Novel Computing Hardwares in HEP

Heather M. Gray

\

B k 1 fIrrrnnrr I“‘
CTKEC €y CHACAL 2024

UNIVERSITY OF CALIFORNIA BERKELEY LAB

Introduction

* Associate Professor of Physics at UC
Berkeley and Faculty Scientist at
Lawrence Berkeley Laboratory

* BSc, BSc(Hons), MSc at UCT (2005)
* PhD at Caltech (201 1)
* Research Fellow and Staff at CERN

* Member of the ATLAS
experiment since 2005

* Tracking Convener

* Simulation Convener Berkeley ”/r}‘ ﬁ‘

o (Currenﬂy) Data Preparauon UNIVERSITY OF CALIFORNIA BERKELEY LAB
Coordinator

* Primary expertise: SM & Higgs physics,
tracking, software, ...

Lecture Outline

* Introduction & HEP Computing Challenge
* Part I: Novel Computing Hardware
* Hardware Accelerators
* GPUs
* FPGAs
* New Computing Paradigms
* GPU Programming Taster
* Part 2: Application to HEP
* Event Generation
* Simulation
* Reconstruction
* Trigger

 Conclusion

Hardware

* Lectures at this school have been primarily focused on software

* These lectures provide an introduction to the ongoing evolution of
computer hardware and illustrate how it provides new
opportunities in HEP

Hardware is the Foundation

§ Application

-]

5

ED Programming Language Programming Models
o

Runtime Libraries, Interpreter

System

OS support for resource management (threading, memory, scheduling)

Shared Memory Disk

Hardware

Accelerators

< Network
#1889 Cornell University
w4/ Center for Advanced Computing

Source

https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf

Traditional Computing Architectures

* Computing in HEP currently relies

primarily upon large numbers of
Central Processing Units (CPUs)

* CPUs are silicon-based microprocessors

* Can perform an extensive variety of
tasks

* Operations are typically performed
serially

Image Credit

* Programs are sequences of
operations processed in a sequential
order

Image Credit

microprocesser: logic and control on a single integrated circuit

https://www.intel.com/content/www/us/en/homepage.html
https://www.intel.com/content/www/us/en/homepage.html
http://www.apple.com
http://www.apple.com

CPU Components

* CPUs consist of three principal components

e Control Unit
* Directs the processor operation
* Manages computer resources

* Arithmetic Logic Unit (ALU)
* Performs integer arithmetic and logical operations

4 B
CPU
~| Control |*
Unit Instructions
' B Integer Integer
r ~ Operand Operand
Procescor
Registers |+ A \/ B
| ' Status
— l_ Status
»|Combinational
—| Input > Logic »| COutput p—> Opcode Y
k , !
\ v,
Integer
Main - Result
»| Memory
By Lambtron - Own work, CC BY-
SA 4.0, https://
commons.wikimedia.org/w/
index.php?curid=36975996

By User:Lambtron - File:ABasicComputer.gif, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?curid=123099855

CPU Components

* Registers

* Rapidly accessible storage locations accessible to processors

* Supplies operands and stores results from ALU
* CPUs are implemented on integrated circuit (IC) microprocessors

e Eac

e Mu
 Multithreaded cores can

'
CPU

-\

-

> Coentrol
Unit

Instructions

~

Procecscor

Registers

4

|Ccmbinationall_

4

Logic

Yy rl

-»| [nput

Cutput

Main

»| Memory

Source

n IC chip can have one or multiple CPUs (known as cores)

ti-core processors are chips with multiple CPU
oe used to make virtual CPUs

Integer Integer
Operand Operand

A \/ B
Status
Status
Opcode Yy

Integer
Result

Source

http://www.apple.com
http://www.apple.com
http://www.apple.com
http://www.apple.com

CPU Architectures: x86 and ARM

* Most personal computers sold today have CPUs based on the x86
architecture

* x86 is a set of complex instruction set computers (CISC)
initially developed by Intel

* Most smartphones and tablets use ARM (Advanced RISC machines)
* RISC: Reduced instruction set computers

* Reason: CISC can handle more complex tasks and calculations but
RISC has better power efficiency

* Both are closed source owned by Intel and ARM respectively

Moore’s Law

 Moore’s law: the number of transistors in an integrated circuit doubles
approximately every two years

* Observation named after Gordon Moore (founder of Intel)

Qur World
in Data

\kunvslun\ HN‘HHHHN‘(ﬂilJnM\HHS(HInH(HMIHDSdOHhk‘(WOI\P“OXCJIS

er of transis

1 JU 3NNLE

TFQH‘QIQTOI (‘OlJl"If

cnoes
Pl is i

ULPALELE)

e

al reet
Ll other

hat 1

A ints

cated cincoit
wrouln

}
S

o9
8o
807
hd
<
hi 15 fIr

douale= APDNaE
Y I spe2id o

R P

°
022
8
°3398§§
88,
§°°o

R OF

‘.

F THE NUMBE

~
v

62
COMFONENTS PER INTEGIATED FUNCTION

]

LC

16 =
15 R
|& /.
13 -
17 ,/
N | /I
10+ /
9e d
| 4
5" o
7]—. ’
3
st
ar
3 "
- 15
“
| »/
C L‘r - L A] L 1
OO NuNMITOVENSNOOO—0Nad
NDULCELEPOLCEOLREOMN~NNN~A N
DRDCTHNTCNOCAROIOE
YFAR
Pige I Mumber of compoatas per Wategralec
findtise fa: wnlu/voein <ost Pes Cdiagu s mat
MEFISATNE Yo VT,
Source

Moore's law. (2024, January 16). In Wikipedia. https://en.wikipedia.org/wiki/Moore%?27s_law

https://web.archive.org/web/20211221191553/http://www.monolithic3d.com/uploads/6/0/5/5/6055488/gordon_moore_1965_article.pdf
https://web.archive.org/web/20211221191553/http://www.monolithic3d.com/uploads/6/0/5/5/6055488/gordon_moore_1965_article.pdf

Moore’s Law
This simple observation hides a more complex reality

50 Years of Microprocessor Trend Data

' ' ! ! {9
7 | PR
10 e | ap % | Transistors
10 | ‘A ta 4 _|(thousands)
5 L Single-Thread
10 as o0 ¥
- Performance
ol Vectorization f [(SpecINT x 109
L Bl ol |'|'ﬂ Frequency (MHz)
103 B uF L hn . e
ree Lunc ' M '
o | A . ' "‘% v"'i TV):/pmal Power
10 $o ";'vv A4 .‘o“ox(atts)
1 . - v ;0..'§ "7 Number of
L . N L 5 * o3 **| Logical Cores
ol = = _— i vy VY ‘ 000
"|0 — ‘ L 4 * o *o o W MMOO Pal"a”ehzathn
| | l
1970 1980 1990 2000 201 0 2020

Year
Qriginal data up to the year 2010 collected and plotted by M. Horowilz, F. Labonte, O. Shacham, K. Olukotun. L. Hammond, and C. Balten
New plot and data collected for 2010-2021 by K. Rupp

Image Credit Slides after

https://github.com/karlrupp/microprocessor-trend-data?tab=readme-ov-file
https://github.com/karlrupp/microprocessor-trend-data?tab=readme-ov-file
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf

Vectorization

* Most modern processors provide vectorization
* Also known as Single Instruction Multiple Data (SIMD)
* Data is stored in vector registers
* Instructions must be executed in lockstep
* No synchronization is needed
* Multithreading used threads instead of vectors
* Also known as Single Instruction Multiple Threads (SIMT)

* Synchronization is required between threads as the execution time can vary

Categorization introduced in the 1960s by Flynn (and then modified by others)

11

Parallelism Strategiess

Code

Daia

Register

Code

Data

Single Processor Single Thread

Server

processor
evolution

Wood-crest

Freq (GHz)

Register

Single Processor Multithread

w - -

2006 2009 2015 2016 2017
2 4 18 24 28
3.0 3.33 2.1 2.2 2.5
L2 L3 L3 L3 L3

(4MB) (8MB) (45MB) (60MB) (38MB)

Evolution of server processors
(https://ark.intel.com / https://amd.com)

Multiprocessing

(3.4 boost)

(60MB)

Image Credit

AMD Epyc

2022

64

(128 SMT)

2.2

(3.5 boost)

L3

(768MB)

Image Credit

https://indico.cern.ch/event/1254984/contributions/5272175/attachments/2701180/4689011/CSC2023_SW_Design_ManyCore.pdf
https://indico.cern.ch/event/1254984/contributions/5272175/attachments/2701180/4689011/CSC2023_SW_Design_ManyCore.pdf
https://towardsdatascience.com/multithreading-and-multiprocessing-in-10-minutes-20d9b3c6a867
https://towardsdatascience.com/multithreading-and-multiprocessing-in-10-minutes-20d9b3c6a867

13

Computing In HEP

* As you've seen these past two weeks, software and computing are used
everywhere in high-energy physics

* Controls accelerator and detectors, trigger on interesting events, simulate
the physics and the detectors, reconstruct the data, perform physics analysis,
etc, etc.

