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Machine Learning in HEP

e ML has been in HEP for ages: S-B separation and flavor tagging
e What’s new:
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o Dramatic increase in ML architectures £'f ;
for different applications: transformers, 5 'F X
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Machine Learning in HEP

e Increasing complexity, decreasing interpretability

e Compatibility with calibration techniques
o (Can you derive scale factors, systematics, etc?

e Systematics do not kill your gains
o Study them early on!
o Even a flat uncertainty can give you a rough idea

e ML enables portability (ability to run on different types of hardware, e.g.,
CPUs, GPUs, FPGAS)



ML4Pions ATL-PHYS-PUB-2020-018

e Pixelated calorimeter images: Convolutional NN (CNN)
e The ML techniques all do an excellent job of distinguishing 1° from 1*
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http://cdsweb.cern.ch/record/2724632/files/ATL-PHYS-PUB-2020-018.pdf

Why use Machine Learning?

e ML to exploit high-dimensional correlations
o Our multidimensional distributions are rarely rectangular
o Rectangular cuts won’t maximize signal efficiency and background
rejection
o Maximizing our performance is essential in luminosity era

e ML as a surrogate model: fast and/or can run many types of hardware:
e.g., ML-based track reconstruction, AtlIFastSim3

e ML for non-standard data: data that is less confined than our physics
objects (e.g., operational data), variable length input, etc



High Luminosity - LHC

Trigger & data acquisition challenge
e Luminosity: 2+~ 7.5 - 103 cm? s

e Pileup: 60 ~ 200 ‘ HiLuM ,
HL-LHC ECT

© more time consuming ' A
O
ATLAS detector upgrade
e New Tracker, new Timing Detector, additional muon chambers, new Tile
electronics, ...
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Why use Machine Learning?
Barrel Endcap Rings

Active area: 12.7 m2

Pixel size: 50x50 (or 25x100) pm?2
# of modules: 10276
# of FE chips: 33184

# of channels: ~5x10°



GNN per-edge efficiency

Why use Machine Learning?
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Real-time triggers

e Machine Learning based muon trigger algorithms for the Phase-2
upgrade of the CMS detector

Predicted and Level-1 Efficiency curves Predicted and Level-1 Efficiency curves
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At high values of pT, the performances of the model predictions begin to decrease
probably due to a low resolution for small bending muons. 9


https://indico.cern.ch/event/681549/contributions/2956826/attachments/1661815/2662724/Poster_LHCP_Diotalevi.pdf

Some ideas for the future

Can we also improve our reconstruction for new sub-detectors as HGTD
or New Small Wheel?

Can we use reinforcement learning for automatic data quality monitoring
in HEP experiments?

Can we also have an electron/photon identification with a convolutional
neural network similarly to the jets?

Can we try to tag dark matter particles with ML? Or search for them?
Can we study the systematic effects in Jet Tagging Performance?

Can we use transformers for Particle Track Reconstruction and Hit
Clustering?

Can we improve the knowledge on heavy ions collisions by studying
topological separation of dielectron signals?
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https://indico.cern.ch/event/1297159/contributions/5729218/
https://indico.cern.ch/event/1297159/contributions/5729240/
https://indico.cern.ch/event/1297159/contributions/5729215/
https://indico.cern.ch/event/1297159/contributions/5729236/
https://indico.cern.ch/event/1297159/contributions/5729191/
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