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Reminder about Machine Learning

Huge variety of choice in goals, formulations, training
procedures, ...

e Mathematical structure of model: (deep) neural networks,
convolutional networks, transformer models, (boosted)
decision trees, and many others

e |nput data: supervised (learn from simulation with
truth-labels) and unsupervised learning (learn from data
without truth labels)

e | earning goals: classification, regression

e Scope of model: discrimination or generative




Classes of Statistical Learning algorithms

Supervised:
e [f we know the probability density of S and B, or if at least we can
estimate it
e E.g. we use "labeled" training events ("Signal” or "Background") to
estimate p(x|S), p(x|B) or their ratio
Semi-supervised:
e [t has been shown that even knowing the label for part of the data is
sufficient to construct a classifier
Unsupervised:
e If we lack an a-priori notion of the structure of the data, and we let
an algorithm discover it without e.g. labeling classes cluster
analysis, anomaly detection, unconditional density estimation.



Classes of Statistical Learning algorithms

We may also single out (as discussed by David Rousseau on Saturday)
Reinforcement learning
e The algorithm learns from the success or failure of its own actions
e E.g. arobot reaches its goal or fails
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Supervised Learning

Starting point:

e A vector of n predictor measurements X (inputs, regressors, covariates,
features, independent variables)

e One has training data {(x,y)}: events (or examples, instances,
observations...)

e The outcome measurement Y (dependent variable, response or target)
o In classification problems Y can take a discrete, unordered set of
values (signal/background, index, type of class)
o Inregression, Y has a continuous value



Supervised Learning
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Classification

Regression

V7 Labs
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Supervised Learning
Objective:

e Using the data at hand, we want to predict y* given x*, when (x*,y*) does
not necessarily belong to the training set.
e The prediction should be accurate: |f(x*)-y*| must be small according to

some useful metric (se later)

We would like to also:
e Understand what feature of X affects the outcome

e How assess the quality of our prediction

11



Random forests

Random Forest algorithm was first proposed by Breiman (2001), but is
based on a 1995 idea of Tim Kan Ho

RF employs two ensemble techniques: The first is bagging of the
training sample, to grow a forest of different trees based on different
training data. The second is the subsampling of the feature space.

If | choose a subset of the variables (e.g. x1, x3, x7) to create a splitin a
node of a decision tree, and another subset (x2, x4, x5, x7) to create a
different one, there will be events that get classified in a different way by
the two nodes

Often there is a dominant variables that is used to decide the spilit,
offsetting the power of the subdominant ones. RF avoids that problem
by reducing the correlation of different trees

12



Random forests

e Tree ensembles (like the Random
Forest algorithm) have a number

of attractive properties
o usually do not overfit
o powerful learners
e |n addition they retain the

advantages of DTs: data

o simple to understand and
interpret

o easy to train

o work equally well with continuous
as well as categorical data types

o no need to pre-process the data
(e.g. invariant to standardization)

50 trees 2000 trees

Random Forest [Rogozhnikov]
13



Support vector machines

e Binary linear classifier that tries to find the best separation between two
classes of data

e Basic concept can be again explained with linear separation between
the classes (a hyperplane in the feature space)

e Non-linear separation is possible by extending the technique to
additional dimensions (more complex data)

linearly
separable

e %o

. not o 6’5
linearly

separable
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Support vector machines

e Which hyperplane to use?
e Alinear SVM is the simplest hypothesis but a non-linear SVM can
provide better results

Margin ° : I >



Support vector machines

e Which hyperplane to use?

e Alinear SVM is the simplest hypothesis but a non-linear SVM can
provide better results

e Kernel trick: by transforming the data with a map ¢(x), we may find a
hyperplane in the larger dimensions space where the classes are linearly
separable

SVM Decision Boundary accuracy=0.445 (Kemel=linear SVM Decision Boundary accuracy=1.0 (Kernel=rbf
C=1.0) C=10.0 gamma=0.1)
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Boosted Decision Trees

e A "decision tree" is a tree constructed
by "leaves" that are rules to split the