* High-energy physics has also been responsible for driving many
developments in computing, e.g. the world wide web

Source

http://www.apple.com
http://www.apple.com

HEP Computing Challenge

* Historically, HEP has relied on Moore’s Law to meet computing needs™
despite flat budgets

* In addition, computing needs are about to grow rapidly with the advent
of the HL-LHC and will grow even further with future colliders

* Computing needs cannot be met through “business as usual”

Annual CPU Consumption [MHSO08years]

50

40

30

20

10

0

2020 2022 2024 2026 2028 2030 2032 2034 2036

Run 3 (u=55) Run 4 (u=88-140)

Run 5 (u=165-200)

ATLAS Prellmlnary
2022 Computing Model - CPU

® Conservative R&D
v Aggressive R&D

— Sustained budget model P
(+10% +20% capacity/year))

l 1 1 | 11 1 | 111 | 1 1 | 1 1 | 11 1 | 1 1 | 1 1 |

|

»

D)
IIII|IIII|IIII|IIII|I

Image Credit

Year

*computing needs =
offline computing
needs

Disk space is also a
challenge, but not
something I'll cover
today

14

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/

15

Example: Reconstruction Challenge

* For ATLAS and CMS, the HL-LHC will bring
e 5=7x increase in luminosity (LHC accelerator upgrade)
* 4-5x increase in event size (new detectors)
* 10x increase in event rate (trigger upgrade)

* The problem will be far worse at future colliders such as FCC-hh
with up to 1000 (!) additional collisions (pile up) per bunch crossing

Pile up

> 100:'"'I""I""I""I""I""I""I""I‘ y
: - Reconstruction of 2017 pp data, (s =13 TeV N =
= 0F i Athena release 21.0.37 tuned for (u) = 30 = 8
o) ~ onlntel” Xeon" CPU E5-2630 v3 - - ~
5 80 low-u reference runs 10862 luminosity blocks _;’ - 8
D — [high-p run 335302 463 luminosity blocks = 3 102 @
e 70 L — >
A £ 3 3
© — —
= _F E E
= S0 . E 3
40F- I 10
30F- ar =
202_ =-=_“ _f ; 2 . ! ““:‘ ! i\ \
10 “E " ATLAS Preliminary — .
T & ﬁ proton-proton collision vertex
q 0O 20 30 40 50 60 70 80 90 100

()

HW Trigger Rate (Hz)

16

Example: Trigger Challenge

1.E+08

1.E+07

1.E+06

1.E+05

1.E+04

1.E+03

1.E+02

1.E+01

1.E+00

1.E-01

1.E-02
1.E+00

. LHCb Run 3

. LHCb

@ Hera-B

UAl

@ cori/oon
BaBar
CDF / DO

H1/ZEUS

NA4
® 9

® ep

TLAS Run 4

. CMS Run 4

. ALICE

Not shown, potential LHCb and
ALICE upgrades

1.E+01

1.E+02

1.E+03

A. Cerri

1.E+04

. ATLAS / CMS
. ALICE Run 3

1.E+05

Trigger rate increases by more
than an order of
maghnitude for ALICE and
LHCDb for Run 3

Trigger rate increase by an
order of magnitude for
ATLAS and CMS for Run

4
DUNE SuperNova
Even sizes for
DUNE but lower rate
DUNE
1.E+06 1.E+07 1.E+08

Event Size (kB)

17

Other Challenges

Challenges anticipated at each step of the data processing and simulation
chain
Data Simulated
Data

ATLAS Preliminary
2022 Computing Model - CPU: 2031, Conservative R&D

24% Tot: 33.8 MHS06*y

Data Proc
MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen
Heavy lons
Data Deriv
MC Deriv
Analysis

8%

8%

Image Credit

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/

18

Beyond CPUs

 Hardware accelerators are custom-made hardware designed to
perform specific functions more efficiently than CPUs

* Wide variety of hardware accelerators depending on the application
 e.g GPU, FPGA, TPU ...
* We use hardware accelerators frequently in our daily lives

* e.g. graphics acceleration, encryption, machine learning, decoding video
streams

* As we'll see later; a large fraction of the power in High Performance Centers
(HPCs) comes from GPUs

* “New” computing paradigms

* Neuromorphic computing, quantum computing....

Common Types of Hardware Accelerators

Graphical Processing Units (GPUs)
e.g. NVidia, AMD, Intel

Source Source

Field Programmable Gate Arrays (FPGAS)
e.g. Xilinx,Altera

Source

Source

19

https://www.nvidia.com/de-de/data-center/a100/
https://www.nvidia.com/de-de/data-center/a100/
https://www.amd.com/en/graphics/radeon-rx-graphics
https://www.amd.com/en/graphics/radeon-rx-graphics
https://www.intel.com/content/www/us/en/products/details/discrete-gpus/arc.html
https://www.intel.com/content/www/us/en/products/details/discrete-gpus/arc.html
https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html
https://www.xilinx.com/products/silicon-devices/resources/programming-an-fpga-an-introduction-to-how-it-works.html
https://www.linkedin.com/pulse/xilinx-fpga-vs-altera-what-difference-ebics-fpga
https://www.linkedin.com/pulse/xilinx-fpga-vs-altera-what-difference-ebics-fpga

Using Hardware Accelerators

* One approach is to identify the most computationally intensive
parts of the code and parallelize those to be executed on the
accelerator

* The rest of the (ideally sequential) code is executed on the CPU
* This requires data to be transferred to and from the CPU

e Can be the bottleneck in execution

Code

10011010010000001010

01010010010010010100

geralt/pixabay

20

More generally: heterogeneous Computing

* More generally one can mix and match different processors, which is
termed heterogeneous computing

* Different platforms can be used concurrently

Heterogeneous and Reconfigurab

Memory

Data-parallel

CPU

CPU

CPU ‘

CPU

Memory

CPU |

CPU

CPU

CPU

170

Multicore CPU

Memory

le Computer Architecture

Reconfig
-urable
Unit

DSP DSP

Reconf:’gurable

Source

21

https://www.iti.uni-stuttgart.de/en/chairs/ca/projects/oldprojects/simtech
https://www.iti.uni-stuttgart.de/en/chairs/ca/projects/oldprojects/simtech

22

Heterogeneity in super computers

Rank System

Source

Smax Rpeak Pewer
Cores PFlon/s) |PFlop/s) kW)

8,6Y7,7Us 1,174.00 677.4¢ 24,703

AMD CPU & GPU
Intel CPU & GPU

Intel CPU & NVidia GPU
ARM

AMD CPU & GPU

Source

Not particularly heterogeneous in terms of
operating system (Linux) or processor family

(95% Intel)

Slide Inspiration

https://www.top500.org/lists/top500/list/2023/11/
https://www.top500.org/lists/top500/list/2023/11/
http://www.apple.com
http://www.apple.com
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf

Current and Future HPCs

Increasingly complex
heterogeneous ecosystem

23

Accelerators

computing Cori
architectures Leonardo
- Or - Intel | Aurora Piz Daint
a disaster? (Tsukuba Amazon EC2 P3
MareNostrum :
- * Amazon Graviton?2
rontier .
AMD Perlmutter Ele o0 Gc?ogle Cloud TPU
Ep—— * Microsoft Azure
IBM Siuerral Intel DevCloud
MareNostrum|
Arm Wombat
Fujitsu

HPC = High Performance Computing

24

Parallelization: Amdahl’s Law

Speedup

20

18

16

14

12

10

Amdahl's Law

,-’"”
e
//
/ Parallel portion
/ 50%
/ eoneees 7596
/ —— 90%
// ——— 05%
/
/ ____________________ —
7/ P
/ -~
NN T e 2§ 3 88 33 % 88 3 8 o8
- o o o i ™ N~ (19]
L | ™N < @ o© g :.2
o
Number of processors
Source

Speed up in latency
1/(S + P/N)
S: sequential part of program
P: parallel part of program
N: number of processors

Import: Speedup depends on how much of the problem can be parallelized

Slide Source

https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
http://www.apple.com
http://www.apple.com

Why GPUs?

