
Novel Computing Hardwares in HEP

Heather M. Gray

CHACAL 2024

Introduction

• Associate Professor of Physics at UC
Berkeley and Faculty Scientist at
Lawrence Berkeley Laboratory

• BSc, BSc(Hons), MSc at UCT (2005)

• PhD at Caltech (2011)

• Research Fellow and Staff at CERN

• Member of the ATLAS
experiment since 2005

• Tracking Convener

• Simulation Convener

• (Currently) Data Preparation
Coordinator

• Primary expertise: SM & Higgs physics,
tracking, software, …

2

Lecture Outline
• Introduction & HEP Computing Challenge

• Part 1: Novel Computing Hardware
• Hardware Accelerators

• GPUs

• FPGAs

• New Computing Paradigms

• GPU Programming Taster

• Part 2: Application to HEP
• Event Generation

• Simulation

• Reconstruction

• Trigger

• Conclusion

3

Hardware
• Lectures at this school have been primarily focused on software
• These lectures provide an introduction to the ongoing evolution of

computer hardware and illustrate how it provides new
opportunities in HEP

4

Hardware is the Foundation

Us
er

Pr
og

ra
m

Sy
st

em
Ha

rd
w

ar
e

Application

Programming Language Programming Models Compiler

Runtime Libraries, Interpreter

OS support for resource management (threading, memory, scheduling)

Shared Memory

CPU CPU

Disk

Accelerators

Network
4

Source

https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf

Traditional Computing Architectures

• Computing in HEP currently relies
primarily upon large numbers of
Central Processing Units (CPUs)

• CPUs are silicon-based microprocessors

• Can perform an extensive variety of
tasks

• Operations are typically performed
serially

• Programs are sequences of
operations processed in a sequential
order

5

Image Credit

microprocesser: logic and control on a single integrated circuit

Image Credit

https://www.intel.com/content/www/us/en/homepage.html
https://www.intel.com/content/www/us/en/homepage.html
http://www.apple.com
http://www.apple.com

CPU Components
• CPUs consist of three principal components

• Control Unit
• Directs the processor operation

• Manages computer resources

• Arithmetic Logic Unit (ALU)
• Performs integer arithmetic and logical operations

6

By User:Lambtron - File:ABasicComputer.gif, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?curid=123099855

By Lambtron - Own work, CC BY-
SA 4.0, https://

commons.wikimedia.org/w/
index.php?curid=36975996

CPU Components
• Registers

• Rapidly accessible storage locations accessible to processors

• Supplies operands and stores results from ALU

• CPUs are implemented on integrated circuit (IC) microprocessors
• Each IC chip can have one or multiple CPUs (known as cores)

• Multi-core processors are chips with multiple CPU

• Multithreaded cores can be used to make virtual CPUs

7

Source Source

http://www.apple.com
http://www.apple.com
http://www.apple.com
http://www.apple.com

CPU Architectures: x86 and ARM

• Most personal computers sold today have CPUs based on the x86
architecture

• x86 is a set of complex instruction set computers (CISC)
initially developed by Intel

• Most smartphones and tablets use ARM (Advanced RISC machines)
• RISC: Reduced instruction set computers

• Reason: CISC can handle more complex tasks and calculations but
RISC has better power efficiency

• Both are closed source owned by Intel and ARM respectively

8

Moore’s Law
• Moore’s law: the number of transistors in an integrated circuit doubles

approximately every two years

• Observation named after Gordon Moore (founder of Intel)

9

Moore's law. (2024, January 16). In Wikipedia. https://en.wikipedia.org/wiki/Moore%27s_law

Source

https://web.archive.org/web/20211221191553/http://www.monolithic3d.com/uploads/6/0/5/5/6055488/gordon_moore_1965_article.pdf
https://web.archive.org/web/20211221191553/http://www.monolithic3d.com/uploads/6/0/5/5/6055488/gordon_moore_1965_article.pdf

Moore’s Law
10

Image Credit

This simple observation hides a more complex reality

Moore’s Law

Vectorization

“Free Lunch”

Parallelization

Slides after

https://github.com/karlrupp/microprocessor-trend-data?tab=readme-ov-file
https://github.com/karlrupp/microprocessor-trend-data?tab=readme-ov-file
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf

Vectorization

• Most modern processors provide vectorization
• Also known as Single Instruction Multiple Data (SIMD)

• Data is stored in vector registers

• Instructions must be executed in lockstep
• No synchronization is needed

• Multithreading used threads instead of vectors

• Also known as Single Instruction Multiple Threads (SIMT)

• Synchronization is required between threads as the execution time can vary

11

Categorization introduced in the 1960s by Flynn (and then modified by others)

Parallelism Strategiess
12

CERN School of Computing 2023

SW Design in the Many-Cores Era

9

From Single to Multi/Many core

Irwin-dale Wood-crest Gaines-
town

Haswell Broad- well Skylake Ice Lake AMD Epyc

Year 2005 2006 2009 2015 2016 2017 2021 2022

Cores 1 2 4 18 24 28 40 64
(128 SMT)

Freq (GHz) 3.8 3.0 3.33 2.1 2.2 2.5 2.3
(3.4 boost)

2.2
(3.5 boost)

LL
Cache

L2
(2MB)

L2
(4MB)

L3
(8MB)

L3
(45MB)

L3
(60MB)

L3
(38MB)

L3
(60MB)

L3
(768MB)

Evolution of server processors
(https://ark.intel.com / https://amd.com)

Image Credit

Server
processor
evolution

Image Credit

https://indico.cern.ch/event/1254984/contributions/5272175/attachments/2701180/4689011/CSC2023_SW_Design_ManyCore.pdf
https://indico.cern.ch/event/1254984/contributions/5272175/attachments/2701180/4689011/CSC2023_SW_Design_ManyCore.pdf
https://towardsdatascience.com/multithreading-and-multiprocessing-in-10-minutes-20d9b3c6a867
https://towardsdatascience.com/multithreading-and-multiprocessing-in-10-minutes-20d9b3c6a867

Computing In HEP

• As you’ve seen these past two weeks, software and computing are used
everywhere in high-energy physics

• Controls accelerator and detectors, trigger on interesting events, simulate
the physics and the detectors, reconstruct the data, perform physics analysis,
etc, etc.

• High-energy physics has also been responsible for driving many
developments in computing, e.g. the world wide web

13

Source

http://www.apple.com
http://www.apple.com

HEP Computing Challenge
• Historically, HEP has relied on Moore’s Law to meet computing needs*

despite flat budgets
• In addition, computing needs are about to grow rapidly with the advent

of the HL-LHC and will grow even further with future colliders

• Computing needs cannot be met through “business as usual”

14

2020 2022 2024 2026 2028 2030 2032 2034 2036
Year

0

10

20

30

40

50

ye
ar

s]
⋅

An
nu

al
 C

PU
 C

on
su

m
pt

io
n

 [M
H

S0
6

=55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2022 Computing Model - CPU

Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

ATLASPreliminary

Image Credit

Disk space is also a
challenge, but not

something I’ll cover
today

*computing needs =
offline computing

needs

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/

Example: Reconstruction Challenge
• For ATLAS and CMS, the HL-LHC will bring

• 5-7x increase in luminosity (LHC accelerator upgrade)

• 4-5x increase in event size (new detectors)

• 10x increase in event rate (trigger upgrade)

• The problem will be far worse at future colliders such as FCC-hh
with up to 1000 (!) additional collisions (pile up) per bunch crossing

15

Pile up

PILEUP:  
multiple overlapping pp
interactions in the same

bunch crossing

Proton-proton collisions

!8

proton proton
1011 protons 1011 protons

VS

Parton distribution functions 
describe momentum distribution of proton’s
constituents, measured from experiments

proton-proton collision vertex

Example: Trigger Challenge
16

A. Cerri

Trigger rate increases by more
than an order of
magnitude for ALICE and
LHCb for Run 3

Trigger rate increase by an
order of magnitude for
ATLAS and CMS for Run
4

Even larger event sizes for
DUNE but lower rate

Not shown, potential LHCb and
ALICE upgrades

Other Challenges
17

Trigger

Reconstruction

Analysis

Generation

Simulation

Reconstruction

Data Simulated
Data

Challenges anticipated at each step of the data processing and simulation
chain

Image Credit

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/

Beyond CPUs

• Hardware accelerators are custom-made hardware designed to
perform specific functions more efficiently than CPUs

• Wide variety of hardware accelerators depending on the application

• e.g GPU, FPGA, TPU ….

• We use hardware accelerators frequently in our daily lives

• e.g. graphics acceleration, encryption, machine learning, decoding video
streams

• As we’ll see later, a large fraction of the power in High Performance Centers
(HPCs) comes from GPUs

• “New” computing paradigms

• Neuromorphic computing, quantum computing….

18

Common Types of Hardware Accelerators
19

Graphical Processing Units (GPUs)
e.g. NVidia, AMD, Intel

Field Programmable Gate Arrays (FPGAs)
e.g. Xilinx, Altera

Source
Source Source

Source
Source

https://www.nvidia.com/de-de/data-center/a100/
https://www.nvidia.com/de-de/data-center/a100/
https://www.amd.com/en/graphics/radeon-rx-graphics
https://www.amd.com/en/graphics/radeon-rx-graphics
https://www.intel.com/content/www/us/en/products/details/discrete-gpus/arc.html
https://www.intel.com/content/www/us/en/products/details/discrete-gpus/arc.html
https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html
https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html
https://www.linkedin.com/pulse/xilinx-fpga-vs-altera-what-difference-ebics-fpga
https://www.linkedin.com/pulse/xilinx-fpga-vs-altera-what-difference-ebics-fpga

Using Hardware Accelerators

• One approach is to identify the most computationally intensive
parts of the code and parallelize those to be executed on the
accelerator

• The rest of the (ideally sequential) code is executed on the CPU
• This requires data to be transferred to and from the CPU

• Can be the bottleneck in execution

20

geralt/pixabay

Code

GPU CPU

More generally: heterogeneous Computing
• More generally one can mix and match different processors, which is

termed heterogeneous computing
• Different platforms can be used concurrently

21

Source

https://www.iti.uni-stuttgart.de/en/chairs/ca/projects/oldprojects/simtech
https://www.iti.uni-stuttgart.de/en/chairs/ca/projects/oldprojects/simtech

Heterogeneity in super computers
22

Source

Source

AMD CPU & GPU

Intel CPU & GPU

Intel CPU & NVidia GPU

ARM

AMD CPU & GPU

Slide Inspiration

Not particularly heterogeneous in terms of
operating system (Linux) or processor family

(95% Intel)

https://www.top500.org/lists/top500/list/2023/11/
https://www.top500.org/lists/top500/list/2023/11/
http://www.apple.com
http://www.apple.com
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf

Current and Future HPCs
23

3

HEP-CCECurrent and Near Future Heterogeneous HPCs

Increasingly complex
heterogeneous ecosystem

• A new golden age for
computing
architectures

 - or -
a disaster?

Opportunity to
bring HEP into
the HPC family

• Develop practical solutions to port hundreds of kernels, complex data models

• Collaborate with HPC community (including networking) on data intensive use cases

Accelerators

Intel NVidia AMD FPGA Other

CPU

Intel Aurora

Cori
Leonardo
Piz Daint
Tsukuba
MareNostrum

Tsukuba

AMD Perlmutter
Frontier
El Capitan

IBM
Summit
Sierra
MareNostrum

Arm Wombat Astra*

Fujitsu Fugaku

● Amazon EC2 P3
● Amazon Graviton2
● Google Cloud TPU
● Microsoft Azure
● Intel DevCloud

HPC = High Performance Computing

Parallelization: Amdahl’s Law
24

Speed up in latency

S: sequential part of program
P: parallel part of program
N: number of processors

1/(S + P/N)

Import: Speedup depends on how much of the problem can be parallelized

Slide Source

Source

https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
http://www.apple.com
http://www.apple.com

Why GPUs?
25

Motivation for Using GPUs in Tracking

arXiv:2003.11491

➢ Higher computing speed compared to CPU
➢ Flexible than FPGA
➢ Tracking is inherently a parallel processing

Main reason: Higher computing speed

Introduction to GPUs
• GPUs are silicon microprocessors containing cores, register, memory, etc

• Many-core processors
• Follow the single instruction, multiple threads (SIMT) execution

model

• Asynchronous programming model, i.e. threads are not executed in
lockstep

26

Image Credit

https://www.nvidia.com/de-de/data-center/a100/
https://www.nvidia.com/de-de/data-center/a100/
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf

GPU vs CPU
27

Slide Credit: C. Leggett

C. Leggett 2019-12-04
3

Difference Between CPU and GPU

► CPU:

• small number of complicated cores

• branch prediction

• prefetching

• multiple levels of large caches

• low latency

► GPU:

• very many (100k+) simple cores

• much more hardware for low precision ops than dp

• cores in a block operate in lockstep

• branch mis-prediction causes stalls for many cores

• small cache

• vectorized memory ops

• high throughput, high latency

• low power (per FLOP)

Modern GPU
28

C. Leggett 2019-03-19
4

Modern GPU

NVidia V100
● 6 Graphics Processor Cluster
● 42 Texture Processor Cluster
● 84 Streaming Multiprocessor

● 4x 8 FP64
● 4x 16 FP32
● 4x 16 INT32
● 2 Tensor Core

● 7.8 TFLOP FP64
● 15.7 TFLOP FP32
● 125 TFLOP Tensor matrix mult
● 300 W

Slide Credit: C. Leggett

Types of GPU
29

D. vom Bruch 15

Types of GPUs

Scientific GPUs Gaming GPUs

Precision

~3 times more single precision TFLOPS than

double precision

B suited for double precision

~40 times more single precision

TFLOPS than double precision

B not well suited for double

precision

Error correction Available Not available

Connection NVLink & PCIe Only PCIe

Price ~5-6 x the price of gaming GPUs Several hundred dollars

Depending on model (and year)