Humidity?
data in the different classes, based on i high
the data features @ \We;her?
e If each event to be classified has <

N
N

- '
overcast “rainy

variables x, X, X,, X,,... (I can create a

tree by posing conditions on each /V “*

variable, in a chain) v | () N
e |dea of Boosting is instead to train a fa/s:/ true o o

sequence of models, each of which A

gives more weight to events not (\ e \

classified correctly by the previous T

ones

Decision tree explanation 17



http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Boosted Decision Trees

e Top quark decay via FCNC processes present a powerful probe
of new physics and it can occur in two modes:
o |n production: t+X production with X =H, Z, g,y
o In decay: tt production (with t —-qX) withg =u, ¢

Feynman diagram at Feynman diagram at
Leading-Order for FCNC tZ Leading-Order for FCNC tt decay
production

18



Boosted Decision Trees fg?b &Q?@ e 5@@5

e Three multivariate discriminants defined using Gradient Boosted

Decision Trees (GBDT): FCNC tZu and tZc in decay, FCNC tZu in
production and FCNC tZc in decay and production

GBDT discriminant  Training Region Training signal Search coupling
D Full SR1 FCNC tZu and tZc in tt decays tZu.tZe
pY Full SR2 FCNC ¢Zu in tZ production tZu
D% Full SR2 FCNC tZc in tt decays and tZ production tZe

e All the signal and background events selected by the signal regions
divided into five equal parts and used for the training (80%) or for the
testing (20%)

e Choice of the input variables taking into account the separation power,
the correlation with other variables and the performance loss

19
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https://journals.aps.org/prd/pdf/10.1103/PhysRevD.108.032019

Neural Networks

e A neural network (NN) is a program that simulates the behaviour of a
series of neurons and their connections

e NNs are capable of producing very flexible functions of the feature
space variables

e At the heart of the NN there is an architecture of nodes organized in

layers. Every "neuron” of a layer receives inputs from some of (or all) the
neurons of the previous layer

4 neurons 2 neurons 1 neuron

- O ¥ | i i
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¥
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Graph Neural Networks

e NNs that can be represented as graphs
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Suggested reading: https://distill.pub/2021/gnn-intro/



https://distill.pub/2021/gnn-intro/

Graph Neural Networks

e But jets can also be represented
as a graph!

e (Calibration of jet constituents —
Better reconstruction of the
energy flow details

e Using Graph Neural Networks to
calibrate jet constituents:
performing node-level (constituents)
regression from graph-level (jets)
constraints

input hode vector L
(jet constituent features)

Parton level

i) \ Particle Jet Energy depositions
¢ in calorimeters

"embedded vectors"
of neighbour nodes

in the graph
| "“‘ // "Message passing block".
’J [ / Can be repeated N times
@_ 7 = — 7& [ —— @—).\
b o o \
| N o
o/ f
Q ( |
H )
g> MLP, |—> * MLPs —%
]
= A

«

< _—
output : calibration

factors

—— o o e o e

"embedded vector" in
a "latent" space
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Graph Neural Networks

Evaluation of the calibration
performances with R=1.0 and R=0.4 jets:

e Check physics jets energy and mass "scale™ |
Aty resolution.

e Rebuild jets with GNN calibrated
constituents

e Distributions ofratio E__ . /E, _ and
Mca/ib/ Mtrue

e Consider scale and resolution

= Get this response in many energy

and/or mass bins!

24



Graph Neural Networks

For the case of ATLAS:
e Energy scale is well reconstructed - almost as well as standard ATLAS
calibration
e Energy resolution is much improved!

0.200
—}— no calib
0.175 —— std calib
. E € [400, 600] —— gnn no MP
5

OTEG (2 —}— gnn simple MP

0.125 1

0.100 1

Re igr

0.075 4

0.050 A

0.025 4

0.000 T T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00



Convolutional Neural Networks

e (Contains a three-dimensional arrangement of neurons instead of the
standard two-dimensional array

e Each neuron in the convolutional layer (1st) only processes the
information from a small part of the visual field

e Understands the images in parts and can compute these operations
multiple times to complete the full image processing

IMAGE

CONVERT POOL

lad)| T

RelLU
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Convolutional Neural Networks

Applications:
Image processing
e Computer Vision (the usual cats vs dogs challenge)
e Speech Recognition
e Machine translation

In HEP:
e Calibration of jets again...
e And much more!

