

Contur in Action

Chacal, Wits, South Africa 22/1/2023 Jon Butterworth, UCL Physics & Astronomy

Introducing Rivet

Robust Independent Validation of Experiment and Theory arXiv:1003.0694, arXiv:1912.05451

- Direct legacy from HERA (1990s, HZTOOL)
- Developed by MCnet for tuning and validation of new MC event generators
 - e.g. What does the underlying event look like in 7 TeV pp collisions?
- Library of measurements of final state particles produced in collisions, and variables derived from them

Buckley et al, Bierlich et al

From ATL-PHYS-PUB-2011-008

Introducing Contur Constraints On New Theories Using Rivet arXiv:1605.05296, arXiv:2102.04377 Extend the power of Rivet beyond the Dijet cross section ($y^* < 0.5$), R=0.4 Standard Model Signal-injection of final-state particles from Beyond-the-SM physics events on to Data elated all] 0.996 elated all] 0.964 zd+BSM)/Dati the measured cross sections in Rivet $m_{12}[GeV]$ $m_{12}[GeV]$ (b) (a)(c)

From Altakach, JMB, Ježo, Klasen, Schienbein arXiv:2111.15406

Increasingly precise measurements and calculations together extend the reach

JMB, Grellscheid, Krämer, Sarrazin, Yallup; Buckley et al

Recent Developments

- LOW ENERS
- New interface between Rivet+Contur and Madgraph
 - Could already drive a MG scan using Contur machinery (as with Herwig)
 - Can now access Rivet+Contur from within the MG UI and use MG scanning machinery
- Wider selection of SM predictions, move to using these only
 - no more assumption that the data = SM.
- Use of correlation matrices, more Rivet analyses, other minor improvements (Contur 2.4)
- (See Yoran's talk this afternoon for more.)

Unleashing the power of high luminosity LHC data (example case studies)

- A heavy scalar triplet and the W mass
- Composite Dark Matter
- Vector-like Quarks
- The future?

A Heavy Scalar Triplet and the

- Motivation
 - The W mass: CDF and custodial symmetry

W mass

- The Type II Seesaw model
- Bringing them together
- Method
 - Rivet, Contur and, the LHC measurement library and SM predictions
- Results and conclusions

JMB, Julian Heeck, Sihyun Jeon, Olivier Mattelaer, **Richard Ruiz** Phys.Rev.D 107 (2023) 7, 075020 2210.13496 [hep-ph]

Custodial Symmetry

- Residual SU(2) symmetry after spontaneous symmetry breaking
 - Invariance under rotations among (W^1, W^2, W^3) i.e. $M(W^{+/-}) = M(W^3)$
 - After mixing with U(1): $\rho_0 \equiv M_W^2 / M_Z^2 \cos^2 \theta_W = 1$
 - Obviously must be broken (but only slightly!) if CDF are even approximately right
 - Many BSM models build in $\rho_0 = 1$
 - But not all...

Type II Seesaw Model

$$\hat{\Delta} = \begin{pmatrix} \frac{1}{\sqrt{2}} \hat{\Delta}^{+} & \hat{\Delta}^{++} \\ \hat{\Delta}^{0} & -\frac{1}{\sqrt{2}} \hat{\Delta}^{+} \end{pmatrix} \qquad \langle \hat{\Delta} \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ v_{\Delta} & 0 \end{pmatrix}$$

- Introduces Majorana mass terms for neutrinos
- Direct connection between neutrino oscillation parameters and Yukawa couplings implies correlations between collider signatures (D decays to leptons) and neutrino sector
- Breaks custodial symmetry at tree level... 🙂
- ... but reduces ρ_0 , and thus M_W

Two problems solved?

- Low vev (≤ 1 GeV) means the tree-level effect is small
- One-loop contributions can be large and opposite in sign
- Low Yukawa couplings/vev evades many searches
 - Y << 1, MeV < v_{Δ} < GeV
- A CDF-like shift in M_W implies *upper* bounds on mass states

J Heeck, Phys.Rev.D 106 (2022) 1, 015004 2204.10274

 1σ and 2σ regions preferred by m_W

Analysis

- Feynrules¹ → UFO → Madgraph → Pythia → Rivet
 → Contur (over 130 LHC measurement papers)
 - vev = 1 GeV
 - High enough that Δ decays are prompt. At very low values (~0.1 MeV for $M_{\Delta^{++}}$ = 200 GeV) may not be true
 - Little effect on collider phenomenology otherwise

¹ Pich, Santamaria, Bernabeu, Phys. Lett. B 148 (1984) 229–233.

The $(M\Delta^{\pm\pm},\Delta M)$ parameter space overlaid with the 95% (solid) and 68% (long-dash) exclusion limits as obtained from MGaMC + Contur.