Source

https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf

Specification
30

D. vom Bruch 16

GPU vs. CPU: Specifications

AMD Ryzen Threadripper 3990X Nvidia A100

Core count 64 cores / 128 threads 6912 cores

Frequency 2.9 GHz 1.41 GHz

Peak Compute Performance 3.7 TFLOPs 19.5 TFLOPs (single precision)

Memory bandwidth Max. 95 GB/s 1.6 TB/s

Memory capacity Max O(1) TB 40/80 GB

Technology 7 nm 7 nm

Die size 717 mm
2

826 mm
2

Transistor count 3.8 billion 54.2 billion

Model Minimize latency Hide latency through parallelism

Source

https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf

Threads, warps and blocks
31

GPU Thread Hierarchy

● On a modern GPU, computations are executed by threads
● Threads are grouped into a warp

○ 32 threads in a warp
○ all threads in a warp execute the same instruction
○ in-warp branches or divergent memory access will cause stalls

and poor performance
○ Threads are executed w/ in-order processing on a “core” or ALU

● Warps are grouped into a block, launched by warp scheduler
○ must execute on same Streaming Multiprocessor (SM)

■ (max 1024 threads/block)
○ share resources of a SM (registers, cache lines, shared mem)
○ only threads in a block can synchronize execution w/ barriers

● Blocks are grouped into grids
○ logically organized as 1D, 2D or 3D groups of blocks in a grid

● Modern GPUs need many threads for full occupancy: hide instruction latency w/ oversubscription
○ NVidia A100: 64 [warp schedulers/SM] * 32 [threads/warp] * 108 [SMs] = 221184

Slide Credit: C. Leggett

GPU Memory Hierarchy (CUDA)
32

Slide Credit: C. Leggett

C. Leggett 2019-03-19
6

GPU Memory Hierarchy (CUDA)

► Several different levels of memory explicitly addressable, with different levels of
access speed and bandwidth

► Register
• fastest

• used for allocating variables private to each thread

• only small number available per SM. using too many will
reduce the number of concurrent thread blocks on a SM

► Shared
• on chip - lower latency and higher bandwidth than global
• shared among threads in a block. using too much will

reduce number of active warps

► Global
• visible by all threads and SMs on device
• allocated and freed by host

• large: up to 32GB on some devices

• slow: can take several hundred cycles to access

GPU Memory Hierarchy (CUDA)
33

C. Leggett 2019-03-19
7

GPU Memory Hierarchy (CUDA)

► Constant
• fast, read only device memory

• allocated by host, visible to all kernels and SMs

• allocated on a separate cache in each SM

• for best performance, all threads in a warp should access
same memory location

► Texture
• fast, read only device memory allocated by host

• separate cache on each SM

• optimized for 2D memory access

► Local
• virtual concept, actually located in global memory

• used for register spills, variables that can't fit into registers,
arrays whose indices can't be deduced at compile time

► Memory transfers between device and host have large
latencies (many hundreds of cycles), throughput limited
by bus (PCie 3: 32 GB/s; NVLink = 300GB/s bidirectional)

• memory transfers can introduce synchronization points
► Improper memory usage by kernels can result in extremely poor performance

Slide Credit: C. Leggett

Memory Access Pattern
34

C. Leggett 2019-03-19
8

Memory Access Pattern

► Allocate global memory on device (from host)

► Copy memory from host to global device memory

► Load data from device memory to shared memory

• Synchronize with all the other threads of the block so that each thread can safely read
shared memory locations that were populated by different threads

► Process the data in shared memory

► Synchronize again if necessary to make sure that shared memory has been updated
with the results

► Write the results back to device memory

► Transfer device memory back to host

► Memory structures and layouts have changed significantly between different
generations and architectures of NVidia devices

• for best performance, tuning to specific card / architecture is necessary

► Intel and AMD devices have the same multi-level hierarchy, but with their own specific
peculiarities

Slide Credit: C. Leggett

Pinned Memory
35

C. Leggett 2019-03-19
9

Pinned Memory

► Memory allocated on the host RAM can be swapped out

• they are "pageable"

► GPU cannot directly access pageable host memory

• must first be copied to page-locked or "pinned" array

• then transferred to device

• can cause a significant overhead

► Can explicitly allocate pinned host memory to
minimize copying

• pinned memory is lost to the system until freed

Slide Credit: C. Leggett

GPU Memory Hierarchy (SyCL)
36

C. Leggett 2019-03-19
10

GPU Memory Hierarcy (SyCL)

► SyCL manages memory in a more abstract manner than CUDA

• separates the concepts of storage from access

► Memory is created/allocated in sycl::buffers<TYPE>(SIZE)

► Memory is accessed via sycl::accessor<access_mode, access_target>

• access_mode can be read, write, read_write, atomic, etc

• access_target can be host, global, constant, image, etc

► No explicit data movement in SyCL. Data is
automatically moved between host and device
as needed by the kernels

► Depending on the access type, and access target,
SyCL will try to put the memory in the most
optimal location

CUDA name SyCL name

Register memory Private memory

Shared memory Local memory

Global memory Global memory

Constant memory Constant memory

Texture memory Image memory

Local memory N/A

Slide Credit: C. Leggett

Unified Memory
37

C. Leggett 2019-03-19
11

Unified Memory

► Recently, concept of "unified memory address space" has been introduced

• CUDA, hip, dpcpp

► Creates a pool of managed memory that is shared between the CPU and GPU

► Accessible to both the CPU and GPU using a single pointer

► Automatically migrates data allocated in Unified Memory between host and device

• transferred on demand

• looks like CPU memory to code running on the CPU, and like GPU memory to code
running on the GPU

► Can override new allocator, so C++ objects created in unified managed memory

• enables deep copies of complex objects

► Makes device programming much simpler

► Not as performant as explicit device memory management

• will not overlap kernel execution in streams with asynchronous memory transfers

Slide Credit: C. Leggett

Performance Comparisons
• Compare performance using Floating-Point Operations per Second

(FLOPS)

• GPUs deliver almost an order of magnitude for FLOPS/sec

38

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7th 2023

Performance comparison of CPUs and GPUs (1)

FLOPS : Floating-Point Operations per
Second

● Measure of computing performance
useful in fields that require
floating-point calculations (such as
HEP)

● GPUs can deliver more FLOPS
compared to CPUs

13Image source [i]

Image Credit

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

GPU Power Consumption
• Power consumption is often the limiting factor in hardware manufacturing/

use

• Performance constrained by the amount of power drawn and heat
dissipated

• Study power consumption using FLOPs per Watt of energy consumed

39

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7th 2023

Performance comparison of CPUs and GPUs (2)

FLOPS per Watt :

● Rate of floating-point operations
performed per watt of energy consumed

Important since power consumption is limiting
factor in hardware manufacturing/usage:

● Peak performance constrained by the
amount of power it can draw and the
amount of heat it can dissipate

14Image source [i]

Image Credit

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

FPGAs
• Field Programmable Gate Arrays

(FPGAs) are integrated circuits that are
available off the shelf

• High throughput
• Good for workloads with many branch

mispredictions and cache faults

• Low latency
• O(μs)

• constant and predictable

• More flexible than custom-built hardware

• Commercial market for FPGAs has been
around since the 1980s

40

By © Raimond Spekking / CC BY-SA 4.0 (via
Wikimedia Commons), CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?
curid=81288554

Field-programmable gate array. (2024, January 17). In Wikipedia.
https://en.wikipedia.org/wiki/Field-programmable_gate_array

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array

FPGAs
• FPGAs consist of thousands of logic blocks plus I/O blocks

• Connected via programmable interconnect
• Program FPGAs by configuring a circuit

• Hardware implementation of an algorithm

• FPGAs are very good at integer computations
• Do not require a computer to run because they have their own I/0

• Traditionally programmed using hardware description languages, e.g.
Verilog, VHDL

• Required long developments times

• High-level languages (HSL) have become available more recently

41

FPGA Architecture
42

FPGA Architecture (Backup)

73

Look-Up Tables (LUT) and
Switches

Andre DeHon, “The Density Advantage of Configurable Computing”, Computer, 2000

Modern FPGA Code Design Flow
43

FPGA Design Flow

25

Problem Definition

Hardware Description
Language (HDL) Verilog, VHDL

Bitstream Generation

Logic Synthesis

Placement and Routing

Programming the FPGA

Xilinx Vivado
Intel Quartus

High-level Synthesis
(HLS)

Google XLS
MaxCompiler
Vivado HLS
oneAPI

Place & Route
might take days!

Source

https://indico.cern.ch/event/1170079/attachments/2484554/4269719/cern%20openlab%20lecture%2021-07-2022.pdf
https://indico.cern.ch/event/1170079/attachments/2484554/4269719/cern%20openlab%20lecture%2021-07-2022.pdf

GPU vs FPGA
44

D. vom Bruch 19

GPU vs. FPGA

GPUs
● Higher latency

● Connection via PCIe (or NVLink)

● Bandwidth limited by PCIe

● Very good floating point operation performance

● Lower engineering cost

● Backward / forward compatibility

FPGAs
● Low & deterministic latency

● Connectivity to any data source

● High bandwidth

● Intermediate floating point performance

● High engineering cost

● Not so easy backward compatibility

Source

https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf

CPU - GPU - FPGA
45

Source

connections (16 GB/s for 16 lanes), while the next generation of cards is foreseen to support PCIe 4.0
(32 GB/s for 16 lanes). Scientific Nvidia GPUs also provide the Nvlink protocol with a maximum
data rate of up to 100 GB/s as interconnect among GPUs.

2.3 GPUs compared to other processors

As GPUs are designed to process the same arithmetic on independent data, they are optimal at
parallel performance. Compared to CPUs, the GPU cache is smaller with higher latency, the
processor runs at lower frequency and there are no speculative executions. However, by scheduling
the thousands of threads optimally, the GPU cores always have work to do and hide the latency
via high throughput. Apart from CPUs and GPUs, field programmable gate arrays (FPGAs) are
typically used in the data acquisition of HEP experiments. With their fixed, short latency and
versatile I/O connectors they are well suited for the early stages of the readout chain. A summary
of the di�erent characteristics of CPUs, GPUs and FPGAs is listed in table 1.

Table 1: GPU characteristics as compared to CPUs and FPGAs.

CPU GPU FPGA

Latency O (10) µs O (100) µs
Deterministic,
O (100) ns

I/O with processor Ethernet, USB, PCIe PCIe, Nvlink

Connectivity to any
data source via

printed circuit board
(PCB)

Engineering cost
Low entry level

(programmable with
c++, python, etc.)

Low entry level
(programmable with

CUDA, OpenCL,
etc.)

Some high-level
syntax available,

traditionally VHDL,
Verilog (specialized

engineer)
Single precision
floating point
performance

O (10) TFLOPs O (10) TFLOPs
Optimized for fixed
point performance

Serial / parallel

Optimized for serial
performance,

increasingly using
vector processing

Optimized for
parallel performance

Optimized for
parallel performance

Memory O (100) GB RAM O (10) GB
O (10) MB (on the
FPGA itself, not the

PCB)

Backward
compatibility

Compatible, except
for vector instruction

sets

Compatible, except
for specific features
only available on
modern GPUs

Not easily backward
compatible

– 4 –

https://arxiv.org/pdf/2003.11491.pdf
https://arxiv.org/pdf/2003.11491.pdf

For ML: TPUs
• Tensor Processing Units (TPUs) are a type of ASIC being developed by

google specifically targeting machine learning applications

• Designed for a high volume of low precision computation (matrix
multiplication)

• Available in google cloud

• Could be used for training/inference in HEP

• Well suited to convolutional neural networks

• Current version is the Edge TPU

46

Source

Other examples include
Intelligence Processing

Units (IPUs) designed for
irregular and sparse data

access

https://commons.wikimedia.org/w/index.php?curid=77299254
https://commons.wikimedia.org/w/index.php?curid=77299254

Workload by Accelerator Type
47

D. vom Bruch 22

Types of workloads for di(erent accelerators

GPUs:
● Relaxed latency requirements

● High FLOPs need

● I/O via PCIe no bottleneck

● Highly parallelizable problem

● Fits within GPU memory

FPGAs:
● Strict latency requirements

● High I/O needs

● Highly parallelizable problem

● Fits within FPGA resources (logic

elements and memory blocks)

TPUs / IPUs etc.:
● Machine learning training or inference

● TPUs: Use as a service in the cloud

● IPUs: MIMD compatible problem

● Fit within memory

Source

https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf

A Comment on Machine Learning

• Machine learning continues to be used ever more extensively in HEP (see
the lectures from D. Rousseau)

• There is interplay between the use of ML and novel hardware architectures
because such hardware can be used to very efficiently train ML algorithms

• It can also be used for interference, but inference has less significant
computational demands

• Thus in many case, the drive to use increasingly complex ML algorithms
leads to the greater adoption of novel hardware

• AND, if there is a drive to use such hardware it leads naturally to the
adoption of additional ML algorithms

48

New Computing Paradigms

49

Neuromorphic Computing
• Neural networks, a mainstay of current machine learning approaches, are

inspired by how the human brain functions

• Spiking neural networks mimic brains more closely by incorporating
the concept of time (idea from the 1990s)

