Data/MC comparison & tuning The why & how of Rivet analysis preservation

Andy Buckley, University of Glasgow

CHACAL 2024 Johannesburg, 22 Jan 2024

Outline

- The Rivet toolkit and project
- Origins and generic analysis preservation
- Early developments
 - Soft QCD & MC tuning
 - > Refining fiducial definitions
- Retooling for precision at the LHC
- Rivet for heavy ions and EIC
- Beyond the Standard Model: searches and Contur
- The future of Rivet
- Joining the party

What is Rivet?

- The "LHC standard" MC analysis toolkit
- More broadly a project to preserve the logic of data analyses and encourage expt-pheno collaboration
- Code-wise, a C++ core and Python tools
 - Fiducial / generator-independence emphasis
 - Integration with HepData
 - Transparent HepMC weight-stream handling
 - > 1500+ analyses!
- Central to a community of analysis reinterpretation tools, linking experiment to theory. Collider, some cosmic-ray
- But why? Event loops are trivial...

Because of this:

We want to avoid physicists all needing to rediscover graph algorithms, conventions, pitfalls, physical/debug distinctions, ...

Future Physics at HERA Workshop, DESY Hamburg, Sept. 95 to Sept. 96

From HZTool to Rivet

- The idea of preserving experimental analyses for MC validation was born out of HZTOOL
 - ▶ HERA (H1 and ZEUS) DIS and photoproduction
 - Probing low-x, semi-perturbative physics:
 DIS with Q² ~ 4 GeV²; jet p_T ~ 5 GeV; diffraction
 - Many "state of the art" models only in MCs
 - Much confusion about comparing like-with-like between generators, experiments, and analyses
 - HZTool (Fortran) for cross-experiment comparisons of similar measurements modulo cut differences
- Direct line to Rivet, 10 years later: "HZ mark two"

Proceedings	of the Workshop
Old home page and workshop meetings	
Working Groups:	
Structure Functions	
Electroweak Physics	
 Beyond the Standard Model 	
Heavy Quark Production and Decay	
Jets and High ET Phenomena	
Diffractive Hard Scattering Delaying Protons and Electrons	
Light and Heavy Nuclei in HERA	
 HERA Upgrades and Impacts on Experiments 	
And any construction of the former to a	
Organizing Committee:	Secretary:
Albert De Boeck, DESY	MS. H. Haenel
PS Robert Klanner DESY	Notkestrasse 85
	D-22603 Hamburg
	Phone: +49-40-8998-3105
	Fax: +49-40-8998-3093
R A Email: heray	s96@mail.desy.de
111	0
B Advisor	V Committee:
H Schröder, I var	den Brand A Wagner

Figure 1: The transverse momenta dN/dp_T (a) and the 'scagull' plot $(P_T^2) \times x_F$ (b) of single particles in the positive hemisphere of the hadronic center of mass. The transverse energy flow $dE_T/d\eta$ in a low (c) and high (d) x and Q^2 bin. The transverse energy-energy correlations for $x > 10^{-8}$ (c) and $x < 10^{-2}$ (f).

Lessons learned

- A simple/obvious idea, with surprising impact:
 - Reproducing a key plot (or not) is *powerful*
 - ⇒ understand physics, communicate issues, improve MCs
 - A common language for phenomenology and experiment

But...

- > "Obvious" to use partons, bosons, etc. direct from the event graph
- Frequently unphysical, depend on approximations. May not even exist!
- Scalability of many analyses to new MCs means avoiding gen-dependence
 predict "real" observables, from well-defined final states
- Standardisation: boring but important
 - (physical) event format conventions, statuses, PDG particle numbering, weights...
- Scalability
 - Lots of expensive operations are repeated: sharing calculations is essential

SILHOUETTE OF

HYPERFINE TRANSITION OF

NEUTRAL HYDROGEN

Physically safe analysis methods

Avoiding unstandardised event-graph features was pragmatic, but led to some physical insights:

- Refining the "fiducial" idea, defining unfolding targets
- Hadronisation as a "decoherence barrier" use the natural dividing line between the quantum-interfering hard process & semi-classical decays: ~ no tempting partons!
- Stringing truth tagging closer to reco first releases used *b*-ancestry of jet constituents to set HF labels: too inclusive! ⇒ associate the hard-fragmenting, weakly-decaying B
- Promptness/directness tests
 don't identify a particle "from the hard process"; do it backward.
 Label as *indirect* via recursive checks for hadron parentage
- Dressed leptons

we now primarily dress truth leptons with their photon halo

Multiweights and re-entry

- MC weight vectors allow expression of increasingly complex theory uncertainties. But a burden for analysis chains: have to propagate and correctly combine O(200) weight streams!
- Rivet 3: complex automatic handling of weights
 ~invisible to users: data objects *look* like histograms
 etc. but are secretly multiplexed
- Can now re-call finalisation to combine runs: RAW histogram stage preserves pre-finalize objects ⇒ "re-entrant" perfect data-object merging Key for e.g. pA/pp or W/Z ratios, + BSM recasting
- Data types are important: glimpses of a fully coherent separation of semantics from presentation