Values to the left of the lines are excluded.

Also shown is the 95% expected exclusion (dotted).

The colour-shading scheme indicates which SM measurement provides the dominant exclusion.

The black asterisk indicates the best fit value from *Heeck* (2022)

All possible final states were scanned

Example of Impact

Upper panel: Representative differential cross section as a function of the highest-mass dilepton pair in 4-lepton measurements used in this study showing:

- ATLAS data (crosses) JHEP 07 (2021) 005
- Predicted SM yields (green) Sherpa, SciPost Phys. 7 (3) (2019) 034
- Predicted SM+BSM yields for $(M\Delta \pm \pm, M\Delta \pm) = (180 \text{ GeV}, 255 \text{ GeV})$ (blue).

Lower panel: bin-by-bin significance of expected theory yields relative to data with combined data and theory uncertainties (band).

Conclusion

- Previously "unconstrained" best fit point is actually already excluded by LHC measurements, for promptly-decaying Δ^{++}
- Still a worth looking for in LLP searches, but not otherwise

Composite Dark Matter Models

- What if Dark Matter is a composite particle arising from e.g. an SU(4) symmetry which confines at some scale Λ_{dark} ?
- Lead to bound states "dark" mesons and baryons.
 - Kribs et al. arXiv:1809.10183
- Dark fermions transform under electroweak part of the Standard Model: communication with SM
- There are **no direct searches** for this model by ATLAS or CMS:
 - instead to constrain this model using the bank of existing LHC measurements using Contur
- Dynamics of the theory depend a lot on $\eta = m(\pi_D)/m(\rho_D)$

JMB, Corpe, Kong, Kulkarni, Thomas. arXiv:2105.08494

Composite Dark Matter Models

600

Left-handed model ρ^0 D, ρ^+ D, ρ^- D

Composite Dark Matter Models

Large areas excluded:

- When pion mass is close to Higgs mass, H→gg analysis contributes
- Boosted hadron "top" measurements contribute when pion mass ~200 GeV: Pions decay to tb and are boost from heavy r.
- Other sensitivity from Zpole dileptons, and lepton+missing energy (Z, top, W production in decay chains)

0.5

 \blacksquare ATLAS $\mu\mu$ +jet

JMB, Corpe, Kong, Kulkarni, Thomas. arXiv:2105.08494

- Very common extension to SM, general model by Buchkremer et al (arXiv:1305.4172). Introduces up to four quark partners, B, T, X, Y.
 - Usual strong couplings to SM
 - Evade bounds from Higgs because they are vectors
 - B, T interact with with W, Z, H with modfied weak couplings
 - X, Y interact with W (only) similarly
- Three sets of parameters (in additon to masses)
 - $-\kappa$: **absolute coupling** of VLQs to SM quarks
 - $-\zeta_i$: relative coupling of VLQs to ith generation
 - $-\xi_v$: relative **coupling of B,T to V in {W, H, Z}**

Buckley, JMB, Corpe, Huang, Sun arXiv:2006.07172

- Compare to (quite limited) direct searches: ATLAS limits from arXiv:1808.02343
- Assumes 3rd generation coupling only, and X, Y are decoupled.
- Only include pair production

Figure 5: Sensitivity of LHC measurements to (a) *B*-production for $M_B = 1200 \text{ GeV}$ and (b) *T*-production for $M_T = 1350 \text{ GeV}$. The CONTUR exclusion is shown in the bins in which it is evaluated, graduated from yellow through green to black on a linear scale, with the 95% CL (solid white) and 68% CL (dashed white) exclusion contours superimposed. The mauve region is excluded at 95% CL by the ATLAS combination [16].

Buckley, JMB, Corpe, Huang, Sun arXiv:2006.07172

- Coupling to 1st generation.
- Region above line excluded by non-collider constraints
- No LHC search analyses exist
- Measurements exclude most of the plane.
- Single VLQ production very important at highest masses

Buckley, JMB, Corpe, Huang, Sun arXiv:2006.07172

0.1500.1250.1250.1000.100€ 0.075 ¥ 0.075 0.0500.0500.0250.0255001000 15002000 25005001000 M_O (GeV) (a)

LOW ESERT

0.4

- Coupling to 2nd generation.
- Region above line excluded by non-collider constraints
- No LHC search analyses exist
- Measurements exclude significant part of the plane.
- Single VLQ production again very important at highest masses

0.3 0.3 0.2 0.1 0.1 0.0 0.1

ATLAS 4ℓ

ATLAS jets

1000

CMS jets

1500

 M_Q (GeV)

2000

2500

Buckley, JMB, Corpe, Huang, Sun arXiv:2006.07172

1500

 M_O (GeV)