50

Source

Selected Contemporary Neuromorphic Systems

13ACAT19

Many-core (ARM) architecture
Optimized spike

communication network
Programmable local learning
x0.01 real-time to real-time

Full-custom-digital neural circuits
No local learning (TrueNorth)

Programmable local learning (Loihi)
Exploit economy of scale

x0.01 real-time to x100 real-time

Analog neural cores
Digital spike communication

Biological local learning
Programmable local learning

x1.000 real-time

TrueNorth

Biological realism

Loihi

Also: Stanford – NeuroGrid/BrainDrop architectures
Zurich – DeltaRNN architecture

Neuromorphic computers are available Akida (from Brainchip)

https://indico.cern.ch/event/708041/contributions/3308808/attachments/1811053/2957880/ACAT19.pdf
https://indico.cern.ch/event/708041/contributions/3308808/attachments/1811053/2957880/ACAT19.pdf
https://brainchip.com/akida-neural-processor-soc/
https://brainchip.com/akida-neural-processor-soc/

Quantum Computing?
• Initial ideas for quantum computing date back 40 years (Benioff, Feynman,

Manin, etc,)

• Use quantum mechanical processes to simulate quantum
mechanical systems

• Further interest was stimulated by the invention of quantum
algorithms in the early 1980’s with the promise of solutions to intractable
problems on quantum computers (Shor, Grover, etc)

• Exponential information storage

• Revolutionize cryptography

• Solutions to unsolved (classical) problems

• Most recently quantum computing has been in the news in regards to
quantum advantage (supremacy)

• Google, IBM, Jiuzhang

• Quantum computing is likely at the peak of its hype cycle

51

See lectures from Prof Petruccione

Potential View of the Hardware Future
52

Specialized Architectures
Machine Learning

More Moore Beyond CMOS

More Moore Beyond CMOS

Neuromorphic ArchitecturesMachine Learning/Bio-
inspired Intelligence Better architectures

General Purpose
More Moore Beyond CMOS

General + Specialized Architectures
maintain

Neuroscience and the Future of Computing

21ACAT19

boost

boost

Quantum Annealing ArchitecturesOptimization?

boost

complement

Quantum Gate ComputersSearch/Specialized Functions?

complement

Source

https://indico.cern.ch/event/708041/contributions/3308808/attachments/1811053/2957880/ACAT19.pdf
https://indico.cern.ch/event/708041/contributions/3308808/attachments/1811053/2957880/ACAT19.pdf

GPU Programming Taster

53

Modelled after Charis Koraka

https://indico.cern.ch/event/1328624/contributions/5610337/attachments/2775251/4836370/Intro_to_GPU_programming_HSFIndia.pdf
https://indico.cern.ch/event/1328624/contributions/5610337/attachments/2775251/4836370/Intro_to_GPU_programming_HSFIndia.pdf

Why can’t I use python or C++?

• GPU architecture is very different from CPU

• Many more computation units
• Many identical threads executed in parallel

• Identical operation on different data

• Different operations require multiple passes

• Memory access needs to be careful managed

• Avoid register thrashing

• Cannot handle branching code
• Latency hiding techniques are required

• Typically need to control many low level instructions, e.g. memory
organization/accesses, thread synchronization, data transfer

54

Source

https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf
https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf

Current GPU Languages
55

Slide Credit

GPU Programming Languages

CUDA

● Only for NVIDIA GPUs
● Well established, large suite of tools for

analysis, profiling and debugging

HIP

● NVIDIA and AMD backends
● Almost identical to CUDA

○ sed s/cu/hip/

SYCL / dpc++

● Intel, NVIDIA and kinda AMD backends
● Explicit memory movement not required

Kokkos, Raja, Alpaka

● Interoperability APIs with backends for
Intel, NVIDIA, AMD, and host parallel

Std::execution::parallel

● Introduced in C++17 standard
● Similar usage as tbb::parallel_for
● nvc++ provides NVIDIA backend for GPUs

https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf
https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf

Language Evolution
• GPU languages have been evolving rapidly with the hardware

• e.g. exploit new hardware functionality

• new ways of sharing resources

• proximity of CPU/GPU memory

• Standards also need to evolve as C++ evolves
• Actually you can program GPUs using C++ (17):

• std::execution::parallel

• Execution is currently synchronous + no low-level device control

• P2300 is a proposal for standard asynchronous programming: schedule,
sender, receiver

• Likely to be adopted in C++26

• Additional changes to implementation details and API can be expected

56

Source

https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf
https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf

Ways to use a GPU
57How To Use A GPU

Completely external package

● Tensorflow, PyTorch, Onnx, other ML network training
● Mathematica, Numba
● Bitcoin miner, Cyberpunk 2077, RDR2...

Use external function library

● cuBLAS, cuFFT, OptiX

Instrument CPU code with offloading directives

● openMP, openACC, std::execution::parallel

Write GPU kernels directly

● CUDA, SYCL, HIP
● Kokkos, Raja, Alopaka

Slide Credit: C. Leggett

CUDA Programming Model
• Compute Unified Device Architecture (CUDA) is a program language

developed by NVidia and used to develop applications on NVidia GPUs

• Three main steps to execute CUDA code

58

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7th 2023

1. Copy data for host to device

24Image source [1]

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7th 2023

2. Execute the CUDA program

25Image source [1]

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7th 2023

3. Copy data from device back to host

26Image source [1]

#1Copy input data from
host memory to device

memory

#2 Execute CUDA
program

#3 Copy results
from device memory

to host memory

Threads and Blocks

• Built-in variables are available for
threads and blocks

• threadIdx & blockIdx

• 3-dimensional indexing can be used to
express vectors and matrices

• threadIdx.x,
threadIdx.y, threadIdx.z

• CUDA architecture imposes a limit of
1024 threads per block

• Thread block dimension is accessible
within the kernel using blockDim

59

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7th 2023

Threads & blocks
● In CUDA, built-in variables are available in order to

express threads and blocks :
○ threadIdx & blockIdx

● The variables have 3-dimensional indexing & provide
a natural way to express elements in vectors and
matrices :
○ threadIdx.x , threadIdx.y threadIdx.z

● CUDA architecture limits the numbers of threads per
block (1024 threads per block limit).

● The dimension of the thread block is accessible
within the kernel through the built-in blockDim
variable.

27Image source [1],[2]
iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7th 2023

Threads & blocks
● In CUDA, built-in variables are available in order to

express threads and blocks :
○ threadIdx & blockIdx

● The variables have 3-dimensional indexing & provide
a natural way to express elements in vectors and
matrices :
○ threadIdx.x , threadIdx.y threadIdx.z

● CUDA architecture limits the numbers of threads per
block (1024 threads per block limit).

● The dimension of the thread block is accessible
within the kernel through the built-in blockDim
variable.

27Image source [1],[2]

Indexing Example

• Unique element index can be expressed using the threadIdx &
blockIdx variables

• e.g. index = threadIdx.x + M * blockIdx.x

• (if each block consists of M threads)

60

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7th 2023

Indexing using blockIdx and threadIdx
● The threadIdx & blockIdx variables can be used to express the unique index of an element in an array/matrix

etc.
● Assuming that each block consists of a number of M threads :

○ index = threadIdx.x + blockIdx.x * M;

28Image source [1]

Kernels & Functions
• A CUDA kernel is a function that gets executed on the GPU

• Contains the part of the application that is parallelizable

• Will be executed many times in parallel by different CUDA threads

• __ global __ keyword defines a kernel function

• Launched by host and executed on device

• __ device __ and __ host __ can be used together

• __ host__ declaration can be omitted if used alone

61

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7th 2023

CUDA function declarations

31

Declaration Callable from: Executed on:

_ _global_ _ host device

_ _device_ _ device device

_ _host_ _ host host

● _ _global_ _ keyword defines a kernel function:
○ Is launched by host and executed on the device
○ Must return void

● _ _device_ _ and _ _host_ _ can be used together
● _ _host_ _ declaration, if used alone, can be omitted

Reminder: Pointers

• Pointers were covered in the C++ refresher slides from C. Doglioni

• GPU programming requires careful memory management

62

Source

https://simplesnippets.tech/cpp-pointers-concept-with-example/
https://simplesnippets.tech/cpp-pointers-concept-with-example/

Example CUDA Program

• Main components of a CUDA program

• Function declarations

• __host__/__global__/__device__

• Copying data to/from host

• cudaMalloc/cudaMemcpy/cudaFree

• Kernel launch <<<nBlocks,
nThreads>>>(<arguments>)

• Concurrency management

• __syncthreads()/
CudaDeviceSynchronize()

63

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7th 2023

Putting together a CUDA program
The main components of a CUDA program are :

● Declarations of functions :
○ These can be __host__ / __global__ /

__device__ functions

● Copying data to/from host :
○ Use cudaMalloc / cudaMemcpy / cudaFree

● Kernel launch <<<grid size, block size >>>(<arguments>)

● Concurrency management
○ Use __syncthreads() or

CudaDeviceSynchronize()

35

Simple Example: saxpy in C++
64

C. Leggett 2019-12-04
13

Simple Example: saxpy in C++

► Traditional single
precision matrix
addition example:

Z = a*X + Y

void saxpy(int n, float a, float *x, float *y) {
 for (int i=0; i<n; ++i) {
 y[i] = a*x[i] + y[i];
 }
}

main() {
 int N = 1 << 20;
 float *x, float *y;
 x = new float[N]; y = new float[N];
 for (int i=0; i<N; ++i { x[i] = 1.0f; y[i] = 2.0f; }

 saxpy(N, 3.0f, x, y);

 float maxErr = 0.0f;
 for (int i=0; i<N; ++i) {maxErr=std::max(maxErr,std::fabs(maxErr-5.0f));}
 std::cout << "max Error:" << maxErr << std::endl;

 delete [] x; delete [] y;
}

C. Leggett

Simple Example: saxpy in OpenMP
65

C. Leggett 2019-12-04
14

Simple Example: saxpy in OpenMP

► OpenMP

kernel pragma

► this pragma does
not offload to GPU
but rather across
cores/threads

► can offload with
openMP, but much
more complicated
than with openACC

void saxpy(int n, float a, float *x, float *y) {
#pragma omp parallel for
 for (int i=0; i<n; ++i) {
 y[i] = a*x[i] + y[i];
 }
}
main() {
 int N = 1 << 20;
 float *x, float *y;
 x = new float[N]; y = new float[N];
 for (int i=0; i<N; ++i { x[i] = 1.0f; y[i] = 2.0f; }

 saxpy(N, 3.0f, x, y);

 float maxErr = 0.0f;
 for (int i=0; i<N; ++i) {maxErr=std::max(maxErr,std::fabs(maxErr-5.0f));}
 std::cout << "max Error:" << maxErr << std::endl;

 delete [] x; delete [] y;
}

Simple Example: saxpy in OpenACC
66

C. Leggett 2019-12-04
15

Simple Example: saxpy in OpenACC

► OpenACC

► requires special
compilers that
recognize openACC
pragmas, eg PGI

void saxpy(int n, float a, float *x, float *y) {
#pragma acc parallel loop
 for (int i=0; i<n; ++i) {
 y[i] = a*x[i] + y[i];
 }
}
main() {
 int N = 1 << 20;
 float *x, float *y;
 x = new float[N]; y = new float[N];
 for (int i=0; i<N; ++i { x[i] = 1.0f; y[i] = 2.0f; }

 saxpy(N, 3.0f, x, y);

 float maxErr = 0.0f;
 for (int i=0; i<N; ++i) {maxErr=std::max(maxErr,std::fabs(maxErr-5.0f));}
 std::cout << "max Error:" << maxErr << std::endl;

 delete [] x; delete [] y;
}

Simple Example: saxpy in CUDA
67

C. Leggett 2019-12-04
17

Simple Example: saxpy in CUDA

► CUDA

explicit memory
management

► compile with nvcc

__global__
void saxpy(int n, float a, float *x, float *y) {
 int i = blockIdx.x*blockDim.x + threadIdx.x;
 if (i < n) y[i] = a*x[i] + y[i];
}

main() {
 int N = 1 << 20;
 float *x, float *y, float *d_x, float *d_y;
 x = new float[N]; y = new float[N];
 for (int i=0; i<N; ++i { x[i] = 1.0f; y[i] = 2.0f; }
 cudaMalloc(&d_x,N*sizeof(float)); cudaMalloc(&d_y, N*sizeof(float));
 cudaMemcpy(d_x, x, N*sizeof(float), cudaMemcpyHostToDevice);
 cudaMemcpy(d_y, y, N*sizeof(float), cudaMemcpyHostToDevice);
 saxpy<<<(N+255)/256, 256>>>(N, 3.0f, d_x, d_y);
 cudaMemcpy(y, d_y, N*sizeof(float), cudaMemcpyDeviceToHost);

 float maxErr = 0.0f;
 for (int i=0; i<N; ++i) {maxErr=std::max(maxErr,std::fabs(maxErr-5.0f));}
 std::cout << "max Error:" << maxErr << std::endl;

 cudaFree(d_x); cudaFree(d_y)
 delete [] x; delete [] y;
}

number
of blocks

number of
threads per

block

Memory Management
• Host and device have separate memory

• Device = GPU memory

• Host = GPU memory

• CUDA kernels operate out of device memory

• CUDA provides functions to

• allocate device memory

•cudaMalloc (&ptr,
size_in_bytes_to_allocate)

• release device memory

•cudaFree(ptr)

• transfer data between host and device memory

•cudaMemcpy(destination_ptr, source_ptr,
size_in_bytes, direction)

68

Compilation

• CUDA programs are compiled
in a similar way to C++ program

• Store CUDA code in a file with
a .cu extension

• CUDA compiler is nvcc
(provided by Nvidia)

