

Benjamin Fuks

(LPTHE - Sorbonne Université)

Chacal 2024 – 22 January 2024

Reinterpretation of LHC searches for new physics

Reinterpretation of LHC searches for new physics

Benjamin Fuks - 22.01.2024 - 1

From Lagrangians to events... and back!

Monte Carlo simulations standard today

- 20 25 years of developments → LO simulations = bread and butter
- Simulations at NLO (at least QCD) easily achieved

Let's reverse the chain...

LHC recasting - some context

First steps in the SUSY context, from SUGRA to the 19-dim pMSSM

- 'Interpreting LHC SUSY searches in the phenomenological MSSM'
- 'Supersymmetry without prejudice'

[Conley, Gainer, Hewett, Le, Rizzo (EPJC`10)] [Sekmen et al. (JHEP`I2)]

Exploit the full potential of the LHC (for new physics)

- Designing new analyses → probing new ideas
- Recasting LHC analyses \rightarrow studying new models

Reinterpretation of LHC searches for new physics

Data preservation in high-energy physics mandatory Going beyond raw data → analyses

Related tools need to be supported by the entire community • Both theorists and experimentalists

```
[Les Houches Recommendations (EPJC'12)]
```

```
[ReInterpretation Forum (SciPost`20)]
```


New physics results at the LHC

LHC = discovery machine

- Many ATLAS and CMS searches for new physics
- Interpretation within popular frameworks and simplified models → for instance, supersymmetry-inspired

Reinterpretation of LHC searches for new physics

Need for interpretations in all kinds of models

The Simplified Model Spectra (SMS) approach

Reinterpretation of LHC searches for new physics

Simplified Model Spectra (SMS)

The SMS-based reinterpretation framework

- Decomposition of all signatures of a theory into SMS signatures
- Fiducial cross sections on the basis of public efficiency maps
- Comparisons to published upper bounds

Reinterpretation of LHC searches for new physics

Main features • Often conservative ***** Different kinematics *****Asymmetric decays • Rather fast • Usually fair estimates \rightarrow Possibly too conservative (complex models) Experiment Analyses Existing tools • A generic program: SmodelS $\star O(100)$ available analyses * Prompt and LLP decays [Kraml et al. (EPJC'14)] * Available from <u>GITHUB</u> [Alguero et al. (JHEP'22)] Dark photons: DARKCAST * Available from GITLAB [llten et al. (JHEP'18)]

SMS reinterpretation tools - examples

SUSY vs extra dimensions

- SUSY searches to constrain KK excitations
 - → Blue: SMS approach
 - \rightarrow Red: full recast
- Efficiencies depend on particle spins
 - \rightarrow SMS approach fair enough
 - \rightarrow however: too aggressive as well

DGMSSM at the LHC

- Exploring SUSY with Dirac gauginos

Benjamin Fuks - 22.01.2024 - 7

The fastsim-based approach

Beyond the SMS approach

SMS often not sufficient to study all interesting new physics realisations

- More accurate detector simulations → mimicking ATLAS / CMS
- New frameworks for LHC re-interpretations
- → Easy implementations of searches
- → Test of signals fully automated

Detector = key difference

- Close to a real detector (slower)
- \rightarrow from particles to tracks/hits
- \rightarrow resolutions, efficiencies, etc.
- → à la Delphes 3 [de Favereau et al. (JHEP`14)]
- Based on transfer functions (faster)
- \rightarrow From MC particles
- \rightarrow Resolutions, efficiencies, ...
- → à la RIVET, MADANALYSIS 5 SFS

[Araz, BF & Polykratis (EPJC`21)]

[Araz, BF, Goodsell & Utsch (EPJC²²)]

[Bierlich et al. (SciPost`20)]

Unfolding

 \rightarrow No need for a detector

See Jon's lecture

Public programs based on DELPHES 3

Detector based on (customised) DELPHES 3

- CHECKMATE $[O(50) \text{ analyses, from } \underline{\text{GITHUB}}]$
- MADANALYSIS 5 [O(50) analyses, from <u>GITHUB</u> and the MA5 <u>DATAVERSE</u>]

