlvate Knowledge database

""" -)blg potentlal |f « ﬂne tunlng » to
internal knowledge (public papers
CHACAL 2024 and corresponding internal
discussions, internal documents,
mailing lists, meeting slides... since

15-27 janv. 2024
Fuseau horaire Africa/Johannesburg

Accueil NZOOO)

sesmerss CHACA : /(many startups are proposing

and Applications CNRS.  companies to build a ChatGPT for
List of students 15-27 Jan 2024, University of Witwater

their internal documentation)
Indico : >1 million CERN meetings with slides attached since 2000

=»incredible, unique, dataset about science as it is built
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« Can Normallzmg Flows be used at the I._HC‘? »

/

Collider (LHC) for various tasks, such as data analysis and simulation. tractable distributions where both sampling "{‘”d_derl‘s'ty eva!Uat'O” can

Normalizing flows are a type of generative model that can be used to be efficient and exact 1. They are used for distribution learning 2.

Iear: tI;e frol??blllltyhdls_trlbutlon olf_ hlgh;ldlmensmrt\)al datz.tIn thed th | found a research paper titled "Normalizing Flows for LHC

ccr)cr)]bi)éilﬁy il?stlr?beljt[?oxscl)?‘s’ :rct)irc I];aééllﬂgior?QSe%atg € used to model the Theory" which discusses the use of normalizing flows in LHC theory 3.

P 7 p _ ) o However, | couldn't find any other information about the use of

One application of normalizing flows in particle physics is in the normalizing flows at LHC.

simulatic_)n.of particle collisions. Simu_lating particle collisions is essential Is there anything else | can help you with?

for predicting the outcomes of experiments at the LHC. However, 1. https://arxiv.org/abs/1908.09257 .

simulating particle collisions is a computationally expensive task that 2. https://arxiv.org/abs/1505.05770 ~ €=best primary reference

can require significant computing resources. Normalizing flows can be 3.

used to speed up the simulation of particle collisions by learning the https://www.researchgate.net/publication/368556193_Normalizing_Flow
o : . e g Y _ a_

probability distribution of the particles produced in a collision and s_for LHC Theory

generating new samples from that distribution. This can reduce the —

R R . . - . Let’s suppose we have a dataset D of N samples, each of which is a high-
computational resources required to simulate particle collisions, which Bing has tried to make sense from | i S50 st i e i 2 0o
can be especially useful for rare events. the first few hits iy o matt o oot bt s ot s probabi

ity density of the transformed samples pa(f3(=)) matches the true probability
Normalizing flows can also be used for data analysis at the LHC. For ChatGPT more thorough but e ) comsteaced by compodiag  sequemcs of rvect
g . - . . mappings f;:
example, they can be used to learn the probability distribution of signal absence of source a clear s
events and background events in a particle physics experiment. This handicap i bl o ks st vt ot
can be useful for identifying signal events, which are events that are of ...however one should ask follow- o= A
particular interest to researchers, and distinguishing them from up questions ( A then B): mfmng e s of vl
background events, which are events that are produced by other How can normalizing flows be used to ' et a8
processes and can obscure the signal events. learn probability distribution exactly ? e mm
- . . jilsne acobian matrix of the transformation f; wit respeu to ;.

In summary, normalizing flows can be a useful tool for various tasks in () , J;Cmvf i e o ond
particle physics, including simulation and data analysis at the LHC. thanks, please provide as a full latex b e 3 gpatar®)

. d ocume nt This optimization can be pcrformc::sing gradient-based methods, such as

HEP ML Course 3, David Rousseau, Jan 2024, CHACAL stochastic gadient desont.
|



https://arxiv.org/abs/1908.09257
https://arxiv.org/abs/1505.05770

Article Full-text available
@ Vous | |

Jan 2024: chatGP'_[__n)uc_h better

Can Normalizing Flows be used at the LHC? Please provide references Normalizing Flows for LHC Theory

February 2023 . Journal of Physics Conference Series 2438(1):012004
DOI: 10.1088/1742-6596/2438/1/012004

ChatGPT License - CC BY 3.0

Yo,

w

. Fast Simulation: There is research on using generative m

Normalizing Flows can indeed be used in the context of the Large Hadl ]
Anja Butter