• nvcc for CUDA parts

• gcc for C++ parts

• nvcc converts .cu files into
C++ for the host system and
CUDA assembly of binary
instructions for the device

•nvcc myCUDAProgram.cu
-o myCUDAProgram

69

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7th 2023

Compilation
● Compiling a CUDA program is similar to compiling a C/C++

program.
● Cuda code should be typically stored in a file with extension .cu
● NVIDIA provides a CUDA compiler called nvcc :

○ nvcc is called for CUDA parts
○ gcc is called for c++ parts
○ nvcc converts .cu files into C++ for the host system and

CUDA assembly or binary instructions for the device
● Usage :

nvcc myCudaProgram.cu -o myCudaProgram

37Image source [i] Image Credit

https://www.researchgate.net/figure/CUDA-program-compilation-process-using-NVCC_fig5_321368813
https://www.researchgate.net/figure/CUDA-program-compilation-process-using-NVCC_fig5_321368813

Part 2: Application of Novel Computing
Hardware to HEP

70

Novel Hardware in HEP

• So far, we’ve seen how the type of computing hardware available to obtain
optimal performance has been evolving towards more heterogeneous
architectures

• We’ve had a look at the different types of hardware that are used to
construct these machines

• Next, we are going to look into examples of how such architectures are
being used in HEP

71

Typical HEP Computing Workflow
72

Trigger

Reconstruction

Analysis

Generation

Simulation

Reconstruction

Data Simulated Data

All components contribute
significantly to the total

CPU budget

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/

Event Generation

73

Event Generation
• Event generation is a natural candidate for

parallelization because the generation of
different elements in the particle tree is
largely independent*

• As particles are produced, they can be handled
by different threads

• Scheduling challenge: different threads do not
necessarily have the same execution time

• Madgraph is an event generator commonly
used in HEP

• Madgraph4gpu is a project to port
Madgraph to run on GPUs

• A new generator, Pepper, has been developed
specifically targeting GPUs

74

*Strictly speaking this is not fully correct due to effects like color reconnection

Image Credit

http://madgraph.phys.ucl.ac.be/
https://github.com/madgraph5/madgraph4gpu
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.014024
http://madgraph.phys.ucl.ac.be/
https://github.com/madgraph5/madgraph4gpu
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.014024
https://sherpa-team.gitlab.io/monte-carlo.html
https://sherpa-team.gitlab.io/monte-carlo.html

75

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 6

ANY MC event generator is a great fit for GPUs and vector CPUs!
• Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

• From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING

ME event generators*
(before ME calculation):
- MC integration

(cross sections)
- MC generation

(event samples)

*NB: the CPU-intensive ME calculation comes
before PS, fragmentation, detector simulation

SAME CALCULATION
ON DIFFERENT DATA!

INPUT

OUTPUT

Lockstep processing
Good for SIMT/SIMD

MC DECISIONS

Detector simulation (Geant4)
- Particle/matter interaction

(when? how?)
- Particle decays (when?)

Event generators*
(after ME calculation):
- MC unweighting (keep/reject)

Parton showers (PS)
- Fragmentation and decays

DIFFERENT CALCULATIONS
ON DIFFERENT DATA!

DECISION

INPUT

OUTPUT

Stochastic branching
Bad for SIMT/SIMD

NB: MULTI-EVENT API

Slide Source

https://indico.cern.ch/event/1106990/contributions/4997226/attachments/2533666/4360288/20221024-MG5aMConGPU-ACAT-AV-005.pdf
https://indico.cern.ch/event/1106990/contributions/4997226/attachments/2533666/4360288/20221024-MG5aMConGPU-ACAT-AV-005.pdf

Madgraph on GPUs
• Madgraph runs in Fortran

• 95% of CPU time used for the matrix element calculation (for a
complex process)

• Madgraph4gpu project targets the matrix element calculation by porting it to
run on GPUs and vector CPUs

• Using CUDA, achieve a speed up of 150-300x for the ME for complex events

• Also, significant speed up on vectorized CPUs

76

More detailsMadgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 9

• Data-centre GPUs such as the Tesla A100 speed up the matrix-element calculations significantly
– Simpler GPUs lack double-precision performance
– So far, Madgraph only works reliably in double-precision mode

• FORTRAN parts limit total achievable speed up (Amdahl’s law)
– Especially for simple SM processes
– E.g. phase-space sampling, generation of momenta, unweighting

MadEvent + CUDA Speed up

FORTRAN:
RANMAR

FORTRAN:
MADEVENT

CUDA/C++ or PFs:
MEKERNELS

https://indico.cern.ch/event/1106990/contributions/4997226/attachments/2533666/4360288/20221024-MG5aMConGPU-ACAT-AV-005.pdf
https://indico.cern.ch/event/1106990/contributions/4997226/attachments/2533666/4360288/20221024-MG5aMConGPU-ACAT-AV-005.pdf

Simulation

77

Simulation
• Detector simulation tracks the

passage of thousands of
particles through the detector

• Simulate interactions with
detector material

• Interactions can produce
new particles, which
subsequently need to be
tracked

78

Image Credit

Image Credit

positron in fiber calorimeter
muon in copper/LAr

calorimeter

https://twiki.cern.ch/twiki/pub/AtlasPublic/EventDisplayRun3Collisions/ATLAS_VP1_HI_Zee_run462107_evt307841400_2023-10-04T00-51-42.png
https://twiki.cern.ch/twiki/pub/AtlasPublic/EventDisplayRun3Collisions/ATLAS_VP1_HI_Zee_run462107_evt307841400_2023-10-04T00-51-42.png
https://ep-news.web.cern.ch/content/geant4-modern-and-versatile-toolkit-detector-simulations
https://ep-news.web.cern.ch/content/geant4-modern-and-versatile-toolkit-detector-simulations

Simulation with Accelerators

• Most accurate tool for detector simulation is the Geant4 toolkit

• Multithreading and task-based parallelization are available

• Projects to port computationally intensive components of G4 to GPU are
ongoing

• Many fast simulation tools with varying degrees of accuracy are available

• Parametrization (DELPHES), machine learning (FastCaloGAN)

• Relevant examples include

• IceCube simulation on ARM

• ATLAS Fast Calorimeter simulation on GPUs

79

Benchmark results

Hyper-threading actually
quite effective
(it does take longer
but using half the
physical cores)

ARM

CHEP 23

Time to completion using
a single vCPU per process

Benchmark results

ARM CPUs faster than all tested x86 CPUs

ARM

CHEP 23
(at least in early 2022)

Time to completion using
a single vCPU per process

ARM about
10% faster
that the closest x86
10% faster

https://geant4.web.cern.ch/
https://indico.jlab.org/event/420/contributions/9053/attachments/7335/10129/Geant4In2030.pdf
https://indico.jlab.org/event/459/contributions/11823/attachments/9228/13392/chep23_icecube_arm_rc3.pdf
https://indico.jlab.org/event/459/contributions/11809/attachments/9402/13640/CHEP23%20FCS%20Portability.pdf
https://geant4.web.cern.ch/
https://indico.jlab.org/event/420/contributions/9053/attachments/7335/10129/Geant4In2030.pdf
https://indico.jlab.org/event/459/contributions/11823/attachments/9228/13392/chep23_icecube_arm_rc3.pdf
https://indico.jlab.org/event/459/contributions/11809/attachments/9402/13640/CHEP23%20FCS%20Portability.pdf

Celeritas: EM Physics on GPUs
80

High-level capabilities

• Equivalent to G4EmStandardPhysics
…using Urban MSC for high-E MSC; only γ, e±

• Full-featured Geant4 detector geometries
using VecGeom

• Runtime selectable processes, physics
options, field definition

• Execution on CUDA (Nvidia), HIP* (AMD),
and CPU devices

7

Verification & Validation still in progress

GPU-traced rasterization of CMS 2018

*VecGeom is incompatible with HIP:  
ORANGE GPU prototype used instead

Sourcegithub

https://indico.jlab.org/event/459/contributions/11818/attachments/9324/13745/srj-chep.pdf
https://indico.jlab.org/event/459/contributions/11818/attachments/9324/13745/srj-chep.pdf
https://github.com/celeritas-project/celeritas
https://github.com/celeritas-project/celeritas

Celeritas Results
81

Tilecal: ATLAS tile calorimeter test beam

• Standalone subdetector test

• Forked from Pezzotti&Lachnit (CERN)'s work

• 18 GeV π+ beam, no field

• FTFP_BERT physics

• Primary output: energy deposition integrated over sensitive

regions

• Offload e-, e+, γ to Celeritas

• Celeritas returns hits to user-defined
G4VSensitiveDetector

• ~100 lines of code to integrate

• Excellent agreement

10 https://github.com/celeritas-project/atlas-tilecal-integration

Entries 10000
Mean 614.9
Std Dev 82.91

 / ndf 2χ 229.6 / 55
Constant 11.4± 866.5
Mean 0.7± 619.1
Sigma 0.56± 67.47

0 0.5 1 1.5
310×0

200

400

600

800
Geant4

Entries 10000
Mean 614.9
Std Dev 82.91

 / ndf 2χ 229.6 / 55
Constant 11.4± 866.5
Mean 0.7± 619.1
Sigma 0.56± 67.47

Entries 10000
Mean 616.9
Std Dev 84.07

 / ndf 2χ 220.2 / 55
Constant 11.1± 848.7
Mean 0.7± 620.3
Sigma 0.57± 68.95

Celeritas
Entries 10000
Mean 616.9
Std Dev 84.07

 / ndf 2χ 220.2 / 55
Constant 11.1± 848.7
Mean 0.7± 620.3
Sigma 0.57± 68.95

EdepSum

Geant4
Entries 10000
Mean 614.9
Std Dev 82.91

 / ndf 2χ 229.6 / 55
Constant 11.4± 866.5
Mean 0.7± 619.1
Sigma 0.56± 67.47

Geant4
Celeritas
Best fit

Average energy deposition with pi+ test beam

Slab-integrated energy deposition

ATLAS Tile Calorimeter Test Beam

Offload e to Celeritas±, γ

Summit GPU performance

12

ORANGE
VecGeom

Problem definition
A testem15
B simple-cms
C testem3
Z cms2018

Modifier
F +field
M +msc

Fa
st

er

Multiply speedup by 7× for CPU:GPU equivalence

More complex

Performance on SUMMIT

Source

https://indico.jlab.org/event/459/contributions/11818/attachments/9324/13745/srj-chep.pdf
https://indico.jlab.org/event/459/contributions/11818/attachments/9324/13745/srj-chep.pdf

NVidia OptiX

• Ray tracing is a technique commonly
used in computer graphics

• NVidia OpitX is an API for ray tracing,
which offloads ray tracing computations
to GPUs

• Ray tracing algorithms can also be used
for photon simulation

• Opticks (and G4Opticks Package)

82

Figure 2. Comparison of the standard workflow of Geant4 optical photon simulation (left) with the
hybrid Geant4 + Opticks workflow (right). A single Opticks class G4Opticks acts to interface Geant4
user code with the Opticks GPU propagation. Hybrid simulation requires modification of the classes
representing scintillation and Cherenkov processes to collect "genstep" data structures.

2 Hybrid simulation workflow

Implementing an efficient GPU optical photon simulation equivalent to the Geant4 simula-
tion requires that all aspects of the Geant4 context relevant to optical photon generation and
propagation are translated into an appropriate form and uploaded to the GPU. The primary
aspects are the detector geometry including material/surface properties, optical physics and
optical photons; the translations of these are described in the below sections.

Figure 2 provides an overview of the hybrid simulation workflow. A single class,
G4Opticks, is used to provide a minimal interface between Geant4 user code and the Opticks
package. At initialization the Geant4 top volume pointer is passed to Opticks which trans-
lates the geometry and constructs the OptiX GPU context. The hybrid workflow replaces the
generation of photon secondary tracks in a loop with the collection of "genstep" parameters
including the number of photons to generate and the line segment along which to generate
them and all other parameters needed for the generation. These gensteps together with CUDA
ports of the Cherenkov and scintillation generation allow the photons to be generated directly
on the GPU within the ray generation program provided to OptiX. This avoids allocation of
CPU memory for the photons, only photon hits necessary for the next stage electronics sim-
ulation require CPU memory allocation. The genstep arrays are typically several orders of
magnitude smaller than the photon arrays that are generated from them. Gensteps are valid
only for specific versions of the implementation of the processes as they must be used only
with matched CUDA ports of the generation.

Steering of the simulation is implemented in the ray generation program, which performs
parallel photon generation and propagation up to a configurable maximum number of steps.
For each step of the propagation, rays representing photons are intersected with the geometry.
The intersected boundary provides a boundary index which allows material properties such
as absorption and scattering lengths to be looked up. Converting these lengths to distances
using pseudorandom numbers and the known exponential distributions allows a comparison
of absorption and scattering distances with geometrical distance to boundary to assign photon
histories. Details on efficient use of pseudorandom number generation with cuRAND[18] are
in the earlier proceedings[6].