[Derks et al. (CPC`I7)]	[Dumont, BF, Kraml et al. (EPJC`I5); Conte					
	[Araz, Conte & BF (in prep)]					

Constraining t-channel dark matter with jets + MET (in MADANALYSIS 5)

- SM \oplus coloured fermion (Y) \oplus scalar DM (X) \oplus coupling to u_R
- Signal modelling crucial: XX,YY and XY production @ NLO

Reinterpretation of LHC searches for new physics

& BF (IJMPA`19)]

Constraining stops, higgsinos and gravitinos (in CHECKMATE 2) • Simplified model based on GMSB SUSY models • Overlaying searches targeting stops (ATLAS) and GMSB ewkinos (CMS)

Public programs based on transfer functions

Detector based on transfer functions

- COLLIDERBIT [O(40) analyses, from HEPFORGE]
- MADANALYSIS 5 SFS [O(10) analyses, from GITHUB and the MA5-DATAVERSE]
- RIVET [O(30) analyses, from <u>HEPFORGE</u>] ullet

Ewkinos with recursive Jigsaw (in COLLIDERBIT)

• Validation = closure test

Reinterpretation of LHC searches for new physics

- [Balász et al. (EPJC`I7)]
- [Araz, BF & Polykratis (EPJC`21)]
- [Araz, BF, Goodsell & Utsch (EPJC`22)]
- [Buckley et al. (2010); Bierlich et al. (SciPost`20)]

Long-lived stops decaying to *bl* systems (in MADANALYSIS 5)

• SR combination useful

The challenges

Implementing a new recast

Picking up an experimental publication

- Reading
- Understanding

Writing the analysis code in the tool internal language

Accurate information for proper validation

- Efficiencies (trigger, e^{\pm} , μ^{\pm} , b-tagging, JES, etc.)
- \rightarrow including p_T/ η dependence
- Detailed cutflows for well-defined benchmarks
 - \rightarrow Region per region information
 - → Exact definition of benchmarks (spectra)
 - \rightarrow Event generation information (cards, tunes)
- Digitised histograms (e.g. on HEPDATA)

A 2012 TH-wishlist for high-quality recasts (1/2)

- Clear description of cuts and their sequence
- Efficiencies (e^{\pm} , μ^{\pm} , jets, τ_h , b-tagging, etc.)
 - \rightarrow Including p_T/η dependence
- Efficiencies for triggers, event cleaning, etc. \rightarrow Effects not manageable in fast simulations
- Special variable definitions (razor, aM_{T2} , etc.) \rightarrow Snippets of code

A 2012 TH-wishlist for high-quality recasts (2/2)

- Benchmark scenarios
- → Spectra / decay tables (SLHA-form)
- → Several scenarios
- Monte Carlo configuration
 - \rightarrow Cards, tunes, matching information, etc.
- **Detailed cutflows** (with correct cut ordering) → Including (pre)selection steps (more is better)
- Kinematical distributions at different cuts \rightarrow Extra cross-checks

[Les Houches Recommendations (EPJC'12)]

Relatively easy

Essential Often difficult!

Much better material

- Publications much clearer
- HEPDATA widely used
- Improved communication between the EXP/TH communities
- Sometimes works amazingly well: e.g. ATLAS multijet+MET
- Still improvable: e.g. ATLAS dE/dx [HSCP with large ionisation]
- A 2020 TH-wishlist for high-quality recasts
 - **Background estimates**: usually provided (not systematic)
 - Efficiencies
 - → Should be provided as tables / functional forms
 - \rightarrow Should be broken down in sub-efficiencies (trigger, etc.)
 - Efficiency maps: necessary for SMS-based recasting
 - Monte Carlo: still very minimal
 - → SLHA files, MG5_aMC cards, PYTHIA cards, etc.
 - \rightarrow Crucial for the validation (cf. MC bias)
 - Cut-flows for given benchmarks
 - → not systematic (sequence, details, all SRs)

[The Reinterpretation Forum (SciPost`20)]

O years later...