arXiv:2003.11491

@ g
8 4 ' y
- ve o o6 ®7
— 10! 4 b @2 ® . .
[,] 3 v 4 e F
O ve, .E
C

" . -
o !l
E . = VI
O A B I vV [}
O 1004 e B * - VI
8 I & A
o A dd 92
(b)] A
ﬁ A A i

A

= bb ea

10_1 T T T T T
2012 2014 2016 2018 2020

Release date

TmOO o >

SQ PO AONTO

25

® Nvidia consumer GPUs
V¥ AMD consumer GPUs
B Nvidia scientific GPUs
® AMD scientific GPUs
A Intel & AMD CPUs
: RadeonHD7950 1: GTX680
: RadeonHD8950 2: GTX760
RadeonR9285 3: GTX970
: RadeonR9390 4: GTX980Ti aa: E5-2690
: RadeonR9FuryX 5: GTX1060 bb: E5-2697-v2
RadeonRX4604GB 6: GTX1080Ti €C: E5-2630-v3
: RadeonRXVega56 7: RTX2080Ti dd: E5-2630-v4
. RadeonVII ee: Platinum-8180
|: KZO ff EPYC-7702
: FireProw9000 Il: K40 gg: EPYC-7452
: FireProw9100 Il: K80
: FireProw4300 IV: M60

: RadeonProwXx7100 V: P100-16GB

: RadeonProwx9100 VI: V100-32GB

RadeonProwx8200 VII: RTX6000
VIll: T4

Main reason: Higher computing speed

Introduction to GPUs

* GPUs are silicon microprocessors containing cores, register, memory, etc
e Many-core processors

* Follow the single instruction, multiple threads (SIMT) execution
model

* Asynchronous programming model, i.e. threads are not executed in
lockstep

Image Credit

20

https://www.nvidia.com/de-de/data-center/a100/
https://www.nvidia.com/de-de/data-center/a100/
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf

GPU vs CPU

» CPU: __ . .
_ e P
» small number of complicated cores o T
* branch prediction e ||| T O
. e (e
* prefetching = D e
. Cacie = DR
« multiple levels of large caches B EEE T
* low latency — m—
CPU GPU
» GPU:

« very many (100k+) simple cores
* much more hardware for low precision ops than dp

» cores in a block operate in lockstep
* branch mis-prediction causes stalls for many cores

- small cache

 vectorized memory ops

* high throughput, high latency
* low power (per FLOP)

Slide Credit: C. Leggett

28

Modern GPU

4)
NVidia V100

* 6 Graphics Processor Cluster

e 42 Texture Processor Cluster |+ 7.8 TFLOP FP64

« 84 Streaming Multiprocessor 15.7 TFLOP FP32 |
4x 8 FP64 125 TFLOP Tensor matrix mult —

3 O 0 W Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
° 4 X 1 6 F P3 2 Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)
* 4x 16 INT32
FP64 INT FP32 FP32 FP64 INT INT P32 FP32
e 2T C
e n S O r O re FP64 INT FP32 FP32 FP64 INT INT [FP32 FP32

PCI Express 3.0 Host Interface

FP64 INT FP32 FP32 FP64 INT INT [FP32 FP32

FP64 INT FP32 FP32 TENSOR TENSOR FP64 INT INT FP32 FP32 TENSOR TENSOR

FP64 INT FP32 FP32 GORE CORE FP64 INT INT FP32 FP32 GORE GORE

FP64 INT FP32 FP32 FP64 INT INT [FP32 FP32

FP64 INT FP32 FP32 FP64 INT INT |FP32 FP32

Memory Controller
J8]j013u0) Aiowa

FP64 INT FP32 FP32 FP64 INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Warp Scheduler (32 thread/clk] Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

Memory Controller
“_yonuo) Aiowasy

FP64 INT FP32 FP32 FP64 INT INT FP32 FP32
FP64 INT FP32 FP32 FP64 INT INT |FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

TENSOR TENSOR TENSOR TENSOR

FP64 INT FP32 FP32 BRH ORH FP64 INT FP32 FP32 ORH ORH

o
2
£
15
3
o
=
o
E
I3
=

J19]]03u09 Kioway

FP64 INT FP32 FP32 FP64 INT FP32 FP32

T - e - m— - — - — — - - — - — — — e - — - — — — FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST SFU ST ST ST ST ST ST ST ST SFU

Memory Controller
J8jjonuo) fiowapy

NVLink NVLink NVLink NVLink NVLink

Slide Credit: C. Leggett

Types of GPU

Scientific GPUs Gaming GPUs
~3 times more single precision TFLOPS than ~40 times more single precision
double precision TFLOPS than double precision
Precision
- suited for double precision - not well suited for double
precision
Error correction Available Not available
Connection NVLink & PCle Only PCle
Price ~5-6 x the price of gaming GPUs Several hundred dollars
Depending on model (and year)

Source

https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf

Specification

GPU vs. CPU: Specifications

30

AMD Ryzen Threadripper 3990X Nvidia A100
Core count 64 cores [128 threads 6912 cores
Frequency 2.9 GHz 1.41 GHz
Peak Compute Performance 3.7 TFLOPs 19.5 TFLOPs (single precision)
Memory bandwidth Max. 95 GB/s 1.6 TB/s o
Memory capacity Max O(1) TB 40/80 GB
Technology 7 nm 7 nm
Die size 717 mm? 826 mm?
Transistor count 3.8 billion 54.2 billion

Model

Minimize latency

Hide latency through parallelism

Source

https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf

Threads, warps and blocks

e On a modern GPU, computations are executed by threads
e Threads are grouped into a warp

o 32 threads in a warp

o all threads in a warp execute the same instruction

o in-warp branches or divergent memory access will cause stalls

and poor performance

o Threads are executed w/ in-order processing on a “core” or ALU
e \Warps are grouped into a block, launched by warp scheduler

o must execute on same Streaming Multiprocessor (SM)

m (max 1024 threads/block)

o share resources of a SM (registers, cache lines, shared mem)

o only threads in a block can synchronize execution w/ barriers
e Blocks are grouped into grids

o logically organized as 1D, 2D or 3D groups of blocks in a grid

31

Grid

Block(0,0) | Block(1,0) Block(2,0)

Block(0, 1) | Block(1, 1) “Block(2, 1)

Block(1, 1)

e Modern GPUs need many threads for full occupancy: hide instruction latency w/ oversubscription
o NVidia A100: 64 [warp schedulers/SM] * 32 [threads/warp] * 108 [SMs] = 221184

Slide Credit: C. Leggett

GPU Memory Hierarchy (CUDA)

>

Several different levels of memory explicitly addressable, with different levels of

access speed and bandwidth

Register
- fastest
- used for allocating variables private to each thread

 only small number available per SM. using too many will
reduce the number of concurrent thread blocks on a SM

Shared

* on chip - lower latency and higher bandwidth than global

» shared among threads in a block. using too much will
reduce number of active warps

Global

» visible by all threads and SMs on device

- allocated and freed by host

* large: up to 32GB on some devices

 slow: can take several hundred cycles to access

Grid

Block (0, 0) Block (1, 0)

Shared Memory Shared Memory

Registers Registers Registers Registers

Slide Credit: C. Leggett

32

33

GPU Memory Hierarchy (CUDA)

» Constant
- fast, read only device memory
* allocated by host, visible to all kernels and SMs
 allocated on a separate cache in each SM

* for best performance, all threads in a warp should access
same memory location Shared Memory Shared Memory

» Texture
- fast, read only device memory allocated by host
* separate cache on each SM
 optimized for 2D memory access

» Local = = =N | ==
» virtual concept, actually located in global memory

 used for register spills, variables that can't fit into registers,
arrays whose indices can't be deduced at compile time

» Memory transfers between device and host have large

latencies (many hundreds of cycles), throughput limited

by bus (PCie 3: 32 GB/s; NVLink = 300GB/s bidirectional)
* memory transfers can introduce synchronization points

+* Improper memorv usaae bv kernels can result in extremelv poor performance

Grid

Block (0, 0) Block (1, 0)

Slide Credit: C. Leggett

34

Memory Access Pattern

Allocate global memory on device (from host)
Copy memory from host to global device memory

Load data from device memory to shared memory

« Synchronize with all the other threads of the block so that each thread can safely read
shared memory locations that were populated by different threads

Process the data in shared memory

Synchronize again if necessary to make sure that shared memory has been updated
with the results

Write the results back to device memory
Transfer device memory back to host

Memory structures and layouts have changed significantly between different
generations and architectures of NVidia devices

* for best performance, tuning to specific card / architecture is necessary

Intel and AMD devices have the same multi-level hierarchy, but with their own specific
peculiarities