4

EPJ Web of Conferences 251, 03009 (2021) https://doi.org/10.1051/epjconf/202125103009
CHEP 2021

Source

https://developer.nvidia.com/rtx/ray-tracing/optix
https://developer.nvidia.com/rtx/ray-tracing/optix

Opticks for Photon Simulation
• Using Opticks, JUNO obtains 3

orders of magnitude
improvement (wrt single
threaded CPU)

• For DUNE, the speed up is 189x
for the LArTPC

83
4 Optical physics

Optical physics processes of scattering, absorption, scintillator reemission and boundary pro-
cesses are implemented in CUDA functions based on the Geant4 implementations. The single
ray programming model of NVIDIA OptiX enables direct ports of the corresponding Geant4
implementations adapted to use GPU textures for property access. On the CPU, it is con-
venient to implement scintillator reemission using Geant4 secondary tracks. A different ap-
proach is adopted on the GPU where a fraction of absorbed photons are reborn with modified
direction and wavelength within the same CUDA thread. A reemission texture that encapsu-
lates an inverse cumulative distribution function is used to generate wavelengths that follow
the desired distribution on lookup of pseudorandom numbers. Further details on the CUDA
ports of Geant4 optical physics and use of GPU textures are given in the 2016 proceedings[6].

5 Random number aligned comparison of Opticks and Geant4

Validation comparisons use a single executable that performs both the Geant4 and hybrid
Opticks simulations, starting from common CPU generated input photons. Copying cuRAND
random sequences from the GPU to the CPU and configuring the Geant4 random engine to
use them makes it possible to align the consumption of random numbers between the two
simulations, resulting in nearly perfectly matched results with every scatter, absorption and
reflection happening with the same positions, times, wavelengths and polarizations. Direct
comparison of the aligned simulation results allows any discrepancies to be identified without
being clouded by statistics. The executable writes two events in a format which includes
highly compressed positions, times, wavelengths and polarizations at up to 16 steps of the
optical photon propagations.

Checks of all JUNO solids with millions of photons revealed some spurious intersects
arising from fragile CSG modelling with constituent solids that had coincident faces. These
were fixed by straightforward modelling changes to avoid coincidences. Shapes including
the torus as a constituent were found to be prone to poor precision intersects. As the use
of torus was cosmetic, the modelling was simplified to avoid its use. After fixing these
geometry issues, remaining discrepancies in mis-aligned photon histories were <0.25% and
deviant photons within matched histories were <0.05%. Primary sources of discrepancies are
photons with grazing incidence or photons incident at constituent solid boundaries. Results in
these cases are expected to depend on the arithmetic precision: Opticks uses double precision
only where unavoidable, whereas Geant4 uses this everywhere.

6 Performance comparisons

Optical photon simulation performance with the full analytic JUNO geometry is measured
using calibration source gensteps, positioned at the center of the scintillator volume, that
uniformly emit a range of photon counts. The maximum number of optical photons that
can be simulated in a single GPU launch is limited by the available VRAM. Each photon
requires 64 bytes for parameters and 48 bytes for the cuRAND random number generator
state, corresponding to 45G for 400M photons. The measurements use a production mode
with only photomultiplier hits being stored. All non-essential processing such as photon step
recording are skipped. Test hardware was a single NVIDIA Quadro RTX 8000 GPU with
48G of VRAM hosted in a DELL Precision 7920T workstation with Intel Xeon Gold 5118,
2.3GHz, 62G CPU. Figure 4 shows results from a scan from 1M to 400M optical photons,
where the measured Opticks times are compared with Geant4 times linearly extrapolated
from a measurement at 1M photons. Comparing times with the RTX mode enabled and

Figure 4. Full analytic JUNO geometry Opticks simulation times in seconds for 1M-400M optical
photons using a single NVIDIA Quadro RTX 8000 GPU compared to single threaded Geant4 10.4.2
simulation times extrapolated from a measurement for 1M optical photons. The solid(dotted) blue and
red curves show times with RTX enabled(disabled). Differences between interval times which include
per event upload and download overheads and launch times are not readily apparent with the logarithmic
scale. The linearly extrapolated Geant4 time for 400M photons is 95,600 s (26 hours) contrasts with the
Opticks time of 58s, corresponding to a speedup factor of 1,660 times with a single GPU.

disabled indicates a speedup of approximately 5 times from the use of the ray trace dedicated
RT cores. The single GPU speedup factor between Opticks with RTX enabled and single
threaded Geant4 is measured to be 1,660.

Performance measurements with very simple analytic geometries are found to reach Giga
Rays/s, more than a factor of 10 faster than performance with the full JUNO analytic ge-
ometry. This great performance sensitivity to the geometry suggests there is potential for
substantial improvement by optimization of geometry modelling.

7 Summary

Opticks enables Geant4-based optical photon simulations to benefit from state-of-the-art
NVIDIA GPU ray tracing, made accessible via NVIDIA OptiX, that allows memory and
time processing bottlenecks to be eliminated. Recent developments enable Opticks to greatly
reduce the CPU memory for hits by moving collection efficiency hit culling to the GPU.
Opticks meets the challenge of optical photon simulation in JUNO, the world’s largest scin-
tillator detector, and can benefit any simulation limited by optical photons.

Several groups from various experiments and the Geant4 Collaboration are evaluating
Opticks. Physicists from the LZ dark matter experiment and LBNL suggested and organized
a series of meetings with NVIDIA engineers that have assisted with the migration of Opticks
to the all new NVIDIA OptiX 7 API. Figure.3 is one of the first renders of the full JUNO
geometry with OptiX 7.

9

EPJ Web of Conferences 251, 03009 (2021) https://doi.org/10.1051/epjconf/202125103009
CHEP 2021

Source

Performance:

Hardware:

CPU Intel® Core i9-10900k@ 3.7 GHz,
10 CPU cores

GPU NVIDIA GeForce RTX 3090 @ 1.7 GHz,
10496 cores

Software:

Geant4: 11.0, Opticks based on OptiX® 6

Number of
CPU threads

Geant4
[sec/evt]

Opticks
[sec/evt]

Gain/speed up

1 330 1.8 189x

àIt becomes feasible to run full optical simulation event by event!Figure from Simon Blyth’s presentation

Hans Wenzel Integration of Geant4 and Opticks / CHEP 2023 May 8 to 12, 2023 10 Source

JUNO

DUNE

http://juno.ihep.cas.cn/
http://juno.ihep.cas.cn/
https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03009.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03009.pdf
https://indico.jlab.org/event/459/contributions/11814/attachments/9457/13711/CaTS_chep2023_v10.pdf
https://indico.jlab.org/event/459/contributions/11814/attachments/9457/13711/CaTS_chep2023_v10.pdf

Reconstruction

84

Reconstruction
• Reconstruction algorithms use the raw input from detectors to

reconstruct the particles that passed through the detector

• Two main categories:

• 2D energy, e.g. calorimeter

• 3D trajectories, e.g. charged hadrons, muons

• Some particles, e.g. electrons rely on a combination of the two

85

Source

https://cds.cern.ch/record/2120661?ln=en
https://cds.cern.ch/record/2120661?ln=en

Online and Offline
• Reconstruction

algorithms are run in
different configurations

• Simulation
• Data

• Online
• Offline

• Algorithms are not
necessarily the same

• Accelerators can be
used (or not) in each of
these contexts

86

Trigger

Reconstruction

Analysis

Generation

Simulation

Reconstruction

Data Simulated Data

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/

Accelerating Reconstruction
• Reconstruction algorithms tend to one of the favored target for

acceleration

• In particular, track reconstruction algorithms are computationally
expensive and scale poorly (often quadratically) with the number of
particles

87

Source

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

Track Reconstruction
88

Transition
Radiation
Tracker

Silicon
Detectors

TRT Extension

Seed

Silicon
Track

Space Point
Silicon
Track
Candidate

Nominal
Interaction
Point

ATLAS-CONF-2010-072

Space point formation

Seed finding

Track finding (Kalman
Filter)

Ambiguity Solving

TRT Extension

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-072/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-072/

ALICE: Track reconstruction on GPU
• ALICE is an early adopter of GPUs amongst the

LHC experiments

• Their tracking detector, the Time Projection
Chamber (TPC), dominates the computing
needs

• Process 10 ms time frames, each O(10 GB) in size

• GPUs also used for compression and
calibration of TPC data since Run 1

• ALICE is currently adding reconstruction of other
detectors on GPUs

89

D. vom Bruch 34

ALICE: Reconstruction on GPUs

● Process 10 ms timeframes, O(10 GB) size

● One detector dominates computing needs: Time Projection Chamber (TPC)

● TPC reconstructed in real time on GPUs for compression and calibration since Run 1

● Also adding reconstruction of other detectors to the GPU workflow

● Aiming to process full barrel reconstruction on GPUs

● New facility for data processing and compression – 1500 CPU/GPU nodes, 60 PB storage

See D. Rohr’s vCHEP talk

Source

https://alice-tpc.web.cern.ch/
https://alice-tpc.web.cern.ch/

ALICE: GPU Tracking

• For Run 3, the ALICE data-taking
read out has been increased to a
50 kHz continuous read out
of PbPb collisions

• Cellular Automaton (CA)
algorithm

• Exclude multiple track hypotheses

• 800x total speed up (wrt offline)

• Comparable efficiency but
degraded resolution wrt to
offline

• 8x data compression

90

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500000 1x106 1.5x106 2x106 2.5x106 3x106

S
pe

ed
up

 (n
or

m
al

iz
ed

 to
 a

 s
in

gl
e

co
re

)

Number of TPC clusters

HLT GPU Tracking v.s. HLT CPU Tracking (AMD S9000 v.s. Xeon 2697, 2.7 GHz)
HLT GPU Tracking v.s. HLT CPU Tracking (NVIDIA GTX 1080 v.s. i7 6700K, 4.2 GHz)

HLT CPU Tracking v.s. Offline Tracking (Xeon 2697, 2.7 GHz)
 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500000 1x106 1.5x106 2x106 2.5x106 3x106

ALICE Performance 2018/03/20
2015, Pb-Pb, !SNN = 5.02 TeV

ALI-PERF-143852

Figure 2. Speedup of the ALICE TPC tracking on GPU normalized to a single CPU core

In order to obtain the current TPC drift speed, an online TPC drift velocity calibration has
been implemented in the HLT [12–14], and a similar feature is foreseen for the synchronous
stage of the Run 3 tracking.

4 TPC to ITS matching

A standalone ITS tracking implementation is currently being developed for Run 3, which will
support GPUs and use a Cellular Automaton. Meanwhile, a fast ad-hoc ITS tracking is used
for performance studies, which was implemented in a short time and does not achieve full ef-
ficiency. Figure 3 shows the purity of the TPC to ITS matching versus transverse momentum.
The ad-hoc ITS tracking is not optimized and yields many fake tracks. Eventually, it will be
replaced by the Cellular Automaton based tracking, but for the performance studies we use
Monte-Carlo labels to remove fake tracks (black and red curves). If we apply strict �2 cuts
for ITS, the matching is as good as in the current Run 2. This is another demonstration that
the Run 3 TPC tracking works well.

Due to the high track density in the inner layers, and due to the necessity to follow mul-
tiple track hypotheses, ITS standalone tracking is combinatorially more complex than TPC
tracking. However, for calibration in the synchronous phase, it will be su�cient to pro-
cess only a subset of the events, and employ a simplified and faster version of the track-
ing, which finds only primary tracks without missing layers and at relatively high pT of at
least 500 MeV/c.

5 TPC to TRD prolongation tracking

Today, both hits in the TRD as well as on-the-fly reconstructed TRD online tracklets are
stored on tape. The hits are used for the o✏ine tracking, while the online tracklets are used
to generate trigger decisions. Due to bandwidth constraints, the TRD read out in Run 3 is
restricted to the tracklets, such that the tracking implementation must change to use tracklets
instead of hits.

Source

0 100 200 300 400 500 600 700 800

310×

Number of TPC Clusters

0

2

4

6

8

10

12

H
L

T
 T

P
C

 C
o

m
p

re
ss

io
n

 F
a

ct
o

r

1

10

210

310

410

ALICE Performance 2018/05/16

 = 13 TeVs2018, pp,

Average compression ratio: 8.34x

ALI-PERF-160499

Figure 6. Compression factor of ALICE TPC data in the HLT in 2018 with pp data

6 TPC Data Compression

The most important task of the synchronous reconstruction is the compression of the raw
data, in order to enable the storage of all data. We discuss this topic for the TPC, the largest
contributor to data size. The compression involves several steps:

1. Replacement of raw data by TPC hits reconstructed in real time. This step itself has
only a moderate compression e↵ect, but it is required for the following steps.

2. The clusters are converted to an integer format, storing only as many bits as required
with respect to the intrinsic TPC resolution. Cluster shape and charge are encoded with
a dynamic precision relative to their absolute value.

3. The entropy of the cluster properties is reduced, mainly by storing residuals of clusters
to tracks for clusters attached to tracks, and position di↵erences otherwise [11].

4. Clusters are compressed with a standard entropy compressor. We are investigating
Hu↵man encoding, Arithmetic encoding, or ANS encoding.

5. Clusters not needed for physics analysis are removed.
Steps 1 to 4 are implemented in the current HLT, yielding a compression factor of 8.34 in
pp events, as shown in Fig. 6. The prototype for the Run 3 TPC data compression uses
more elaborate versions of the algorithms and achieves a compression factor of 9.1 for Pb–Pb
events.

For Run 3, ALICE will implement an additional step that rejects clusters not used for
physics. Figure 7 illustrates the cluster attachment status of the current development version
of the tracking. We aim to remove the following types of clusters:
• Clusters of tracks below 50 MeV/c.
• Clusters of secondary legs of looping tracks below 200 MeV/c.
• Clusters of track segments with high inclination angle that are not used in the track fit.
• Clusters from noise and from broken TPC pads.
The figure shows the integrated fraction of clusters with certain properties versus trans-

verse momentum starting at 10 MeV/c, normalized to all clusters. The curve for all clusters
starts at 14%, which means that 14% of the clusters stem from noise or from tracks be-
low 10 MeV/c. These clusters could safely be removed but are not accessible via tracking.
Therefore, ALICE is investigating other means to remove them.