(LHC) for various tasks such as data analysis, simulation, anomalv dete

Here are some references that detail their application:

Normalizing Flows for High-Dimensional Detector Simulations

. Data Analysis and Event Reconstruction: Normalizing Fl

precision simulations and evaluating uncertainties in higl Florian Ernst!-2, Luigi Favarol, Claudius Krausel-3, Tilman Plehnl, and David Shih*

includes applications like event reconstruction [#1]. . . .. . . . ..
PP b Improving Variational Autoencoders for New Physics Detection at the LHC With Normalizing Flows
2022 | Jawahar, Pratik; Aarrestad, Thea; Chernyavskaya, Nadezda; Pierini, Maurizio; Wozniak, Kinga A; Ngadiuba, Jennifer; Duarte, Javier; Tsan, Steven

Normalizing Flows, for detector response modeling at thi
Published Web Location https://doi.org/10.3389/fdata.2022.80368¢%

and efficient simulations (?1].

Anomaly Detection: Studies discuss the improvement of

. o Generative Machine Learning for Detector Response Modeling
strategies at the LHC using variational autoencoders anc . . .
anomaly detection (1) (7). with a Conditional Normalizing Flow

dimensional detector simulations, which include tasks lik Allison Xu Shuo Han Xiangyang Ju

Raise reduction in complex datasets (17]. Haichen Wang
Uncertainty Quantification: application of Normalizi

quantification in high-energy physics simulations is also discussed in the literature (1)
au, Jan 2024, CHACAL



Smentlflc readmg
medlocre « What are the |mportant pomts of th|s
paper? »=»all points correct, but

Some do not come from the paper (but from general
knowledge)

« Important » is too vague
However specific questions can be correctly answered:
« why is technique A used » ?

=>in general 80/20 correct vs BS
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S entlflc wrltmg
Very good at suggestlng paper
structu re/ substructure what would be a good analogy for the Higgs boson f 1am 18 2

Useless for the actual writing (we're
ertl N g a bo ut CUttI N g ed g e SCIe nce ThehHi;;gls boson i: a parti;:le tt)hat helps give other particles mass, so here's an analogy that
. might help you understand it better:
not available elsewhere...)
Imagine a school hallway where students are moving around, but some of them are able to

N Ot ba d at Su m ma r| S| N g (80 / 20) move faster than others. The faster students are like particles that have less mass, while the

slower students are like particles with more mass. Now imagine that there's a teacher in the

GOOd at O utrea Ch : I a m | n h |g h hallway, and every time a student passes by the teacher, the student gets slowed down a bit.

SChOOI, please eXplaln the nggs This teacher is like the Higgs field, which particles interact with to acquire mass. The more a
boson to me

particle interacts with the Higgs field, the more massive it becomes.

And just like how some students might have more trouble getting past the teacher and thus
end up moving slower, some particles have more trouble interacting with the Higgs field and

thus end up being more massive.
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{x}

. wf—

O | get an error when | try:

sni ppets $ conda env create -f cpu_environment.yml python=3.9 -n exatrk-cpu
=» 80% correct Solving environment: failed
Can aISO eXplaln/debUg COde N CondaValueError: Malformed version string '~": invalid character(s).

unfamiliar language=>»
Good at using well known libraries

NOt as OOd for S eCiﬁC COde 3 M Iines to use to create your conda environment. The error message you are seeing suggests that
g P
of C+ +/Pyth0n in ATLAS) = would need there might be an issue with the version number specified in the environment file.

d ded|Cated « ﬁne tunlng » To resolve this issue, you could try removing the “python=3.9" argument from your

@ It looks like there might be an error in the " cpu_environment.yml " file that you are trying

command and see if that works. Here is an updated version of the command:
¢ HEPML_HandsOn_NN.ipynb e Partager €2 @

Fichier Modifier Affichage Insérer Exécution Outils Aide

(?
+ Code + Texte ¢ Copier sur Drive Connecter GPU ~ ©) Colab Al -f cpu_environment.yml -n exatrk-cpu

v o s 0 8.
v Hands on : introduction to NN on HEP dataset

[°) Copy code

| CHACAL