Slide Credit: C. Leggett

Pinned Memory

» Memory allocated on the host RAM can be swapped out

 they are "pageable”

» GPU cannot directly access pageable host memory
* must first be copied to page-locked or "pinned" array
* then transferred to device
* can cause a significant overhead

» Can explicitly allocate pinned host memory to
minimize copying
» pinned memory is lost to the system until freed

35

Pageable Data Transfer

Pinned Data Transfer

Device

A

=7
es

oo
<

Slide Credit: C. Leggett

36

GPU Memory Hierarchy (SyCL)

» SyCL manages memory in a more abstract manner than CUDA
» separates the concepts of storage from access

» Memory is created/allocated in sycl: :buffers<TYPE>(SIZE)

» Memory is accessed via sycl: :accessor<access_mode, access_target>

e access_mode can be read, write, read_write, atomic, etc
* access _target can be host, global, constant, image, etc

CUDA name SyCL name
> No explicit data movement in SyCL. Data is Register memory Private memory
automatically moved between host and device Shared memory Local memory
as needed by the kernels Global memory Global memory
_ Constant memory Constant memory
» Depending on the access type, and access target,
. . Texture memory Image memory
SyCL will try to put the memory in the most
Local memory N/A

optimal location

Slide Credit: C. Leggett

37

Unified Memory

» Recently, concept of "unified memory address space" has been introduced
« CUDA, hip, dpcpp

» Creates a pool of managed memory that is shared between the CPU and GPU
» Accessible to both the CPU and GPU using a single pointer

» Automatically migrates data allocated in Unified Memory between host and device
e transferred on demand

* |looks like CPU memory to code running on the CPU, and like GPU memory to code
running on the GPU

» Can override new allocator, so C++ objects created in unified managed memory
« enables deep copies of complex objects

» Makes device programming much simpler

> Not as performant as explicit device memory management
 will not overlap kernel execution in streams with asynchronous memory transfers

N\

Slide Credit: C. Leggett

Performance Comparisons

* Compare performance using Floating-Point Operations per Second

(FLOPS)
* GPUs deliver almost an order of magnitude for FLOPS/sec

Theoretical Peak Performance, Single Precision

10%
3
o 10°
o
2
L
©)
: oD o : : .
6& %Q) ' ']
10° -AT’*'{ g e SREEEEEEEES INTEL Xeon CPUs == -
» b‘% b‘q 6)6%] 1 L
{© 4, R\ : : NVIDIA GeForce GPUs —Jil—
' : : AMD Radeon GPUs —{)— |
: ' INTEL Xeon Phis =t -
1 1 1 1 1
2008 2010 2012 2014 2016
End of Year

Image Credit

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

GPU Power Consumption

* Power consumption is often the limiting factor in hardware manufacturing/
use

* Performance constrained by the amount of power drawn and heat
dissipated

» Study power consumption using FLOPs per Watt of energy consumed

Theoretical Peak Floating Point Operations per Watt, Single Precision

107 T T T |
' _@\-\ﬁ
X .
\\\\\\0 |
N
- Y
1 § 2
>
] Q o: :
g o w0t e '
= (o = A Xean Phi. 7120 (KNC) , /=i _ s |
10 -, o™
g B,QQ?Q il
g =
2] '
2 |
o)
.|
L
O
R I S N . . INTEL Xeon CPUs =l |
; : i : NVIDIA GeForce GPUs =—jil— |
ol : !]
5 e W : : AMD Radeon GPUs =——{)— |
4> e ; ! INTEL Xeon Phis =g 1
2008 2010 2012 2014 2016

End of Year Image Credit

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

40

FPGAS

* Field Programmable Gate Arrays
(FPGAS) are integrated circuits that are
available off the shelf

* High throughput

* Good for workloads with many branch
mispredictions and cache faults

Field-programmable gate array. (2024, January 17). In Wikipedia.
https://en.wikipedia.org/wiki/Field-programmable_gate array
S weMd 1 B :

* Low latency

+ O(us) 2 T
* constant and predictable N~ £ XILINX &
 More flexible than custom-built hardware 9 ?fgigfy@
 Commercial market for FPGAs has been . Eﬁ‘gfgﬁgg’ﬁ““
around since the 1980s : 4C -

PHILIPPINES

By © Raimond Spekking / CC BY-SA 4.0 (via
Wikimedia Commons), CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?
curid=81288554

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array

FPGASs
* FPGAs consist of thousands of logic blocks plus 1/0 blocks

* Connected via programmable interconnect
* Program FPGAs by configuring a circuit
* Hardware implementation of an algorithm
* FPGAs are very good at integer computations
* Do not require a computer to run because they have their own 1/0

* Traditionally programmed using hardware description languages,e.g.
Verilog, VHDL

* Required long developments times

* High-level languages (HSL) have become available more recently

41

42

FPGA Architecture

-
92
e

(©

-

-
)
G

-

O
&

c
o
=

] p t
20 3 58

T c Do

o = = E

- O C

) : = m

S m

— L] =
S ©
_. .|i o))
: [s)e!
<
AN D D D D DD D |
VOQ AN AN ZAAN AAN VA OQ AN RN VAN "
DD+ D N+ BD-D Ay
VAWOA AN VAN 7 FEAN VA VAWOA AN VAN N
D JarWan LD D \v%
A A Vo A AL S i
D D A D D D
AN ZAANZAAN e ANZAAN VAN Vi
| M\ /D W _ A AN
! ! j “ ! J
D D \ (DD "
AN " _| ANVARN Y, " _:
‘D D' D Jany
. |
DA | D D D D
VOQ AN VAN AN " VOQ \N 2N VARN VAN
N D D (D N MDD D D
QOA AN VAN N VQOA NN VAN 2N
an D D! M D DD
A2 N2y NN V2N VAN
D D D M D D
A ZAAN 7N g NN VAN
_ Yan Wy M D D
! ! N ZRN VAN,
D D " D D D
ANVAANY " N VZRN VARN
‘D D' M D D
"./.N-- --Y.\.._ I (2N VRN |

43

Modern FPGA Code Desigh Flow

[Problem Definition]

1

High-level Synthesis 1 Hardware Description :
{ (HLS) { Language (HDL) } verilog, VHDL
| Logic Synthesis | Xilinx Vivado
Google XLS Intel Quartus
MaxCompiler [Placement and Routing]
Vivado HLS

oneAPI [Bitstream Generation H Programming the FPGA]

Source

https://indico.cern.ch/event/1170079/attachments/2484554/4269719/cern%20openlab%20lecture%2021-07-2022.pdf
https://indico.cern.ch/event/1170079/attachments/2484554/4269719/cern%20openlab%20lecture%2021-07-2022.pdf

GPU vs FPGA

GPUs
* Higher latency - ,}
* Connection via PCle (or NVLink) C --/\--

* Bandwidth limited by PCle

* Very good floating point operation performance
* Lower engineering cost _

* Backward [forward compatibility

FPGAs
Low & deterministic latency

Connectivity to any data source
High bandwidth

Intermediate floating point performance
High engineering cost

Not so easy backward compatibility

LY
p
.

goy

Source

44

https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf

CPU - GPU - FPGA

CPU GPU FPGA
Deterministic,
Latency O (10) us O (100) us 0 (100) ns

I/0 with processor

Ethernet, USB, PCle

PCle, Nvlink

Connectivity to any
data source via
printed circuit board
(PCB)

Engineering cost

Low entry level
(programmable with
c++, python, etc.)

Low entry level
(programmable with
CUDA, OpenCL,
etc.)