27



Convolutional Neural Networks
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Convolutional Neural Networks
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)

JetpT response (R

Convolutional Neural Networks
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“New techniques for jet calibration with the ATLAS detector”
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https://cds.cern.ch/record/2854733/files/ANA-JETM-2022-01-PAPER.pdf

Unsupervised Learning

Starting point:

e A vector of n predictor
measurements X (inputs,
regressors, covariates, features,
independent variables).

e One has training data {x}: events
(or examples, instances,
observations...)

e There is no outcome variable Y

Raw Data

QOutput

31



Unsupervised Learning

Objective is much fuzzier:
e Using the data at hand
e Find groups of events that behave similarly
e Find features that behave similarly
e Find linear combinations of features exhibiting largest variation

Challenges:
e Hard to find a metric to see how well you are doing

Advantage:
e Result can be useful as a pre-processing step for supervised learning

32



Unsupervised Learning

Classification and Regression are important tasks belonging to the
"supervised" realm. But there are many other tasks where the unsupervised
learning can help:

e (lustering

e Association rules

e Dimensionality reduction

RESULT: blocks are
arranged based on
color

RESULT: blocks are
arranged based on
shape

Q
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Clustering

e Find structures in the data, organize by similarity

e An ML model finds any patterns, similarities, and/or differences within
uncategorized data structure by itself

e Often can be a useful input to other tasks

e Real-life applications:

o Customer and market segmentation: can help group people that
have similar traits and create customer personas for more efficient
marketing and targeting campaigns

o Clinical cancer studies: used to study cancer gene expression
data (tissues) and predict cancer at early stages

o Anomaly detection

34



Clustering
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Anomaly detection

e With clustering, it is possible to detect any sort of outliers in data

e For example, companies engaged in transportation and logistics may
use anomaly detection to identify logistical obstacles or expose
defective mechanical parts

e Financial organizations may utilize the technique to spot fraudulent
transactions and react promptly, which ultimately can save lots of
money

e From the modeling of purchasing habits; or new physics searches!

Anomalous subsequence

Mar Jun Sep Dec Mar Jun Sep Dec Mar



Clustering types

Exclusive clustering
e A “hard” clustering where a grouping in which one piece of data can

belong only to one cluster

Using mostly K-means: an algorithm for exclusive clustering, also
known as partitioning or segmentation

It puts the data points into the predefined number of clusters known as
K

K in the K-means algorithm is the input since you tell the algorithm the
number of clusters you want to identify in your data

Each data item then gets assigned to the nearest cluster center, called
centroids and the latter act as data accumulation areas

K-Means: https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

37


https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Clustering types

Overlapping clustering:

e “Soft” clustering allows data items to be
members of more than one cluster with
different degrees of belonging

e Fuzzy K-means are often used in this case: an
extension of the K-means algorithm used to
perform overlapping clustering

e Unlike the K-means algorithm, it implies that
data points can belong to more than one
cluster with a certain level of closeness towards
each Overlapping clustering

e The closeness is measured by the distance
from a data point to the centroid of the cluster

38



Clustering types

Hierarchical clustering:

Creating a hierarchy of clustered data items

To obtain clusters, data items are either decomposed or merged based
on the hierarchy

Such approach may start with each data point assigned to a separate
cluster

Two clusters that are closest to one another are then merged into a
single cluster

The merging goes on iteratively till there's only one cluster left at the top
Such an approach is known as bottom-up or agglomerative

39



Clustering types

Hierarchical clustering:




Clustering types

Gaussian Mixture Models

e Used in probabilistic clustering (diagonal, spherical, tied and full
covariance matrices supported)

e Since the mean or variance is unknown, the models assume that there
is a certain number of Gaussian distributions, each representing a
separate cluster

e The algorithm is basically used to decide which cluster a particular data
point belongs to

spherical diag tied full

Train accuracy: 95.5 Train accuracy: 94.6
Test accuracy:*100.0 Test accuracy:*97.4