	ATLAS			MadAnalysis 5-SFS				
	Events	$\varepsilon~[\%]$	ε_{cut} [%]	Events	$\varepsilon~[\%]$	$\delta~[\%]$	ε_{cut} [%]	R_{gap} [%]
Initial (truth $E_T^{miss} > 150 \text{ GeV}$)	39598	-	100	89529	-	0.17	100	-
Lepton veto	37547	94.82	94.82	85417	95.41	0.17	95.41	0.62
$N_{jets} \le 4$	35412	89.43	94.31	76195	85.11	0.18	89.20	4.38
$\min[\Delta \phi(jets, E_T^{miss})]$ cut	33319	84.14	94.10	69253	77.35	0.18	91.00	8.07
Leading jet $>150~{\rm GeV}$ and $ \eta <2.4$	23134	58.42	69.43	47157	52.67	0.20	68.10	9.84
$E_T^{miss} > 200 \text{ GeV}$	18801	47.48	81.30	39183	43.77	0.20	83.10	7.81
EM0	4488	11.34	-	8509	9.50	0.22	-	16.23
EM1	3789	9.57	-	7946	8.88	-	-	7.21
EM2	2857	7.21	-	6226	6.95	-	-	3.61
EM3	2111	5.33	-	4621	5.16	-	-	3.19

Benjamin Fuks - 22.01.2024 - 14

Does it really work?

Example: LH 2019

- CMS-SUS-16-048
- Supersymmetry with soft leptons → sleptons / ewkinos

- Reasonable agreement with CMS
 - \rightarrow Not achieved in 10 min
 - \rightarrow Validation is crucial
 - → Having different frameworks help

Validation important, rarely easy, not always possible

Novelties

Limit setting: "Best signal region"

- Exclusion from the best region of an analysis
- Often off compared with CMS/ATLAS \rightarrow Correlations rarely negligible

Better limit settings procedures

- Signal region combination (within an analysis):
 - \rightarrow CMS correlation matrices (likelihoods in Gaussian approximation)

$$\mathscr{L}_{S}(\mu,\theta) = \prod_{i=1}^{N} \frac{(\mu s_{i} + b_{i} + \theta_{i})^{n_{i}} e^{-(\mu s_{i} + b_{i} + \theta_{i})}}{n_{i}!} \exp\left(-\frac{1}{2}\theta^{T} \mathbf{V}^{-1}\theta\right)$$

[CMS-NOTE-2017-001; Buckley et al. (JHEP`19)]

→ ATLAS (full) PYHF likelihoods (to be further simplified for speed reasons)

[ATLAS-PHYS-PUB-2019-029]

- More realistic reinterpretations
- Support by SMODELS, MADANALYSIS5, COLLIDERBIT

$$\begin{array}{c} m_{\tilde{\chi}} \\ m_{\tilde$$

[GeV]

Covariances and correlations

ATLAS and CMS searches for ewkinos/sleptons

Kraml, Waltenberg PC²I

Analysis combination - the TACO approach

The TACO approach - testing analysis correlations

- One step further: combination of analyses
 - \rightarrow Overlap matrix = approximate correlation matrix

- \rightarrow Path finding (set of non-overlapping regions) [weighted hereditary depth-first search algorithm]
- Out of 100s of signal regions, a few usually sufficient
 - → Going beyond just combining ATLAS with CMS
 - \rightarrow Sensitivity largely driven by a specific SR

[Araz, Buckley, BF et al. (SciPost²³)]

Summary

Summary

Public material

The LHC legacy

- Reinterpretation of the LHC results crucial
 - → Several complementary approaches
 - \rightarrow Active field of research
- Exciting on-going developments: combining & correlating

Final last words

- **Reproducibility** = ability to reproduce an experiment (possibly by an independent theoretical study)
- Need for the TH and EXP communities to move together!