Some high-level
syntax available,
traditionally VHDL,
Verilog (specialized

engineer)
Single precision
Optimized for fixed
floating point O (10) TFLOPs O (10) TFLOPs PHIIIZEC 1ot T
point performance
performance
Optimized for serial
Serial / parallel | perf?rmance? Optimized for Optimized for
increasingly using parallel performance | parallel performance
vector processing
O (10) MB (on the
Memory O (100) GB RAM O (10) GB FPGA itself, not the
PCB)
Compatible, except Compatible, except
Backward P o .p for specific features Not easily backward
vy eye for vector instruction , _
compatibility only available on compatible

sets

modern GPUs

Source

45

https://arxiv.org/pdf/2003.11491.pdf
https://arxiv.org/pdf/2003.11491.pdf

46

For ML: TPUs

* Tensor Processing Units (TPUs) are a type of ASIC being developed by
google specifically targeting machine learning applications

* Designed for a high volume of low precision computation (matrix
multiplication)

* Available in google cloud
* Could be used for training/inference in HEP
* Well suited to convolutional neural networks

* Current version is the Edge TPU

Other examples include
Intelligence Processing
Units (IPUs) designed for
irregular and sparse data
access

https://commons.wikimedia.org/w/index.php?curid=77299254
https://commons.wikimedia.org/w/index.php?curid=77299254

Workload by Accelerator Type

GPUs:
° Relaxed latency requirements
* High FLOPs need

FPGAs:
* Strict latency requirements
* High1/O needs

* 1/O via PCle no bottleneck * Highly parallelizable problem
* Highly parallelizable problem * Fits within FPGA resources (logic
* Fits within GPU memory elements and memory blocks)

TPUs /[IPUs etc.:
* Machine learning training or inference
* TPUs: Use as a service in the cloud
* |PUs: MIMD compatible problem

* Fit within memory

Source

47

https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf

A Comment on Machine Learning

* Machine learning continues to be used ever more extensively in HEP (see
the lectures from D. Rousseau)

* There is interplay between the use of ML and novel hardware architectures
because such hardware can be used to very efficiently train ML algorithms

* It can also be used for interference, but inference has less significant
computational demands

* Thus in many case, the drive to use increasingly complex ML algorithms
leads to the greater adoption of novel hardware

* AND, if there is a drive to use such hardware it leads naturally to the
adoption of additional ML algorithms

48

New Computing Paradigms

49

Neuromorphic Computing

50

* Neural networlks, a mainstay of current machine learning approaches, are

inspired by how the human brain functions

* Spiking neural networks mimic brains more closely by incorporating

the concept of time (idea from the |1990s)

SpiNNaker —_———— = .
o = = 55 (lntel)
2 —————
» TrueNorth Loih

Biological realism

Full-custom-digital neural circuits
No local learning (TrueNorth)
Programmable local learning (Loihi)
Exploit economy of scale
x0.01 real-time to x100 real-time

Many-core (ARM) architecture
Optimized spike
communication network
Programmable local learning
x0.01 real-time to real-time

Analog neural cores
Digital spike communication
Biological local learning
Programmable local learning
x1.000 real-time

Neuromorphic computers are available Akida (from Brainchip)

Source

https://indico.cern.ch/event/708041/contributions/3308808/attachments/1811053/2957880/ACAT19.pdf
https://indico.cern.ch/event/708041/contributions/3308808/attachments/1811053/2957880/ACAT19.pdf
https://brainchip.com/akida-neural-processor-soc/
https://brainchip.com/akida-neural-processor-soc/

Quantum Computing?)

* Initial ideas for quantum computing date back 40 years (Benioff, Feynman,
Manin, etc,)

* Use quantum mechanical processes to simulate quantum
mechanical systems

* Further interest was stimulated by the invention of quantum
algorithms in the early 1980’s with the promise of solutions to intractable
problems on quantum computers (Shor, Grover, etc)

* Exponential information storage
* Revolutionize cryptography
* Solutions to unsolved (classical) problems

* Most recently quantum computing has been in the news in regards to
quantum advantage (supremacy)

* Google, IBM, Jiuzhang
* Quantum computing is likely at the peak of its hype cycle

See lectures from Prof Petruccione

Potential View of the Hardware Future

General + Specialized Architectures
General Purpose

More Moore Beyond CMOS maintain
boost
Machine Learning Specialized Architectures
mpl
More Moore Beyond CMOS compleri@nt comp lement
boost boost

Neuromorphic Architectures

||
Machine Learning/Bio-
inspired Intelligence More Moore Beyond CMOS Better arc

Optimization? Quantum Annealing Architectures

Search/Specialized Functions? Quantum Gate Computers

o

ECOLE POLYTECHNIQUE

S =
FEDERALE DE LAUSANNE /17 PrOJeCt ACAT19 21

Source

52

https://indico.cern.ch/event/708041/contributions/3308808/attachments/1811053/2957880/ACAT19.pdf
https://indico.cern.ch/event/708041/contributions/3308808/attachments/1811053/2957880/ACAT19.pdf

GPU Programming Taster

Modelled after Charis Koraka

53

https://indico.cern.ch/event/1328624/contributions/5610337/attachments/2775251/4836370/Intro_to_GPU_programming_HSFIndia.pdf
https://indico.cern.ch/event/1328624/contributions/5610337/attachments/2775251/4836370/Intro_to_GPU_programming_HSFIndia.pdf

Why can’t | use python or C++?

* GPU architecture is very different from CPU

* Many more computation units

* Many identical threads executed in parallel
* Identical operation on different data
* Different operations require multiple passes

« Memory access needs to be careful managed
* Avoid register thrashing

* Cannot handle branching code

* Latency hiding techniques are required

* Typically need to control many low level instructions, e.g. memory
organization/accesses, thread synchronization, data transfer

Source

54

https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf
https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf

55

Current GPU Languages

CUDA

e Only for NVIDIA GPUs
e Well established, large suite of tools for
analysis, profiling and debugging

e NVIDIA and AMD backends

e Almost identical to CUDA
o sed s/cu/hip/

SYCL / dpc++

e Intel, NVIDIA and kinda AMD backends
e Explicit memory movement not required

Kokkos, Raja, Alpaka

e Interoperability APIs with backends for
Intel, NVIDIA, AMD, and host parallel

Std::execution::parallel

e Introduced in C++17 standard
e Similar usage as tbb::parallel_for
e nvc++ provides NVIDIA backend for GPUs

Slide Credit

https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf
https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf

Language Evolution

* GPU languages have been evolving rapidly with the hardware
* e.g. exploit new hardware functionality
* new ways of sharing resources
 proximity of CPU/GPU memory
* Standards also need to evolve as C++ evolves
* Actually you can program GPUs using C++ (17):
* std::execution::parallel
* Execution is currently synchronous + no low-level device control

* P2300 is a proposal for standard asynchronous programming: schedule,
sender, receiver

* Likely to be adopted in C++26

* Additional changes to implementation details and APl can be expected

Source

56

https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf
https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf

Ways to use a GPU

Completely external package

e Tensorflow, PyTorch, Onnx, other ML network training
e Mathematica, Numba
e Bitcoin miner, Cyberpunk 2077, RDR2...

Use external function library

e CUBLAS, cuFFT, OptiX
Instrument CPU code with offloading directives

e openMP, openACC, std::execution::parallel
Write GPU kernels directly

e CUDA, SYCL, HIP
e Kokkos, Raja, Alopaka

Slide Credit: C. Leggett

57

CUDA Programming Model

e Compute Unified Device Architecture (CUDA) is a program language
developed by NVidia and used to develop applications on NVidia GPUs

* Three main steps to execute CUDA code

#1Copy input data from
host memory to device
memory

<PCIe or NVLink Bu

#2 Execute CUDA 0
program

V4

T T

58

Threads and Blocks

* Built-in variables are available for
threads and blocks

e threadIdx & blockIdx

* 3-dimensional indexing can be used to
express vectors and matrices

e threadldx.x,
threadIldx.y, threadIdx.z

* CUDA architecture imposes a limit of
1024 threads per block

* Thread block dimension is accessible
within the kernel using bl ockDim

threadIdx.x threadIdx.x

0/1/2/3/4|5|6|7

e Y
blockIdx.x = 2 blockIdx.x = 3

lock (0,0)

Block (0,1)

Block (0,n)

lock (1,0)

Block (1,1)

Block (1,n)

lock (m,0)

A:iix‘

Block (m,1)

Block (m,n)

Thread Thread
(0,0) (0,1)
Thread Thread
(M,0) (M,1)

Thread
(O,N)

Thread
(M,N)

59

Indexing Example

 Unique element index can be expressed using the threadIdx &
blockIdx variables

e eg. 1ndex = threadldx.x + M * blockIdx.x

* (if each block consists of M threads)

{ |

threadIdx.x = 5
g

0123467 J

C Y
Y
blockIdx.x = 2

int index = threadldx.x + blockIdx.x * M;
= 5 + 2 * 8;
21;

60

Kernels & Functions

* A CUDA kernel is a function that gets executed on the GPU
* Contains the part of the application that is parallelizable

* Will be executed many times in parallel by different CUDA threads

Declaration Callable from: Executed on:
__global_ _ host device
__device_ _ device device
_ _host_ _ host host
. global keyword defines a kernel function

* Launched by host and executed on device

. device and host can be used together

. host declaration can be omitted if used alone

61

Reminder: Pointers

* Pointers were covered in the C++ refresher slides from C. Doglioni

* GPU programming requires careful memory management

Pointers in C++

Pointer points

to variable
-
address of l address of
pointer i
> 0x155 0x123 «——Yarable
Value inside) Value inside
pointer | 0x123 | 100 variable
€