Attached clusters in Figure 7 are those attached to tracks in the tracking and used for the
fit. The tracker forms tubes of 1.5 cm around each track, and marks unattached clusters as
adjacent to the tube of the track with the highest transverse momentum it lies in. Clusters
marked as used in physics are those attached to good physics tracks, and not belonging to
the above categories of clusters that shell be removed. The clusters marked as protected
lie in the 1.5 cm tube around the good track segments that are used in physics. Removed

https://ieeexplore.ieee.org/document/5934702
https://ieeexplore.ieee.org/document/5934702
https://arxiv.org/abs/1905.05515
https://arxiv.org/abs/1905.05515

CMS - Patatrack

● The heterogeneous computing on CMS tracking is
mainly led by Patatrack project (born in 2016)

○ Track reconstruction in Pixel detector
○ Developed for event filter

● Full tracking chain on GPU
○ No memory transfer between CPU and GPU

● Adopted Struct-of-Array (SoA) for fast memory access
to Event Data Model (EDM)

● CUDA is main API, but development with
HIP/Kokkos/Alpaka/openMP is on-going as well

CMS: Patatrack
91

Broken Line for Track Fit
92

Broken Line Fit for track fitting

● There is no iteration on spacepoints as KF does

● Instead, two matrix equations are solved to minimize the least square estimator which is a
function of residuals and kink angle on detector plane

○ The motion of helix is decoupled into transverse (x-y) and longitudinal (r-z) plane

● Pros and Cons with respect to KF

○ Pros: Generally faster than KF with similar resolution
○ Cons: The extension to external hits is inefficient because the matrix

equation should be solved from the beginning

● In Patatrack, each thread runs Broken Line Fit for each N-tuplet
○ EIgen3 library that natively supports CUDA is used to solve matrix equation

Slide Credit: C. Leggett

CMS Tracker for HL-LHC
93

Source

Novel CMS Tracker
Design for HL-LHC
features pT modules
enable L1 high PT

track trigger

https://cms.desy.de/activities/detector_upgrade/phase_2_outer_tracker/
https://cms.desy.de/activities/detector_upgrade/phase_2_outer_tracker/

CMS: Line Segment Tracking (LST)
• CMS has designed a new algorithm specifically designed to run on GPUs and

exploit this tracker design

94

5

LST in a Nutshell: Mini-Doublets

IP Outer Tracker

Inner 
Tracker

Get two hits in each layer in Phase 2 Outer Tracker:  
i.e. Mini-Doublets (MDs) “pT module”

pT estimate for each MD

7

LST in a Nutshell: Line Segments

IP Outer Tracker

Inner 
Tracker

Not allowed to 
skip layers

Unnatural LS 
also not allowed

Build all valid connections of two MDs:  
i.e. Line Segments (LSs)

Derived a “module map” that  
pre-determines valid LSs

Device

Host

MD LS

One thread per LS

9

LST in a Nutshell: Triplets

IP Outer Tracker

Inner 
Tracker Device

Host

MD LS T3

Keep good pairs of LSs that share a MD: 
i.e. Triplets (T3s)

good = pT consistency + other constraints

One thread per T3

10

LST in a Nutshell: Quintuplets

IP Outer Tracker

Inner 
Tracker Device

Host

MD LS T3 T5

Keep good pairs of T3s that share a MD:  
i.e. Quintuplets (T5s)

good = pT consistency + circle fit quality

One thread per T5

Finally … match quintuplets to pixel seedsSource

https://indico.cern.ch/event/1252748/contributions/5521522/attachments/2728286/4742027/ctd2023_jguiang_v2.pdf
https://indico.cern.ch/event/1252748/contributions/5521522/attachments/2728286/4742027/ctd2023_jguiang_v2.pdf

LSST Performance
• Algorithm is still under

development and optimization

• Similar efficiency and lower
fake rate to current CMS
algorithm (except at very low pT)

• Approximately 10 ms per event

95

19

Timing Result on GPU

• Timing is measured with the LST algorithms running on GPU (NVIDIA A100).

• In order to maximally utilize GPUs, we explore multiple CUDA streams to process

“multiple events in flight” to “pack” LST algorithm execution on GPUs.

• The timing reported here is the average time to process one event measured on GPU

over 175 tt ̅PU200 events.

• The timing result does not include host-to-device data transfer time and vice versa.

• The piechart on the right shows the kernel execution (in order of execution, clock-wise

starting from Hits) breakdown by types of LST object building

0

5

10

15

20

1 2 4 6 8

Av
er

ag
e

tim
e

/ E
ve

nt
 [m

s]

of concurrent events in flight

CMS Simulation Preliminary
CMS Simulation Preliminary

Excludes transfer time between host and device

22

Tracking Efficiency with LST integration to CMSSW

Tracking efficiency from CMSSW tracking benchmark performance metric tool.

The black and red curves show the closest to fair comparison with generally good efficiency
above targeted pT > 0.8 GeV

N.B. This plot is to demonstrate the on-going LST integration work CMSSW, it is not the final result and improvements
to the performance will be made once full integration is done.

1−10 1 10 210
 [GeV]

T
Simulated track p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Tr
ac

ki
ng

 e
ffi

ci
en

cy Simulation Preliminary CMS
t = 14 TeV PU200 ts

 < 2.5 cm
vertex

| < 30 cm, r
vertex

| < 4.5, |zη|

LST (2 iter.) Baseline (2 iter.)
Baseline (all iter.)

4− 3− 2− 1− 0 1 2 3 4
ηSimulated track

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Tr

ac
ki

ng
 e

ffi
ci

en
cy Simulation Preliminary CMS

t = 14 TeV PU200 ts
 < 2.5 cm

vertex
| < 30 cm, r

vertex
 > 0.9 GeV, |z

T
p

LST (2 iter.) Baseline (2 iter.)
Baseline (all iter.)

4− 3− 2− 1− 0 1 2 3 4

ηTrack

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fa
ke

 ra
te Simulation Preliminary CMS

t = 14 TeV PU200 ts
 > 0.9 GeV

T
p

LST (2 iter.) Baseline (2 iter.)
Baseline (all iter.)

1−10 1 10 210
 [GeV]

T
Track p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fa
ke

 ra
te Simulation Preliminary CMS

t = 14 TeV PU200 ts
| < 4.5η|

LST (2 iter.) Baseline (2 iter.)
Baseline (all iter.)

23

Fake Rate with LST integration to CMSSW

Fake rate from CMSSW tracking benchmark performance metric tool.

The black and red curves show the closest to fair comparison with low fake rates for LST
based tracking

N.B. This plot is to demonstrate the on-going LST integration work CMSSW, it is not the final result and improvements
to the performance will be made once full integration is done.

1−10 1 10 210
 [GeV]

T
Track p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fa
ke

 ra
te Simulation Preliminary CMS

t = 14 TeV PU200 ts
| < 4.5η|

LST (2 iter.) Baseline (2 iter.)
Baseline (all iter.)

4− 3− 2− 1− 0 1 2 3 4

ηTrack

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fa
ke

 ra
te Simulation Preliminary CMS

t = 14 TeV PU200 ts
 > 0.9 GeV

T
p

LST (2 iter.) Baseline (2 iter.)
Baseline (all iter.)

Source

https://cds.cern.ch/record/2857438/files/DP2023_019.pdf
https://cds.cern.ch/record/2857438/files/DP2023_019.pdf

ATLAS: traccc

• The traccc project aims to develop an end-to-end or full chain track
reconstruction chain on GPU

• Avoids time lost in copying between device and host memory

• CUDA and SYCL implementations (+ CPU)

• Separate package for detector geometry (detray) and memory management
(vecmem)

• Code has been designed in an experiment-independent way

96

Source

C. Leggett 2023-06-3011

ATLAS Offline GPU Development
ACTS / traccc : multistage tracking workflow
●

● Shared code between offline and online

● Perfect agreement between CPU and
GPU results

● Working on implementing ITK geometry

● Have barely started to optimize code

1 NVIDIA A5000 GPU =
 3 AMD 64 core CPUs

https://indico.cern.ch/event/1252748/contributions/5561968/attachments/2731962/4749842/Connecting%20The%20Dots.pdf
https://indico.cern.ch/event/1252748/contributions/5561968/attachments/2731962/4749842/Connecting%20The%20Dots.pdf

Spacepoint binning
97

Spacepoint binning

● Seeding is done bin-by-bin by grouping
spacepoints w.r.t z and azimuthal angle

● There are two cuda kernels:
○ Count the number of spacepoints per bin to

allocate the memory to the container
○ Fill out bins with spacepoints

● Each thread for each spacepoint

➢ Before binning ➢ After binning

Slide Credit: C. Leggett

Doublet Finding
98

Doublet finding

● Doublets are found by collecting hit pairs that
satisfy certain criteria:

○ Distance to the beam spot
○ Enough large pitch angle

● Like spacepoint binning, there are two kernels:
○ Doublet counting for memory allocation
○ Doublet finding

● For all spacepoints, iterates over other
spacepoints in current and neighbor bins to find
doublets

○ Form bottom-middle or middle-top doublet

● Each thread is assigned for each spacepoint

Slide Credit: C. Leggett

Triplet Finding
99

Triplet finding

● Triplets are found by combining doublets that share the
same spacepoint and satisfy certain criteria:

○ Min pT
○ Distance to the beam spot
○ θ_B - θ_T < tolerance

● Like spacepoint binning, there are two kernels:
○ Triplet counting for memory allocation
○ Triplet finding

● For all middle-bottom doublet, iterates over middle-top
doublets that share the same middle spacepoint

● Each thread is assigned for each middle-bottom doublet

Slide Credit: C. Leggett

Seeding Performance
100

Seeding Performance

● The seed matching ratio between ACTS CPU and traccc CPU is around 98% due to
different sorting criteria but it’s trivial

● The seed matching ratio between traccc CPU and traccc CUDA is 99 – 100 %

● For ttbar<200> events, CUDA speedup is about 13 compared to single core CPU

CPU: i7-1050H (2.6 GHz) / single core
GPU: RTX 2070

GPU Based Seeding

20Connecting The Dots 2023

CPU: AMD EPYC 7413
GPU: NVIDIA RTX A5000 jagged
GPU: NVIDIA RTX A5000 flat

Seeding with a flat(ter) EDM:

○ Seeding requires dealing with nested data structures where inner arrays or vectors can have different
lengths for storage of doublets and triplets

○ Testing the effect of removing jagged vectors by allocating a single large flat vector

○ Seeding with GPU is worthwhile above a certain level of pileup

CPU: AMD EPYC 7413
GPU: NVIDIA RTX A5000 jagged
GPU: NVIDIA RTX A5000 flat

traccc vs Patatrack
101

ACTS (ATLAS) vs. Patatrack (CMS)

ACTS Patatrack

Track Finding
doublet finding doublet finding

triplet finding N-tuplet (N<=4) finding

Track Fitting (Combinatorial) KF Broken Line Fit

● The general flow of tracking chain is similar with ATLAS’s one
○ hit clusterization / track finding / track fitting

● However, the detailed algorithms are different:
○ In ACTS, the triplets from seeding are extended to n-tuplets with

Combinatorial Kalman filtering
○ In Patatrack, the n-tuplets are found in seeding and they are fitted

directly with Broken Line Fit

ML Tracking on GPUs
102

C. Leggett 2023-06-3012

ATLAS Offline GPU Developments
Celeritas
● G4 alternative on GPUs for EM simulation (equivalent to G4EmStandardPhysics)
● Ongoing work to integrate into Athena

Exa.TrkX + ITk
● GNN based tracking for ITk offering competitive track efficiency and high quality track

parameter resolution
● Available as a Service - no need to have a local GPU

Slide Credit: C. Leggett

Clustering for the CMS HGCalorimeter
• The CMS High-Granularity Calorimeter (HGCAL) is a replacement for the

calorimeter end-cap based on highly-segmented silicon sensors and plastic
scintillators

• ~6 million silicon channels and ~240k scintillator channels

• Large number of channels and the high pile up expected

• Clusterization will be a significant computational challenge

103

Figure 1. The design of HGCAL [4]. Left: Sketch of HGCAL endcap. Mid-left: The internal structure
on the longitudinal-radial (z-r) plane. Red and blue rectangles indicate regions of CE-E and CE-H
respectively, where CE-E has 28 full Si layers and CE-H has 8 full Si layers plus 14 Si-scintillators
hybrid layers. Mid-right, Right: Layouts of CE-E and CE-H layer. Silicon wafers are shown as yellow
and green hexagons and scintillators are shown as red mesh. Darker, medium and lighter shades of
hexagons represent silicon wafers with thickness of 120, 200 and 300 µm respectively.

The design of HGCAL [4] is shown in Figure 1. Two HGCAL endcaps will be mounted
on both sides of the CMS detector. Each endcap weighs about 215 tons and measures about
2 m in longitudinal direction and 2.3 m in radial direction, covering 1.5 < |⌘| < 3.0. The
full system operates at a temperature of �35�C maintained by a CO2 cooling system. Each
endcap consists of 50 layers, each of which combines passive absorber material and active
sensor material. The front 28 layers are the electromagnetic part (CE-E), which uses Cu,
CuW and Pb as absorber and Si wafers with 120, 200, 300 µm thickness as sensors. The back
22 layers are the hadronic part (CE-H), which uses stainless steel and Cu as absorber and
includes 8 full Silicon layers plus 14 hybrid layers of Si sensors and plastic scintillators with
SiPM readout. The electromagnetic radiation thickness and hadronic interaction thickness
of CE-E are 25X0 and 1.3� respectively, while the hadronic interaction thickness of CE-H is
8.2�. In total, The full HGCAL system has 620 m2 of Silicon and about 400 m2 of plastic
scintillators. The size of each Si sensor is 0.5-1.0 cm2 and the number of Si channels is about
6 million. The size of the scintillators is 4-30 cm2 and the number of scintillator channels is
about 240 thousand.