Train accuracy: 88.4 Train accuracy: 93.8
Test accuracy:'92.1 Test accuracy:'89.5

00

w o
setosa
versicolor

SR 41
virginica




Association rules

Rule-based unsupervised learning
method aimed at discovering
relationships and associations between
different variables in large-scale datasets
The rules present how often a certain
data item occurs in datasets and how
strong and weak the connections
between different objects are

Widely used to analyze customer
purchasing habits, allowing companies
to understand relationships between
different products and build more
effective business strategies

CLUSTERING

i

7

ASSOCIATION RULE
MINING
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Dimensionality reduction

e Sometimes, the number of dimensions gets too high, resulting in the
performance reduction of ML algorithms and data visualization
hindering

e |t makes sense to reduce the number of features — or dimensions — and
include only relevant data = Dimensionality reduction

e Number of data inputs becomes manageable while the integrity of the
dataset is not lost

Density-based approach:
https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
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Auto encoders

e (Compressed data is treated as a result of an algorithm
e Trained representations can be made stable against different noise

Compressed Data

Original (Y B Reconstructed
Image Image

Encode Decode 44



Auto encoders architecture

1- Encoder: In which the model learns how to reduce the input dimensions
and compress the input data into an encoded representation

2- Bottleneck: which is the layer that contains the compressed
representation of the input data (the lowest possible dimensions of the input
data)

3- Decoder: In which the model learns how to reconstruct the data from the
encoded representation to be as close to the original input as possible

4- Reconstruction Loss: This is the method that measures measure how

well the decoder is performing and how close the output is to the original
input

45



Auto encoders applications
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https://anomagram.fastforwardlabs.com/#/
https://blog.tensorflow.org/2020/04/how-airbus-detects-anomalies-iss-telemetry-data-tfx.html

Auto encoders applications

e On HEP, one example would be the top-tagging

Typical single top-jet

Signal
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https://arxiv.org/pdf/2104.09051.pdf

fraction of images

Auto encoders applications

e On HEP, one example would be the top-tagging
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https://arxiv.org/pdf/2104.09051.pdf

Limitations

To supervised learning:
e Slow (it requires human experts to manually label training examples one
by one)
e C(Costly (a model should be trained on the large volumes of hand-labeled
data to provide accurate predictions)

To unsupervised learning:
e Has a limited area of applications (mostly for clustering purposes)
e Provides less accurate results

49



Semi-supervised Learning

e |tis used in scenarios where we have access to large amounts of data,
and only a small portion of that is labeled. The more (relevant) data we
use for training, the more robust our model becomes.

e Semi-Supervised Learning works by initially training the model using the
labeled dataset, just like Supervised Learning. Once we get the model
performing well, we use it to predict the remaining unlabeled data points
and label them with the corresponding predictions.

Hybrid Model that Labeled Data

Includes Supervised

Learning Unlabeled Data
50




Self-training

Small portion of data

First Classifier

with human-made
labels

(base model)

v

First Classifier trained

Lots of unlabeled data

Original labeled data

Most confident pseudo-
labels

on labeled data

Improved Classifier

New dataset trained on new
dataset

Pseudo-labels

Predictions




Co-training

Used when only a small
portion of labeled data
is available

Trains two individual
classifiers based on two
views of data

The class of sample
data can be accurately
predicted from each set
of features alone