Int *ptr int Var1

Source

62

https://simplesnippets.tech/cpp-pointers-concept-with-example/
https://simplesnippets.tech/cpp-pointers-concept-with-example/

Example CUDA Program

* Main components of a CUDA program

__global void do_something (int* a) {

*a. = 2¢
e Function declarations }
int main() {

e host / global / device

int* a;
int* d_a;

* Copying data to/from host

a = (int*) malloc(sizeof(int));

— cudaMalloc(&d a, sizeof(int));

* cudaMalloc/cudaMemcpy/cudaFree

*a = 1
. Kel’nel IauHCh <<<nBIOCkS, \::udaMemcpy(d_a, a, sizeof(int), cudaMemcpyHostToDevice);
nThreads>>>(<arguments>) “Xdo_something<<<l, 1>>>(d_a);
——» cudaDeviceSynchronize();
) Concurrency management cudaMemcpy(a, d a, sizeof(int), cudaMemcpyDeviceToHost);
free(a);
* _ syncthreads()/ cUtpFrea(d o)

CudaDeviceSynchronize() '

63

64

Simple Example: saxpy in C++

» Traditional single
precision matrix

addition example:

Z = a*X +Y

/Void saxpy(int n, float a, float *x, float *y) {

for (int i=0; i<n; ++1i) {
, y[i] = a*x[1] + y[1i];
}

main() {
int N =1 << 20;
float *x, float *y;
x = new float[N]; vy = new float[N];
for (int i=0; i<N; ++i { x[i] = 1.0f; y[i] = 2.0f; }

saxpy(N, 3.0f, x, y);

float maxErr = 0.0f;
for (int 1i=0; 1i<N; ++1) {maxErr=std::max(maxErr,std::fabs(maxErr-5.0f));}
std::cout << "max Error:" << maxErr << std::endl;

delete [] x; delete [] vy;

C. Leggett

65

Simple Example: saxpy in OpenMP

» OpenMP

kernel pragma

this pragma does
not offload to GPU
but rather across
cores/threads

can offload with
openMP, but much
more complicated
than with openACC

/Void saxpy(int n, float a, float *x, float *y) {
#pragma omp parallel for

for (int i=0; i<n; ++i) {
y[i] = a*x[1i] + yl[il];

}

main() {

int N = 1 << 20;

float *x, float *y;

x = new float[N]; y = new float[N];

for (int i=0; i<N; ++i { x[i] = 1.0f; y[i] = 2.0f; }

saxpy(N, 3.0f, x, y);

float maxErr = 0.0f;
for (int 1=0; 1i<N; ++1) {maxErr=std::max(maxErr,std::fabs(maxErr-5.0f));}
std::cout << "max Error:" << maxErr << std::endl;

delete [] x; delete [] vy;

66

Simple Example: saxpy in OpenACC

» OpenACC

> requires special
compilers that
recognize openACC
pragmas, eg PGl

(void saxpy(int n, float a, float *x, float *y) {
#pragma acc parallel loop

for (int i=0; i<n; ++i) {
y[i] = a*x[1i] + y[i];

}

main() {

int N = 1 << 20;

float *x, float *y;

X = new float[N]; y = new float[N];

for (int 1=0; i<N; ++i { x[i] = 1.0f; y[i] = 2.0f; }

saxpy(N, 3.0f, x, y);

float maxErr = 0.0f;
for (int i=0; i<N; ++i) {maxErr=std::max(maxErr,std::fabs(maxErr-5.0f));}
std::cout << "max Error:" << maxErr << std::endl;

delete [] x; delete [] vy;

67

Simple Example: saxpy in CUDA

» CUDA

explicit memory
management

» compile with nvcc

number —
of blocks

number of ///’//////////

threads per
block

17)

4)

void saxpy(int n, float a, float *x, float *y) {
int 1 = blockIdx.x*blockDim.x + threadIdx.x;
if (1 < n) y[i] = a*x[i] + yI[1i];

}

main() A
int N =1 << 20;
float *x, float *y, float *d x, float *d vy;
x = new float[N]; vy = new float[N];
for (int i=0; i<N; ++i { x[i] = 1.0f; y[i] = 2.0f; }
cudaMalloc(&d x,N*sizeof(float)); cudaMalloc(&d y, N*sizeof(float));
cudaMemcpy(d x, x, N*sizeof(float), cudaMemcpyHostToDevice);

cpy(d vy, y, N*sizeof(float), cudaMemcpyHostToDevice);
saxpy<<<(N+255) /256, 256>>>(N, 3.0f, d x, d y);
cudaMemcpy (y , N*sizeof(float), cudaMemcpyDeviceToHost);

at maxErr = 0.0f;
for (int i1=0; i<N; ++1i) {maxErr=std::max(maxErr,std::fabs(maxErr-5.0f));}
std::cout << "max Error:" << maxErr << std::endl;

cudaFree(d x); cudaFree(d vy)
delete [] x; delete [] vy;

Memory Management

* Host and device have separate memory

* Device = GPU memory

* Host = GPU memory
 CUDA kernels operate out of device memory
* CUDA provides functions to

 allocate device memory

e cudaMalloc (&ptr,
size 1n bytes to allocate)

* release device memory

e cudaFree (ptr)

* transfer data between host and device memory

* cudaMemcpy (destination ptr, source ptr,
size 1n bytes, direction)

68

Compilation

 CUDA programs are compiled
in a similar way to C++ program

e Store CUDA code in a file with
a .CU extension

* CUDA compiler is nvce
(provided by Nvidia)

* nvcc for CUDA parts
* gcc for C++ parts

* nvcc converts .cu files into
C++ for the host system and

CUDA assembly of binary
instructions for the device

*nvcc myCUDAProgram.cu
-0 myCUDAProgram

CUDA Program
(Combined CPU-GPU Code)

NVCC

CUDA Kernels

CUDACC

CUDA Object File

Rest of C/C++ Code

Host/CPU Compiler

CPU Object File

Linker

CPU-GPU Executable

Image Credit

69

https://www.researchgate.net/figure/CUDA-program-compilation-process-using-NVCC_fig5_321368813
https://www.researchgate.net/figure/CUDA-program-compilation-process-using-NVCC_fig5_321368813

Part 2: Application of Novel Computing
Hardware to HEP

70

Novel Hardware in HEP a

* So far, we've seen how the type of computing hardware available to obtain
optimal performance has been evolving towards more heterogeneous
architectures

* We've had a look at the different types of hardware that are used to
construct these machines

* Next, we are going to look into examples of how such architectures are
being used in HEP

Typical HEP Computing Workflow

Data

Simulated Data

7%

8%

g o g ek o O G

u-.?di]l‘.&l'

u."«lu.u-’ 3

ATLAS Preliminary

2022 Computing Model - CPU: 2031, Conservative R&D
24%

Tot: 33.8 MHS06*y

Data Proc
MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen
Heavy lons
Data Deriv
MC Deriv
Analysis

8%

8%

All components contribute

significantly to the total
CPU budget

(2

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/

Event Generation

/3

Event Generation

* Event generation is a natural candidate for

74

parallelization because the generation of sy o
different elements in the particle tree is PERRARY I3 S R
largely independent* el LS NS .
. “;:...1.\..‘ \ A A E ; , 9 :..,.’.'3;..
* As particles are produced, they can be handled = ,. .°‘ %\ 3k e
by different threads ,'.’ Gl 1§ ¥ Vel
. . .. g ®- *e- YA o1 DT T T i "t
* Scheduling challenge: different threads do not =2, == Y i, | D
necessarily have the same execution time R T .'. =
* Madgraph is an event generator commonly o e
used in HEP o DT Lagn
Vo ee et
« Madgraph4gpu is a project to port !

Madgraph to run on GPUs

* A new generator, Pepper; has been developed
specifically targeting GPUs

Image Credit

*Strictly speaking this is not fully correct due to effects like color reconnection

http://madgraph.phys.ucl.ac.be/
https://github.com/madgraph5/madgraph4gpu
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.014024
http://madgraph.phys.ucl.ac.be/
https://github.com/madgraph5/madgraph4gpu
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.100.014024
https://sherpa-team.gitlab.io/monte-carlo.html
https://sherpa-team.gitlab.io/monte-carlo.html

73

ANY MC event generator is a great fit for GPUs and vector CPUs!

» Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw 0 &

* From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING

NB: MULTI-EVENT API

INPUT O@

ME event generators”
before ME calculation): lE G S oh
(be : . ' ON DIFFERENT DATA!
- MC integration

(cross sections)
- MC generation

(event samples)

OUTPUT

ﬁ Lockstep processing
Good for SIMT/SIMD

*NB: the CPU-intensive ME calculation comes
before PS, fragmentation, detector simulation

p— MC DECISIONS [Q

Detector simulation (Geant4)
- Particle/matter interaction
DECISION (when? how?)

& - Particle decays (when?)

Ny

o] oot
: _ Event generators*®
Stochastic branching 1 (after ME calculation):
Bad for SIMT/SIMD_§ - \MC unweighting (keep/reject)

Parton showers (PS)
- Fragmentation and decays

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

—~Y UCL /7y
A. Valassi — ACAT, Bari, 24 October 2022 Argonneo h,qéﬁ: @ 6

AAAAAAAAAAAAAAAA

Slide Source

https://indico.cern.ch/event/1106990/contributions/4997226/attachments/2533666/4360288/20221024-MG5aMConGPU-ACAT-AV-005.pdf
https://indico.cern.ch/event/1106990/contributions/4997226/attachments/2533666/4360288/20221024-MG5aMConGPU-ACAT-AV-005.pdf

Madgraph on GPUs

* Madgraph runs in Fortran

* 95% of CPU time used for the matrix element calculation (for a
complex process)

* Madgraph4gpu project targets the matrix element calculation by porting it to
run on GPUs and vector CPUs

Process Madevent 262 144 events Standalone CUDA
Total = Momenta+unweight { Matrix elm ME Throughput
ete™ = putu~ 17.9 s 10.2 s 7.8 s 1.9 x 10651
+CUDA Tesla A100 10.0 s 10.0 s 0.02s 633.8 x 10651
1.8 x 1.0 x 390 x 334 x
gg — ttgg 209.3 s 7.8 s 201.5 s 2.8 x 103571
+CUDA Tesla A100 8.4 s 7.8 s 0.6 s 758.9 x 103s~!
24.9 x 1.0 x 336 x 271 x
gg — ttggg 2507.6 s 12.2 s 2495.3 s 1.1 x 10%s~!
+CUDA Tesla A100 30.6 s 14.1 s 16.5 s 170.7 x 10%s~!
82.0 x 09 x 151 x 155 x
P 4 . 4

* Using CUDA, achieve a speed up of 150-300x for the ME for complex events

* Also, significant speed up on vectorized CPUs

More details

/6

https://indico.cern.ch/event/1106990/contributions/4997226/attachments/2533666/4360288/20221024-MG5aMConGPU-ACAT-AV-005.pdf
https://indico.cern.ch/event/1106990/contributions/4997226/attachments/2533666/4360288/20221024-MG5aMConGPU-ACAT-AV-005.pdf

Simulation

(77

Simulation N Ry B AL

EXPERIMENT g

* Detector simulation tracks the
passage of thousands of
particles through the detector

e Simulate interactions with
detector material

* Interactions can produce
new particles, which
subsequently need to be
tracked

positron in fiber calorimeter

Image Credit

https://twiki.cern.ch/twiki/pub/AtlasPublic/EventDisplayRun3Collisions/ATLAS_VP1_HI_Zee_run462107_evt307841400_2023-10-04T00-51-42.png
https://twiki.cern.ch/twiki/pub/AtlasPublic/EventDisplayRun3Collisions/ATLAS_VP1_HI_Zee_run462107_evt307841400_2023-10-04T00-51-42.png
https://ep-news.web.cern.ch/content/geant4-modern-and-versatile-toolkit-detector-simulations
https://ep-news.web.cern.ch/content/geant4-modern-and-versatile-toolkit-detector-simulations

Simulation with Accelerators

* Most accurate tool for detector simulation is the Geant4 toolkit

* Multithreading and task-based parallelization are available

* Projects to port computationally intensive components of G4 to GPU are
ongoing

* Many fast simulation tools with varying degrees of accuracy are available
* Parametrization (DELPHES), machine learning (FastCaloGAN)
* Relevant examples include

e |ceCube simulation on ARM

 ATLAS Fast Calorimeter simulation on GPUs

Average runtime, in minutes

astandurss A
e } 10% faster
adsendarcs

79

https://geant4.web.cern.ch/
https://indico.jlab.org/event/420/contributions/9053/attachments/7335/10129/Geant4In2030.pdf
https://indico.jlab.org/event/459/contributions/11823/attachments/9228/13392/chep23_icecube_arm_rc3.pdf
https://indico.jlab.org/event/459/contributions/11809/attachments/9402/13640/CHEP23%20FCS%20Portability.pdf
https://geant4.web.cern.ch/
https://indico.jlab.org/event/420/contributions/9053/attachments/7335/10129/Geant4In2030.pdf
https://indico.jlab.org/event/459/contributions/11823/attachments/9228/13392/chep23_icecube_arm_rc3.pdf
https://indico.jlab.org/event/459/contributions/11809/attachments/9402/13640/CHEP23%20FCS%20Portability.pdf

Celeritas: EM Physics on GPUs

* Equivalent to G4EmStandardPhysics
...using Urban MISC for high-E MSC, only y, e+

» Full-featured Geant4 detector geometries
using VecGeom

| — — — e e R
I 1 N |

1 1 I NN
' —5'00 —2'50 (') 250 5(')0 750

* Runtime selectable processes, physics

Options, field definition GPU-traced rasterization of CMS 2018
» Execution on CUDA (Nvidia), HIP* (AMD),
and CPU devices *VecGeom is incompatible with HIP:

ORANGE GPU prototype used instead

gm Source

https://indico.jlab.org/event/459/contributions/11818/attachments/9324/13745/srj-chep.pdf
https://indico.jlab.org/event/459/contributions/11818/attachments/9324/13745/srj-chep.pdf
https://github.com/celeritas-project/celeritas
https://github.com/celeritas-project/celeritas

Celeritas Results

ATLAS Tile Calorimeter Test Beam

EdepSum

B T T T T T T]

| _ Geant4 Geant4 -]

| . Entries 10000 _|
800 Celeritas Mean 6149 |

L : Std Dev 82.91

- Best fit +2 / ndf 229.6/55

B Constant 866.5 +11.4]
600 Mean 619.1 £+ 0.7

| Sigma 67.47 = 0.56]

B Celeritas N

B Entries 10000]
400 Mean 616.9]

— Std Dev 84.07 -

| x2 / ndf 220.2/55 —

| Constant 848.7 = 11.1]

| Mean 620.3 =+ 0.7 _
200 i Sigma 68.95 = 0.57 |

| - 3

0 & | X1 O
0 1.5

| 0.5 1
Offload e™, y to Celeritas
Average energy deposition with pi+ test beam

17.5 |
15.0
125

MeV /cm]

10.0 | AR
75| o

NE/AX [

50 | \ v‘"‘\\
251/ BN
0.0 |

0.1

C/G4 -1

475 500 525

Slab-integrated energy deposition

Throughput [event/s]

Geometry [%]

109

100

o1
o

-

Performance on SUMMIT

X CPU
X GPU
7
x X
X
- ©
® @ ®
e
More complex ®
X
¢ X% @ X o
| Pt ® pi o
<. LT—| } \V | |:IL| | (\-/) LL| } ANY NI |
2 EZEEECBEENE
< M @) N
Source

Faster

81

https://indico.jlab.org/event/459/contributions/11818/attachments/9324/13745/srj-chep.pdf
https://indico.jlab.org/event/459/contributions/11818/attachments/9324/13745/srj-chep.pdf

NVidia OptiX

* Ray tracing is a technique commonly
used in computer graphics

* NVidia OpitX is an API for ray tracing,
which offloads ray tracing computations

to GPUs

* Ray tracing algorithms can also be used
for photon simulation

* Opticks (and G4Opticks Package)

PMT Hits

Standard Workflow Hybrid Workflow G4Opticks interfaces Geantd user
code with Opticks
Geant4 Geant4
Geometry i ——| GPU Context
' Opticks :
Scintillation ! :
p— o e GEOMETRY . |Intersection Program
Scintillation N TRANSLATION : . Analytic CSG Geometry
CherenkOV E—— /// ' G 40pti cks F *__‘_--‘*“'c{‘ BVH
Cherenkov / A . ' Ray Generation
Scintillation+Cherenkov NVIDIA
\ OptiX
Optical Photons Optical-Phetons l
CUDRA e)
Thrust :Photon Buffer :
: ! Nx4x4floats :

PMT Hits

https://developer.nvidia.com/rtx/ray-tracing/optix
https://developer.nvidia.com/rtx/ray-tracing/optix