As a consequence of both high pile-up in the HL-LHC and enormous number of channels
in the HGCAL, the number of input hits to HGCAL clustering algorithm is huge, usually
in the order of n ⇠ O(105) in PU200 events, where n denotes the number of hits. The
clustering algorithm aggregates hits in 2D clusters layer by layer, producing about k ⇠ O(104)
clusters, where k denotes number of clusters. The average number of hits in a cluster is about
m = n/k ⇠ 10; therefore HGCAL clustering task is characterized by n > k � m. Since
cells are small compared to shower lateral size, an "energy density" is defined to better hint
regional energy blobs in the HGCAL clustering. After 2D clustering algorithm, 3D showers
in HGCAL are reconstructed by collecting and associating 2D clusters on di↵erent layers
using TICL algorithms [5].

The current trigger system in CMS consists of two levels: Level 1 Trigger (L1T) and
High Level Trigger (HLT). L1T utilizes customized ASICs and FPGAs to reduce the event
rate from 40 MHz LHC collision frequency to 100 kHz within a 4 µs time budget for decision;
HLT is fully based on C++ software running on CPUs and further reduces event rate from
100 kHz to 1 kHz with a 300 ms time budget for decision. However, in the era of HL-LHC,
CMS HLT expects 30 times more computing load: 1.3x from upgraded detectors with more

2

EPJ Web of Conferences 245, 05005 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505005

Image Credit

https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf

Clustering for the CMS Calorimeter
• A new parallelized algorithm, CLUE, has been developed

• Based on Clustering by Fast Search and Find Density Peak (CFSFDP)

• Calculate local density, ⍴, and separation, δ: distance to nearest point with
highest density (nearest higher)

• Identify cluster seeds based on ⍴ and δ
• Build follower list by registering each point as a follower to nearest higher

• Expand cluster by passing cluster indices from seeds to followers iteratively

• Four parameters

• Parallelization: Each cluster is expanded independently

104

Source

Figure 2: Demonstration of CLUE algorithm. Points are distributed inside a 6 ⇥ 6 2D
area and CLUE parameters are set to dc = 0.5, ⇢c = 3.9, �c = �o = 1. Before the clustering
procedure starts, a fixed-grid spatial index is constructed. In the first step, shown as Fig. 2
(a), CLUE calculates the local density ⇢ for each point, which is defined in Equation 2.3.
The color and size of points represent their local densities. In the second step, shown as
Fig. 2 (b), CLUE calculates the nearest-higher nh and the separation � for each point, which
are defined in Equation 2.4. The black arrows represent the relation from the nearest-higher
of a point to the point itself. If the nearest-higher of a point is -1, there is no arrow pointing
to it. In the third step, shown as Fig. 2 (c), CLUE promotes a point as a seed if ⇢, � are
both large, or demote it to an outlier if ⇢ is small and � is large. Promoted seeds and
demoted outliers are shown as stars and grey squares, respectively. In the fourth step,
shown as Fig. 2 (d), CLUE propagates the cluster indices from seeds through their chains
of followers defined in Equation 2.5. Noise points, which are outliers and their descendant
followers, are guaranteed not to receive any cluster ids from any seeds. The color of points
represents the cluster ids. A grey square means its cluster id is undefined and the point
should be considered as noise.

Figure 2 illustrates the main steps of CLUE algorithm. The local density ⇢ in CLUE is

defined as:

⇢i =
X

j:j2Ndc (i)

�(dij)wj , (2.3)

where wj is the weight of point j, �(dij) is a convolution kernel, which can be optimized

according to specific applications. Obvious possible kernel options include flat, Gaussian

and exponential functions.

The nearest-higher and the distance to it � (separation) in CLUE are defined as:

nhi =

8
<

:
argminj2N 0

dm
(i) dij , if |N 0

dm
(i)| 6= 0

�1, otherwise
, �i =

8
<

:
di,nhi , if |N 0

dm
(i)| 6= 0

+1, otherwise
, (2.4)

where dm = max(�o, �c) and N
0
dm

(i) = {j : ⇢j > ⇢i, j 2 Ndm(i)} is a subset of Ndm(i), where

points have higher local densities than ⇢i.

After ⇢ and � are calculated, points with density ⇢ > ⇢c and large separation � > �c

– 5 –

local density
nearest higher/

separation seed/outlier propagate to follower

https://arxiv.org/abs/2001.09761
https://arxiv.org/abs/https://science.sciencemag.org/content/344/6191/1492.full.pdf
https://arxiv.org/abs/2001.09761
https://arxiv.org/abs/https://science.sciencemag.org/content/344/6191/1492.full.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf
https://arxiv.org/pdf/2001.09761.pdf
https://arxiv.org/pdf/2001.09761.pdf

Clustering for the CMS Calorimeter

• CLUE is 30x faster than the previous algorithm on a single-threaded CPU

• GPU implementation obtains an additional speed up of 6x

105

Figure 4. Example of clustering result from previous algorithm in CMSSW_10_6_X (left) and CLUE-
CPU (middle) and CLUE-GPU (right). The example shows a small region on the 12th layer of a simu-
lated of tt̄ event.

Figure 5. Average execution time of HGCAL clustering for PU200 events. The testing platform is
based on Intel i7-4770K CPU and NVIDIA GTX 1080 GPU. Blue, orange and green bars represent ex-
ecution time of CMSSW_10_6_X, CLUE-CPU and CLUE-GPU respectively. Both CMSSW_10_6_X
and CLUE-CPU use a single CPU thread. Three green bars are three evolving versions of CLUE-GPU
and the most updated one is version 3 with 32 ms execution time, shown as the bottom-most green bar.

thread CPU, producing almost the same result but 30x faster. The GPU implementation
in CMSSW includes three versions. The first version is a plain CUDA implementation of
CLUE-CPU and average execution time is 159 ms. The second version combines the data of
all hits in the entire HGCAL as a single Structure of Array (SoA) to improve access to global
memory and to allow parallelization of hits on di↵erent layers. The average execution time
of the second version is reduced to 50 ms. The third version uses one-time GPU memory
allocation and memory release before and after processing all events respectively. It further
reduces execution time to 32 ms, which is decomposed into 6 ms for kernel execution, 20
ms for host-device data transportation and 6 ms for SoA conversion. The 6 ms total kernel
execution time is comparable with that in [7]. The speedup factor of CLUE-GPU over CLUE-
CPU is about 6x.

In the future, the latency due to data tra�c and SoA conversion can be shared with other
reconstruction processes if more processes are also o✏oaded to GPU. Such latency can also

5

EPJ Web of Conferences 245, 05005 (2020)
CHEP 2019

https://doi.org/10.1051/epjconf/202024505005

Image Credit

https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf

Trigger

106

Trigger Evolution

• Triggers have extremely low latency requirements

• Track reconstruction can be a challenge

• HEP has a long history of tracking in the trigger (e.g. LEP, Tevatron) using
hardware track triggers historically primarily relying on FPGAs
• FPGAs meet the low latency requirements

• Algorithms are evolving in two primary directions

• More computation and more complex algorithms (close to offline
physics performance) for the hardware trigger

• Triggerless read-out: no hardware trigger and the software trigger
processes all events

• Of course, the approaches can be mixed, e.g. when using hardware
accelerators in the software trigger

107

Source

https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf

Belle-II: 3D hardware tracking at L1
• Belle-II, the b-physics experiment at the SuperKEKB accelerator in Tsukuba,

Japan has full 3D hardware tracking in the L1 trigger

• Reject beam background using the Central Drift Chamber selecting on z

• 1.7 Tbsp rate out of CDC and average of 11 tracks/event

• FPGA system with a 5 μs latency

• 2D/3D Hough transforms and a neural network in firmware

108

13.10.23 K. Hahn - CTD 2023 - Realtime Tracking 4

Full 3D hardware tracking at Level-1 : Belle-II
● Reject beam backgrounds via tracking with the Central

Drift Chamber (14k sense wires)

– Selecting on z position

● 1.7 Tbps rate out of the CDC

– Data reduction via segment finding

● Average of 11 tracks / event

● FPGA-based system, 5 us latency budget

– 2D/3D Hough Transforms, and

Neural Net in firmware

● Hardware tracking operational since 2019, N.N. from 2021

State of the Art

Sebastian Skambraks et al 2020 J. Phys.: Conf. Ser. 1525 012102

Sebastian Skambraks et al 2018 J. Phys.: Conf. Ser. 1085 042026

Slide Source

ACAT 2019
Journal of Physics: Conference Series 1525 (2020) 012102

IOP Publishing
doi:10.1088/1742-6596/1525/1/012102

5

“Belle II Simulation”

Figure 2. Accuracy of the found track parameters with the 3D track finder in comparison to
the 2D track finder. The track parameter ranges (a) of Table 2 are used.

“Belle II Simulation”

(a)
“Belle II Simulation”

(b)

Figure 3. (a) Track finding e�ciency for tracks within the full detector acceptance region,
where tracks pass through all SLs of the CDC. (b) Track finding e�ciency for tracks with a
flatter polar angle ✓, where not all SLs of the CDC might get a hit.

ACAT 2019
Journal of Physics: Conference Series 1525 (2020) 012102

IOP Publishing
doi:10.1088/1742-6596/1525/1/012102

5

“Belle II Simulation”

Figure 2. Accuracy of the found track parameters with the 3D track finder in comparison to
the 2D track finder. The track parameter ranges (a) of Table 2 are used.

“Belle II Simulation”

(a)
“Belle II Simulation”

(b)

Figure 3. (a) Track finding e�ciency for tracks within the full detector acceptance region,
where tracks pass through all SLs of the CDC. (b) Track finding e�ciency for tracks with a
flatter polar angle ✓, where not all SLs of the CDC might get a hit.

Source

https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012102
https://iopscience.iop.org/article/10.1088/1742-6596/1085/4/042026/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012102
https://iopscience.iop.org/article/10.1088/1742-6596/1085/4/042026/pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012102
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012102

CMS: 3D hardware tracking at L1
• CMS upgrade will have hardware tracking at L1

• Algorithm relies on detector design

• pT modules to produce stubs for seeding

• 10x reduction in data, but ~15k stubs/BC,
O(Tbps)

• Stubs passed to FPGA system with 4 μs latency

• Road search and Kalman filter

109

Slide Source
13.10.23 K. Hahn - CTD 2023 - Realtime Tracking 5

 Full 3D hardware tracking at Level-1 : CMS upgrade
● Reject uninteresting “pileup” interactions

– Avg. 200 per beam crossing (25 ns) @ HL-LHC
– Improving object resolution, trigger efficiency, lowering rates

● Stubs : correlated signals in two closely separated silicon
sensors. Send only stub data consistent with pT > 2 GeV
– Reduces data by x10, but still 15k stubs/BX, O(50 Tbps)
– Stubs passed to FPGA-based system, 4us latency budget
– Road-seach (“tracklet”) track finding, Kalman filter

State of the Art

See talk
from Sara!

13.10.23 K. Hahn - CTD 2023 - Realtime Tracking 5

 Full 3D hardware tracking at Level-1 : CMS upgrade
● Reject uninteresting “pileup” interactions

– Avg. 200 per beam crossing (25 ns) @ HL-LHC
– Improving object resolution, trigger efficiency, lowering rates

● Stubs : correlated signals in two closely separated silicon
sensors. Send only stub data consistent with pT > 2 GeV
– Reduces data by x10, but still 15k stubs/BX, O(50 Tbps)
– Stubs passed to FPGA-based system, 4us latency budget
– Road-seach (“tracklet”) track finding, Kalman filter

State of the Art

See talk
from Sara!

13.10.23 K. Hahn - CTD 2023 - Realtime Tracking 5

 Full 3D hardware tracking at Level-1 : CMS upgrade
● Reject uninteresting “pileup” interactions

– Avg. 200 per beam crossing (25 ns) @ HL-LHC
– Improving object resolution, trigger efficiency, lowering rates

● Stubs : correlated signals in two closely separated silicon
sensors. Send only stub data consistent with pT > 2 GeV
– Reduces data by x10, but still 15k stubs/BX, O(50 Tbps)
– Stubs passed to FPGA-based system, 4us latency budget
– Road-seach (“tracklet”) track finding, Kalman filter

State of the Art

See talk
from Sara!

https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf

CMS HLT on GPUs

• CMS have already ported several
HLT algorithms to run on GPUs
for Run 3

• Pixel track & vertex
reconstruction

• Local calorimeter
reconstruction

• Out-of-time pileup subtraction

• Increases HLT throughput by 25%

• Ongoing work for additional
algorithms

110

D. vom Bruch 42

CMS reconstruction on GPUs

● Several algorithms ported to GPUs for Run 3:

• Track reconstruction in pixel detector

• Primary vertex reconstruction from those tracks

• Calorimeter local reconstruction

• Out-of-time pileup subtraction

● Crucial to allow close interlinking of CPU and GPU

software

B integrated into CMSSW (arXiv2004.04334)

● Work ongoing for other reconstruction algorithms

Front. Big Data 3 (2020) 601728

CERN EP software seminar

Slide Source

D. vom Bruch 43

CMS HLT performance with GPUs

● GPU oVoad provides 25% increase for HLT

throughput

● GPU candidate: Tesla T4

● 25% lower cost

● 20% less power consumption

CPU only CPU with GPU oVoad

See LHCP talk

https://indico.cern.ch/event/1100351/contributions/4629207/attachments/2352201/4159025/vom_Bruch_scientific_computing_heterogeneous_architectures_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629207/attachments/2352201/4159025/vom_Bruch_scientific_computing_heterogeneous_architectures_2022-05.pdf

LHCb: Triggerless Software Tracking
• LHCb L0 hardware trigger was removed for run-3

• 30 MHz (32 Tbps) to the HLT

• Allen framework used to perform full tracking on
the GPU in HLT

• Offline quality track reconstruction on GPU in
HLT

111

13.10.23 K. Hahn - CTD 2023 - Realtime Tracking 6

State of the Art

“Allen: A High-Level Trigger on GPUs for LHCb”,
Computing and Software for Big Science (2020) 4:7

Triggerless software tracking : LHCb
● Level-0 hardware trigger removed for Run-3

– Limits trigger yield for hadronic signals
– 30 MHz rate (32 Tbps) into the HLT!