View 1: Labeled
data

Classifier 1

View 1: Unlabeled
data

Initial labeled training dataset

View 2: Labeled
data

Pseudo-labels predicted
by Classifier 2

Confident
predictions

Confident predictions of
one model update Classifier 2
another one

Confident
predictions

Pseudo-labels predicted
by Classifier 1

View 2: Unlabeled
data

Unlabeled dataset




Transformers

e Special case of a graph neural network
e Self attention is implemented via message
passing on the fully connected graph
e Strength comes from:
o Multi-headed attention operation
o Dense network node updates
o More efficient to train than a full GNN

e Widely used in Natural language
processing
o Introduced in 2017 by a team at
Google Brain to replace RNNs
o e.g. DALL-E 2 is also transformer
based



https://openai.com/dall-e-2

Transformers

e Special case of a graph neural network
e Self attention is implemented via message
passing on the fully connected graph
e Strength comes from:
o Multi-headed attention operation
o Dense network node updates
o More efficient to train than a full GNN

e Widely used in Natural language
processing
o Introduced in 2017 by a team at
Google Brain to replace RNNs
o e.g. DALL-E 2 is also transformer
based

Our take with DALLE-2: oil painting of Transformers at CERN
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https://openai.com/dall-e-2

MULTIVARIATE ANALYSIS METHODS TO TAG
Transformers b QUARK EVENTS AT LEP/SLC
B. Brandl*, A. Falvard**, C. Guicheney*+,
An example from flavour tagging in ATLAS: i i eainasi
quarks: jets: From 1992!
“elementary” observables
TeV QCD

e After the hard interaction, quarks hadronise into hadrons

e Heavy hadrons can decay into lighter hadrons/leptons — Cascade-like
behaviour

e (Goal of (heavy) flavour tagging — Identify the type of the quark which
instantiated the jet

e Focusing on the identification of jets initiated by b-jets (aka b-tagging)
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https://inis.iaea.org/collection/NCLCollectionStore/_Public/25/023/25023795.pdf?r=1

Transformers

—3 tracks bjet
—————— b hadron \
—————— impact
parameter
J28 secondary

vertex

‘ "’7"§ﬂary vertex

Use the topology of heavy-flavour jets
e Lifetime of b-hadrons (c - T= 5mm at
pT =50 GeV)

Information about the topology is provided via
track and jet variables
e Track variables
o Impact parameter (d0/z0)
o Number of inner detector hits
o Fraction of pT coming from the track
e Jet variables
o Jet kinematics (pT, |n|)
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Transformers

Transformer Encoder Block

Context
information

c —

Linear B
[‘ Dropout |
__ Layer-Norm Dense
SiLU Network
Linear
=2
Concatenation

to each token

~ Layer-Norm

2| Input point
cloud

>

GNI+

global pooling is
achieved via repeated
cross attention with a <

[ [Encoded Class Token)

QRO

[ ) ] (TrackiD | [Ed’ge:ID]
A A
A »  Edge Net

CA Block

('Encoded Edges |
A

Track/Track

encoded edges are a
concatenated pair of
tracks

one-sequence long CA Block all possible pairs and
learnable class token Broadcast both orderings are
|Concatenation considered
L CA Block i
Class Token

Encoded Tracks |
TE Block | )
TE l; ook ‘ a standard transformer

— T encoder network
TEBlock | - ;

- A - essentially a fully
TE Block ‘ ﬁzmgf;ed graph neural

A

TE Block | N

More information here

0
[ Jets }—»[Track Embedder]
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2022-027/

Semi-supervised learning examples

e Speech recognition: Labeling audio is a very resource- and
time-intensive task, so semi-supervised learning can be used to
overcome the challenges and provide better performance (as Meta)

e Web content classification: With billions of websites presenting all
sorts of content out there, classification would take a huge team of
human resources to organize information on web pages by adding
corresponding labels (example of Google search)

e Text document classification: Training a train a base long short-term
memory model on a few text examples with hand-labeled most relevant
words and then apply it to a bigger number of unlabeled samples
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Conclusions

e Supervised: All data is labeled and the algorithms learn to predict the
output from the input data = You know what you are looking for in data
and provides more accurate results

e Unsupervised: All data is unlabeled and the algorithms learn to inherent
structure from the input data = Results may be less accurate and
training process is relatively time-consuming because algorithms need to
analyze and calculate all existing possibilities

e Semi-supervised: Some data is labeled but most of it is unlabeled and a
mixture of supervised and unsupervised techniques can be used =
Promising results in classification tasks with a minimal amount of labeled
data and plenty of unlabeled data
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