Rivet multiweights in action

ATLAS MC studies have been a significant driver of this feature (thanks to Chris Gutschow)

Weight-naming standardisation underway via MCnet

Event generator tuning

Event generators all have dirty secrets. Usually non-perturbative ones... O(30+) parameters

- $\boldsymbol{\mathbf{x}}$ First systematic hadron collider "tunes" of PYTHIA6 by Rick Field for CDF ~ 2001
 - Tune A, Tune D, Tune DW, etc. etc.
- ** Limited datasets, variation by hand
 - Rivet and its analyses were a \succ game-changer
 - \succ You only know a model is incapable when you've scanned its whole param space... and then the argument is over
- The "Professor" tunes, 2008...

MC/data

The Professor method

Tuning was historically brute force & inspiration

Professor method is an assistant, to aid convergence:

- 1. Sample (user-)param vectors \boldsymbol{p}_{n} (from a hypercube/sphere)
- 2. Generate MC run-sets for beams, processes, etc. at each pt
- 3. Run *in parallel* on big batch/grid facilities, output histos
- Build surrogate models bin_b(p) from {p}, e.g. conventionally a 3rd/4th-order polynomial in p. [Can also interpolate MC errs...]
- 5. Use the surrogate models to make a surrogate $GoF \Rightarrow optimize!$

Expertise and inspiration still very useful!

What about machine learning? Sure, fine: easy adaptation. But if polynomials work — maybe via a change of variables — they are simple and robust

Professor highlights

Professor highlights

More tuning history

Pre-LHC, the soft QCD uncertainties were huge

- Factor x 2 uncertainty on 7 TeV $\sigma_{tot}!$
- Feed in to underlying event, pile-up, etc.
 - ➤ Tuning an essential task: better tunes ⇒ better analysis designs, better limits, …
 - Impact: LEP and Tevatron analyses published for ~10 years suddenly got used! And cited...
 - > ATLAS AMBT, AUET, AZ, A14 etc. tunes + CMS
 - Rapid responses to preliminary data, changes of model (e.g. Py8 for ATLAS pile-up)
 - Model development: matching & merging, addition of energy evolution & colour-reconnection to Herwig, ...

Tactics for tuning

Factorise parameter space

- Historically split hadron flavours and spectra, jet structure, event topologies, underlying event. Max O(10)
- Approximate but practical. Can also automate some estimate of factorisation groupings through mutual sensitivities

Weighting, observable balance, and uncertainties

- Tuning naturally involves some data types more than others: balance?
- Also, models not capable for fully describing all data bins: check envelopes, sensitivities, limit ranges... and weight bins
- Custom goodness-of-fit function? Regularise, lose statistical interpretation?
- "chi2" already does not behave classically: *eigentunes*, room for improvement

Future work

Heavy flavour, matching/merging, including systematics via weights...

Heavy ions in Rivet

- "Adding heavy-ion support" sounds trivial!
- Actually a stern test, with far-reaching impacts.
 - HI observables often require centrality calibration curves: we need a 2-pass run. That wasn't planned
 - And event/event correlations... centrality-binned!
 - Need swappable definitions: few HI generators are general-purpose enough to do e.g. both forward E_{τ} and jet quenching
- Paper: <u>https://arxiv.org/abs/2001.10737</u>
- HI MC standards are also in flux: having a common tool enables discussion on common standards

BSM searches: preserving detector+reco

- **Detector smearing built on Rivet's projection system** for reco-level analyses
 - developed based on Gambit ColliderBit experience: no need for "full fast-sim"

Summary

- Rivet arose from HERA experiment/MC author collaboration. Other packages with different emphases
- Lightweight analysis preservation has spurred many other experiment/pheno activities, e.g.
 - MC development
 - > Tuning
 - ➢ PDF studies, EFT studies, global BSM fits...
 - Heavy-ion methods
 - And teaching / UG projects
- "Rough" tuning was important in the early LHC era
 - Arguments to restart in targetted configurations
 - Understand data / model gaps
 - > Fairly reduce and estimate model systematics
- Preservation is an accelerator for analysis impact: experiment-theory studies, fun collaborations!