● Full tracking (incl. with pixels) performed on GPU
– Co-located with FPGA/PCIe event building
– Simple track selections at this stage (HLT1)
– Full offline-quality reconstruction in CPU (HLT2)

● Object filtering applied for ~2/3 of the output data stream
– Significantly reducing output rate to tape
– Re-reconstruction not possible for these events D. vom Bruch 39

LHCb HLT1 computing performance

● Full HLT1 sequence implemented on GPUs

● Require about 180 GPU cards to process HLT1 @ 30 MHz

● Have slots for 500 cards

LHCb-FIGURE-2020-014

Conclusion

• With Moore’s Law coming to its (long prophesied end) beating flat
computing budgets with increasing computational demands requires
ingenuity

• Novel computing hardware presents one such possibility

• These lectures have provided a brief introduction to such hardware,
focussing on the types more commonly used in HEP

• We’ve also seen examples of how such hardware can be used in HEP

• But I’m sure there are many more possibilities

112

Acknowledgements

• These slides are largely based on slides from C. Legget, C. Koraka, D. Vom
Bruch [1], [2] and K. Hahn

• Additional material taken from S. Lantz, A. Gheata & S. Hageboek, C. Leggett,
B. Yeo

• Further material:

• C. Koraka, Introduction to Accelerated Computing, CERN Inverted
School of Computing 2023

• J. Lebar, Bringing Clang and C++ to GPUs: An Open-Source, CUDA-
Compatible GPU C++ Compiler at CppCon 20156

• NVidia Cuda Guide

113

https://indico.cern.ch/event/1328624/contributions/5610337/attachments/2775251/4836370/Intro_to_GPU_programming_HSFIndia.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1170079/attachments/2484554/4269719/cern%20openlab%20lecture%2021-07-2022.pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf
https://indico.cern.ch/event/1254984/contributions/5272175/attachments/2701180/4689011/CSC2023_SW_Design_ManyCore.pdf
https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf
https://cds.cern.ch/record/2851949
https://www.youtube.com/watch?v=KHa-OSrZPGo
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://indico.cern.ch/event/1328624/contributions/5610337/attachments/2775251/4836370/Intro_to_GPU_programming_HSFIndia.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1170079/attachments/2484554/4269719/cern%20openlab%20lecture%2021-07-2022.pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf
https://indico.cern.ch/event/1254984/contributions/5272175/attachments/2701180/4689011/CSC2023_SW_Design_ManyCore.pdf
https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf
https://cds.cern.ch/record/2851949
https://www.youtube.com/watch?v=KHa-OSrZPGo
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Back Up

114

ATLAS Detector
115

Source

https://cds.cern.ch/record/2837191
https://cds.cern.ch/record/2837191

The Compact Muon Solenoid (CMS)
116

https://cms.cern/detector

CMS Detector Slice
117

Source

https://cds.cern.ch/record/2120661/files/CMSslice_whiteBackground.png?version=1
https://cds.cern.ch/record/2120661/files/CMSslice_whiteBackground.png?version=1

ALICE Detector
118

Source

https://cds.cern.ch/record/2263642
https://cds.cern.ch/record/2263642

LHCb Detector
119

Introduction
• LHCb upgrade for Run III

• Detector upgrades to cope with increased luminosity
• Run II
• Run III

• Outline
• Trigger strategy in Run III
• Reconstruction
• Bandwidth studies

8th July 2017 EPS 2017 Venice - M. Whitehead 2

L = 4⇥ 1032 cm�2s�1(13 TeV)

L = 2⇥ 1033 cm�2s�1(14 TeV)

CERN-LHCC-2014-016 Trigger TDR

LHCb-PUB-2017-005

LHCb-PUB-2017-006

Smaller Experiments
120

FASER MoEDAL

LHCf TOTEM

search for light and extremely weakly interacting particles

neutral-particle production cross sections in the very
forward region of proton-proton and nucleus-nucleus

interactions

total cross section, elastic scattering and diffraction
dissociation measurement at the LHC

 magnetic monopoles or massive (pseudo-)stable
charged particles

Cellular Automaton Algorithm
121

GORBUNOV et al.: ALICE HLT HIGH SPEED TRACKING ON GPU 1847

Fig. 6. Reconstruction time on CPU for events with different track multiplicity.

Fig. 7. a) Neighbors finder. b) Evolution step of the Cellular Automaton.

The tracking algorithm starts with a combinatorial search for
track candidates (tracklets), which is based on the Cellular Au-
tomaton method [3]. Local parts of trajectories are created from
geometrically nearby hits, thus eliminating unphysical hit com-
binations at the local level. The combinatorial processing com-
poses the following two steps:

• 1. Neighbor finder: For each hit at a row k the best pair
of neighboring hits from rows k 1 and k 1 is found,
as it is shown in Fig. 7(a). The neighbor selection criteria
requires the hit and its two best neighbors to form a straight
line. The links to the best two neighbors are stored. Once
the best pair of neighbors is found for each hit, the step is
completed.

• 2. Evolution step: Reciprocal links are determined and
saved, all the other links are removed (see Fig. 7(b)).

Every saved one-to-one link defines a part of the trajec-
tory between the two neighboring hits. Chains of consecutive
one-to-one links define the tracklets. One can see from Fig. 7(b)
that each hit can belong to only one tracklet because of the
strong evolution criteria. This uncommon approach is possible
due to the abundance of hits on every TPC track. Such a strong
selection of tracklets results in a linear dependence of the
processing time on the number of track candidates. When the
tracklets are created, the sequential part of the reconstruction
starts, implementing the following two steps:

Fig. 8. Reconstruction performance for proton-proton collisions at 14 TeV.

Fig. 9. Reconstruction performance for central heavy ion collisions at 5 TeV.

• 3. Tracklet construction: The tracklets are created by fol-
lowing the hit-to-hit links as it is described above. The ge-
ometrical trajectories are fit using a Kalman Filter, with a

quality check. Each tracklet is extended in order to col-
lect hits being close to its trajectory.

• 4. Tracklet selection: Some of the track candidates can have
intersected parts. In this case the longest track is saved,
the shortest removed. A final quality check is applied to
the reconstructed tracks, including a cut on the minimal
number of hits and a cut for low momentum.

IV. TRACKER EFFICIENCY

The performance of the HLT track finder of 99.9% for proton-
proton events and 98.5% for central Pb-Pb collisions has been
verified on simulated events. Corresponding efficiency plots are
shown on Figs. 8 and 9. In addition to the high efficiency, the
real-time reconstruction is an order of magnitude faster than the
off-line algorithm used as reference.

The described algorithm has the advantage of a high degree of
locality and parallelism. Step one only searches for local neigh-
bors to each hit. It can be done in parallel for all the hits as the
result does not depend on the order of processing. Step three

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 22,2024 at 09:27:44 UTC from IEEE Xplore. Restrictions apply.

GORBUNOV et al.: ALICE HLT HIGH SPEED TRACKING ON GPU 1847

Fig. 6. Reconstruction time on CPU for events with different track multiplicity.

Fig. 7. a) Neighbors finder. b) Evolution step of the Cellular Automaton.

The tracking algorithm starts with a combinatorial search for
track candidates (tracklets), which is based on the Cellular Au-
tomaton method [3]. Local parts of trajectories are created from
geometrically nearby hits, thus eliminating unphysical hit com-
binations at the local level. The combinatorial processing com-
poses the following two steps:

• 1. Neighbor finder: For each hit at a row k the best pair
of neighboring hits from rows k 1 and k 1 is found,
as it is shown in Fig. 7(a). The neighbor selection criteria
requires the hit and its two best neighbors to form a straight
line. The links to the best two neighbors are stored. Once
the best pair of neighbors is found for each hit, the step is
completed.

• 2. Evolution step: Reciprocal links are determined and
saved, all the other links are removed (see Fig. 7(b)).

Every saved one-to-one link defines a part of the trajec-
tory between the two neighboring hits. Chains of consecutive
one-to-one links define the tracklets. One can see from Fig. 7(b)
that each hit can belong to only one tracklet because of the
strong evolution criteria. This uncommon approach is possible
due to the abundance of hits on every TPC track. Such a strong
selection of tracklets results in a linear dependence of the
processing time on the number of track candidates. When the
tracklets are created, the sequential part of the reconstruction
starts, implementing the following two steps:

Fig. 8. Reconstruction performance for proton-proton collisions at 14 TeV.

Fig. 9. Reconstruction performance for central heavy ion collisions at 5 TeV.

• 3. Tracklet construction: The tracklets are created by fol-
lowing the hit-to-hit links as it is described above. The ge-
ometrical trajectories are fit using a Kalman Filter, with a

quality check. Each tracklet is extended in order to col-
lect hits being close to its trajectory.

• 4. Tracklet selection: Some of the track candidates can have
intersected parts. In this case the longest track is saved,
the shortest removed. A final quality check is applied to
the reconstructed tracks, including a cut on the minimal
number of hits and a cut for low momentum.

IV. TRACKER EFFICIENCY

The performance of the HLT track finder of 99.9% for proton-
proton events and 98.5% for central Pb-Pb collisions has been
verified on simulated events. Corresponding efficiency plots are
shown on Figs. 8 and 9. In addition to the high efficiency, the
real-time reconstruction is an order of magnitude faster than the
off-line algorithm used as reference.

The described algorithm has the advantage of a high degree of
locality and parallelism. Step one only searches for local neigh-
bors to each hit. It can be done in parallel for all the hits as the
result does not depend on the order of processing. Step three

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 22,2024 at 09:27:44 UTC from IEEE Xplore. Restrictions apply.

Source

https://ieeexplore.ieee.org/document/5934702
https://ieeexplore.ieee.org/document/5934702

122

C. Leggett 2019-12-04
2

A Brief History of GPUs

► Original purpose: make pretty pictures on your screen, much faster and prettier than
your CPU could do
• first graphics cards appeared in 1970s in arcade games, and even earlier (1950s) in

military flight sims. Mainly used to accelerate sprite graphics

• 1981: IBM introduced Monochrome Display Adapter: 80 x 26 lines of text!

• 1983: IBM ups resolution to 256x256x8 colors and monochrome at 512x512

• 1985: ATI founded, introduces "Wonder" line of cards: start of consumer 2D acceleration

• 1991: S3 Graphics introduces "86C911", major increase in 2D acceleration

• OpenGL, and Windows APIs for graphics such as WinG and DirectDraw begin to appear

• 1994: Sony coins "GPU" (Graphical Processing Unit) name for PlayStation graphics card

• 1995: 3DFx "Voodoo": first mainstream 3D accelerated cards

• 1999: NVidia introduces GeForce 256: hardware acceleration for transforms, lighting,
triangle setup/clipping, rendering

• 2000+: manufacturers add more hardware for specific tasks, eg shading, explosions,
vertex blending, bump mapping, refraction

• 2007: NVidia releases CUDA development environment: General Purpose GPU computing
• GPUs become less specialized, with more generalized computing elements

• 2009: OpenCL (Open Compute Language) released. targets heterogeneous computing

123

D. vom Bruch 8

SISD, MIMD & SIMD

SISD MIMD SIMD

Single Instruction Single Data Multiple Instruction Multiple Data Single Instruction Multiple Data

Uniprocessor machines Multi-core, grid-, cloud-
computing

e.g. vector processors

124

D. vom Bruch 9

Single Instruction Multiple Threads (SIMT)

SISD MIMD SIMT

Single Instruction Single Data Multiple Instruction Multiple Data Single Instruction Multiple
Threads

Uniprocessor machines Multi-core, grid-, cloud-
computing

GPUs

125

D. vom Bruch 10

SIMD versus SIMT

SIMD
● Vectorized instructions executed on modern CPU

SIMD cores are executed in lockstep
● No synchronization barrier is needed, as all elements

of the vector finish processing at the same time

SIMT
● Similar to programming a vector processor
● Use threads instead of vectors
● No need to read data into vector register
● GPUs consist of multiple processing elements, each

with multiple SIMT GPU cores
C not all threads are processed in lockstep

● A synchronization instruction is required on GPUs

126

D. vom Bruch 8

Heterogeneous solutions & sustainability: Green500

https://www.top500.org/lists/green500/2021/11/

● All top 5 Green500 use accelerators

● 4/5 use Nvidia GPUs combined with AMD Epyc

● MN-3 uses an accelerator optimized for matrix

arithmetic

● Of the top 30 Green500:

• 26 use Nvidia GPUs

• 3 use A64FX vector-processors (ARM)

• 1 uses a many-core microprocessor (PEZY-

SC3)