2000

0.8

0.6

0.4

0.2

1000

ATLAS jets

- Coupling to 3rd generation.
- No exclusion from non-collider, but there are several LHC searches
- Measurements also exclude significant part of the plane.
- Single VLQ production still significant at highest masses

ATLAS tt hadronic

CMS jets

Vector-like Quarks

- Addendum: During journal review for this paper, it was pointed put that we'd missed some of the most compelling scenarios, and should instead consider:
 - B, T singlets
 - BT, XT, TY doublets
 - BYX, BTY triplets
- ... for each generational coupling scenario and for four different decay branching benchmarks to W, Z, H.
- i.e. 7 x 3 x 4 two dimensional parameter scans
- Hmm. A challenge for Contur?

Buckley, JMB, Corpe, Huang, Sun arXiv:2006.07172

Vector-like Quarks 1st Generation 2nd Generation 3rd Generation 1500 200 M_Q (GeV) 1000 1500 2000 M_Q (GeV) 1500 2000 M_Q (GeV) (a) BTX 0:0:1 (b) BTX 0:1:0 (c) BTX 1:0:0 (d) BTX $\frac{1}{2}:\frac{1}{4}:\frac{1}{4}$ (b) BTX 0:1:0 (c) BTX 1:0:0 (a) BTX 0:0:1 (b) BTX 0:1:0 (d) $BTX \frac{1}{2}:\frac{1}{4}:$ (a) BTX 0:0:1 (c) BTX 1:0:0 (d) BTX $\frac{1}{2}:\frac{1}{4}:\frac{1}{4}$ 1000 1500 2000 M_Q (GeV) 1000 1500 200 M_Q (GeV) 1500 M_Q (GeV) (e) BTY 0:0:1 (f) BTY 0:1:0 (g) BTY 1:0:0 (h) $BTY \frac{1}{2}:\frac{1}{4}:\frac{1}{4}$ (e) BTY 0:0:1 (f) BTY 0:1:0 (g) BTY 1:0:0 (h) $BTY \frac{1}{2}:\frac{1}{4}:\frac{1}{4}$ (e) BTY 0:0:1 (f) BTY 0:1:0 (g) BTY 1:0:0 (h) $BTY \frac{1}{2}:\frac{1}{4}:\frac{1}{4}$ (j) BTXY 0:1:0 (k) BTXY 1:0:0 (i) BTXY 0:0:1 (1) BTXY $\frac{1}{2}:\frac{1}{4}:\frac{1}{4}$ (i) BTXY 0:0:1 (j) BTXY 0:1:0 (k) BTXY 1:0:0 (1) BTXY $\frac{1}{2}:\frac{1}{4}:\frac{1}{4}$ (j) BTXY 0:1:0 (k) BTXY 1:0:0 (l) $BTXY \frac{1}{2}:\frac{1}{4}:\frac{1}{4}$ (i) BTXY 0:0:1 \blacksquare ATLAS WW \blacksquare ATLAS $\mu + E_T^{miss} + jet$ \blacksquare ATLAS $e + E_T^{miss} + jet$ ATLAS WW \blacksquare ATLAS $\mu + E_T^{miss}$ +jet \blacksquare ATLAS $e + E_T^{miss}$ +jet ATLAS WW \blacksquare ATLAS $\mu + E_T^{\text{miss}} + \text{jet}$ \blacksquare ATLAS $e + E_T^{\text{miss}} + \text{jet}$ \blacksquare ATLAS *ee*+jet \blacksquare ATLAS $\mu\mu$ +jet ■ ATLAS ℓℓ+jet \blacksquare ATLAS ee+jet \blacksquare ATLAS $\mu\mu+jet$ ATLAS *ll*+jet ATLAS ee+jet \blacksquare ATLAS $\mu\mu$ +jet ATLAS $\ell\ell$ +jet I ATLAS jets I CMS jets ATLAS jets CMS jets \square ATLAS $\gamma\gamma \& \gamma + X$ ATLAS 4ℓ ATLAS jets CMS jets Buckley, JMB, Corpe, Huang, Sun arXiv:2006.07172

Summary

Contur (and the software stack it sits on) provides a very efficient way of extracting *additional* BSM information from "SM" measurements (if they are made properly – see previous lectures!)_

Low Exact Low Ex

Once you have the BSM HepMC file...

- mkdir /Work
- cd /Work
- rivet -a \$CONTUR_RA13TeV /Events/chacal2024_events_vnoweights.hepmc.gz
- contur Rivet.yoda
- contur-rivetplots --cls 0.3 --nomultip

Then copy the ANALYSIS directory to somewhere visible outside of docker, and view ANALYSIS/plots/index.html in your browser.