Bonus: Professor tuning tutorial

from HSF tuning workshop 2023

Sampling and generating

- Working environment: Docker
 - \$ docker pull hepstore/prof2-tutorial
 - Run the container interactively, with cleanup and a mapped-in dir:
 \$ docker run -it --rm -v \$PWD:/host hepstore/prof2-tutorial
 - > Optional! \Rightarrow # apt-get update && apt-get install vim (or emacs-nox)
 - > Note: for now these Dockers are amd64 architecture: slow on M1 Macs, will be improved asap

Producing the inputs factorises from the tuning

- Image built on Rivet+Pythia 8.3. Docs: <u>https://pythia.org/latest-manual/Welcome.html</u>
- > Can't assume a particular generator, batch-farm interface, etc. ⇒ sample with script+cfg templating
- > Look in the tmpl/ directory: template files for MB Py8+Rivet jobs
- \rightarrow # nano tmpl/mbrun.sh \Rightarrow reduce number of events if you want a quick local run
- # prof2-sample -t tmpl/mbrun.sh -t tmpl/py8mb.cmnd -n 20 tmpl/paramranges.dat
- > # ls scan/*
- \succ Check the contents, values, etc. is it clear what's going on?
- > And run, e.g.: # for i in 000*/mbrun.sh; do nice -5 bash \$i & done
- It's quite plausible to generate small samples like this on a laptop! But multiple processes, multiple energies, different cuts, and in particular *far* more expensive matrix elements -> cluster/Grid/HPC

purple = command shell

Inspecting, interpolating, tuning

Once the run is finished, you can inspect the outputs written into each run dir

- A good idea to clean out unnecessary data:
 # for i in 001*; do (cd \$i; yoda2yoda -M "/RAW.*" mb.yoda tmp.yoda; mv tmp.yoda mb.yoda); done
- > # cd /work && prof2-envelopes -d /usr/local/share/Rivet/ scan/ or use the pre-prepared mc/ dir now
- Copy output back to the host to view: # cp -r envelopes /host/
- Similar with Rivet plotting: # rivet-mkhtml-mpl scan/001*/mb.yoda -o /host/rivet-plots

Might as well immediately build a surrogate interpolation ("ipol")

- ➤ # prof2-ipol -h
- > # prof2-ipol mc/ Unfortunately, prof2-residuals is currently broken...
- > Use the ipol-listing tool to generate a starter weights file:
- # prof2-ls -w ipol.dat > weights0.dat
- # cp weights{0,1}.dat && nano weights1.dat
- > Edit to cut out bad bins, tweak the fit toward things you care about... this is the creative bit!

And... tune!

- # prof2-tune -d \$(rivet-config --datadir) -w weights1.dat
- Plot the output: # rivet-mkhtml-mpl tunes/ipolhistos.yoda -o /host/rivet-plots-tune1
- > And iterate! Unfortunately the eigentunes script needs a fix, so no demo: dev help is welcome!!

Thanks for coming!

Backup slides

MC generation

- MC generation is where theory meets experiment
 - The fundamental pp, pA, AA collision, sans detector
- **Components of an "exclusive" event-generator chain:**
 - QFT matrix element sampling at fixed-order in QCD
 - Dressed with approximate collinear splitting functions, iterated in factorised Markov-chain "parton showers"
 - FS parton evolution terminated at Q ~ 1 GeV: phenomenological hadronisation modelling
 - Mixed with multiple partonic interaction modelling
 - Finally particle decays, and other niceties

Modern HEP is hostage to shower MCs!

- The main mechanism for translating theory to experimental signatures, from QCD to BSM
- Generally very complex modelling and output

Designing Rivet

- Ease of use
 - Big emphasis on "more physics, less noise"!
 - Minimal boilerplate analysis code, HepData sync
 - Event loop and histogramming basically familiar
 - Tools to avoid having to touch the raw event graph

Embeddable

- > OO C++ library, Python wrapper, sane user scripts
- Generator independence: communication via HepMC
 - Note HepMC3 HI-support efforts
- Analysis routines factorised: loaded as "plugins"
- Efficient
 - Avoid recomputations via "projection" caching system
- Physical
 - Measurements primarily from final-state particles only

The result

- As of Rivet v3.1.0 <u>arXiv:1912.05451</u>
- Streamlined set of tools from analysis coding to event processing to plotting (and other applications)
- And a key gateway to connect your analysis to theory (and back again)
- Let's review some of the early impacts...

Rivet and BSM-search recasting

- Rivet's main emphasis isn't BSM direct searches, but there's no reason not to
 - Iots of experiment experience and support
 - efficient scaling-up to hundreds of analyses, with distinct phase-space specific detector/efficiency functions
 - can we do for BSM preservation what we did for measurement analyses?
- Friendly competition, mainly from/with MA5
 - all good tools, all geared to getting your analysis into pheno studies asap
 - but ours is best, obv...;-)

Les Houches 2019 CMS soft-lepton recasting-tools comparison

The future of Rivet

- **Vision:** Rivet as a standard for "truth-level" observables, across collider physics
- Not just standalone, but as a library in pheno & experiment frameworks, too: standard MC definitions (cf. CMS), seamless systematics handling, etc.
- At its core: a physics-oriented system for physicists to compare MC predictions to one another and to data, on many simultaneous observables, in myriad ways We don't know all the use-cases yet!
- Challenges:
 - Extension of HepData and other community infrastructure for ever more precise data.
 Even our compressed data format is struggling with the volume of analyses and data.
 Work needed on multiweight-oriented data format and tools
 - Improved, modernised visualisation and exploration
 - Connections to global (BSM) fitting tools
 - Preserving MVAs: BDT and NN in vanilla C++