83

Opticks for Photon Simulation

Opticks_vs_Geant4 : Extrapolated G4 times compared to Opticks launch+interval times with RTX mode ON and OFF

» Using Opticks, JUNO obtains 3) T i
orders of magnitude JUNO
improvement (wrt single o I
threaded CPU) , -

+ For DUNE, the speed up is 189x .. e
for the LArTPC ol L e o e |

- -/
* Source
\§‘~' * Performance:

Hardware:

CPU Intel® Core i9-10900k@ 3.7 GHz,
10 CPU cores

GPU NVIDIA GeForce RTX 3090 @ 1.7 GHz,
10496 cores

Software:
Geant4: 11.0, OptICkS based on Opt|X® 6 position of Photon Hits
Meany 69.55
Std Dev x 40359.5
Number of Geant4 Opticks Gain/speed up
CPU threads [sec/evt] [sec/evt]
1 330 1.8 189x

-1t becomes feasible to run full optical simulation event by eventt!
3F Fermilab

10 Hans Wenzel Integration of Geant4 and Opticks / CHEP 2023 May 8 to 12, 2023

Source

http://juno.ihep.cas.cn/
http://juno.ihep.cas.cn/
https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03009.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03009.pdf
https://indico.jlab.org/event/459/contributions/11814/attachments/9457/13711/CaTS_chep2023_v10.pdf
https://indico.jlab.org/event/459/contributions/11814/attachments/9457/13711/CaTS_chep2023_v10.pdf

Reconstruction

84

Reconstruction

* Reconstruction algorithms use the raw input from detectors to
reconstruct the particles that passed through the detector

* Two main categories:
* 2D energy, e.g. calorimeter
* 3D trajectories, e.g. charged hadrons, muons

* Some particles, e.g. electrons rely on a combination of the two

I

Source

~ -
@ S T —— -
Siificem S

Trackar
Electromagnetic [/ 7
Calorirmeter)
Reaydromn ~ /)
Calorimeter Supercondueting
Salenaid Iren return yole interspersad
wilth muea chambers
Muon Electron Charged hadron (e.g. pion)

=== Neutral hadron (e.g. neutron) = «.... Photon

85

https://cds.cern.ch/record/2120661?ln=en
https://cds.cern.ch/record/2120661?ln=en

Online and Offline

* Reconstruction
algorithms are run in

. . Simulated Data
different configurations

e Simulation
e Data

e Online
e Offline

* Algorithms are not
necessarily the same

 Accelerators can be
used (or not) in each of
these contexts

R R i i I A T

g paspiEREEdy

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/

Accelerating Reconstruction

* Reconstruction algorithms tend to one of the favored target for
acceleration

* In particular, track reconstruction algorithms are computationally
expensive and scale poorly (often quadratically) with the number of
particles

100

r— [|] -~
» = = c
—~ — Reconstruction of 2017 pp data, (s = 13 TeV - - 8
e N in Athena release 21.0.37 tuned for (u) = 30 = 7 O
@ ~ onlntel” Xeon" CPU E5-2630 v3 - Ry
q>) 80 low-u reference runs 10862 luminosity blocks 3 8
o) ~ [high-u run 335302 463 luminosity blocks - 102 o
£ 70 — >
O = = ‘D
T 60 — 2
A - E
S0 — S
- i -
40~ 5 — 10
30F it —
20 —
10 s == ATLAS Preliminary -3 1
= T P I T =
q 20 30 40 50 60 70 80 90 1 00

o

Source (p)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

Track Reconstruction

Transition o
Radiation o
o
Tracker ° 4 o o
o) o
""""Q,
o
Space Point O ™
" TRT Ext
SI|ICOn ‘l Xtension ,’%’
Track ' o™
Candidate ' : -
— I q
. . %
1 I
1]
—— ! ’ O
. . I .
Silicon N
]
Detectors ! L
[]
- Seed O
. Silicon 80
. Track 0o
1

Nominal

88
ATLAS-CONF-2010-072

Track finding (Kalman
Filter)

Interaction
Point '

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-072/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2010-072/

ALICE: Track reconstruction on GPU

 ALICE is an early adopter of GPUs amongst the
LHC experiments

* Their tracking detector, the Time Projection
Chamber (TPC), dominates the computing
needs

* Process 10 ms time frames, each O(10 GB) in size

* GPUs also used for compression and
calibration of TPC data since Run |

* ALICE is currently adding reconstruction of other
detectors on GPUs

TPC Cluster
. TPC <10MeV/c removal
part of baseline identification
scenario
TPC Track Model TPC Entropy
Compression

TPC Distortion Correction Compression

T* TPC
TPC Cluster TPC Track TPC Track TPC dE/dx TRD . (4
Finding

<
Finding Merging Track Fit Tracking
Vertexing Finding Track Fit
@ In operation
@ Nearly ready

i i Common GPU .

Source

89

https://alice-tpc.web.cern.ch/
https://alice-tpc.web.cern.ch/

ALICE: GPU Tracking

For Run 3, the ALICE data-taking

read out has been increased to a
50 kHz continuous read out
of PbPb collisions

Cellular Automaton (CA)
algorithm

Exclude multiple track hypotheses
800x total speed up (wrt offline)

Comparable efficiency but
degraded resolution wrt to
offline

* 8x data compression

Speedup (normalized to a single core)

HLT TPC Compression Factor

90

40 T]
L ALICE Performance 2018/03/20 ¥ X ¥]
35 [2015, Pb-Pb, VSyy = 5.02 TeV ¥ ¥]
i ¥ K]
30 [Ko Kox .
L >‘< 4
25 | .
i o R K R F_%_1 T , T -]
F RO I T T LI
5 R J_ p
20 [&]
: X 2]
[X X X i
L o XX 4
15 | " X % % 5 2 ><>;<
[X >§§ X X % &
[XX RR% X
C HLT GPU Tracking v.s. HLT CPU Tracking (AMD S9000 v.s. Xeon 2697, 2.7 GHz) X]
r X HLT GPU Tracking v.s. HLT CPU Tracking (NVIDIA GTX 1080 v.s. i7 6700K, 4.2 GHz) X]
L | HLT CPU Tracking v.s. Offline Tracking (Xeon 2697, 2.7 GHz) +—]
0
0 500000 1x108 1.5x108 2x10° 2.5x108 3x10°
Number of TPC clusters
12 .
B = 10*
10— — =
oF i.'::;::h:!_— =
6 —
- 102
4— ALICE Performance 2018/05/16
2018, pp, Vs =13 TeV 10
21— . .
| Average compression ratio: 8.34x
B - 1
0 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | X1 0
0 100 200 300 400 500 600 700 800

Number of TPC Clusters

Source

https://ieeexplore.ieee.org/document/5934702
https://ieeexplore.ieee.org/document/5934702
https://arxiv.org/abs/1905.05515
https://arxiv.org/abs/1905.05515

CMS: Patatrack

e The heterogeneous computing on CMS tracking is
mainly led by Patatrack project (born in 2016)
o Track reconstruction in Pixel detector
o Developed for event filter

e Full tracking chain on GPU
o No memory transfer between CPU and GPU

e Adopted Struct-of-Array (SoA) for fast memory access
to Event Data Model (EDM)

e CUDA is main API, but development with
HIP/Kokkos/Alpaka/openMP is on-going as well

raw data

pixel tracks
(SoA)

pixel tracks
(legacy)

pixel vertices

(SoA)

pixel vertices

(legacy)
CPU

raw data
digis
clusters
dou;)lets
ntuplets
pixel tracks

pixel vertices

GPU

91

Broken Line for Track Fit .

e There is no iteration on spacepoints as KF does

e Instead, two matrix equations are solved to minimize the least square estimator which is a
function of residuals and kink angle on detector plane
o The motion of helix is decoupled into transverse (x-y) and longitudinal (r-z) plane

e Pros and Cons with respect to KF

o Pros: Generally faster than KF with similar resolution
o Cons: The extension to external hits is inefficient because the matrix
equation should be solved from the beginning

e In Patatrack, each thread runs Broken Line Fit for each N-tuplet
o Elgen3d library that natively supports CUDA is used to solve matrix equation

Slide Credit: C. Leggett

93

CMS Tracker for HL-LHC

Novel CMS Tracker m%f;wgipfr\r/‘erse
Design for HL-LHC

programmeable
search window

features pT modules g top sensor
enable L1 high PT =
track trigger © BE®
—_ bottom sensor
low transverse
stub momenium
'g‘ 0.0 0.2 C.4 0.5 0e 1.0 1.2 14 16
E 1200] / / yd e - — ——
= =
— 18
1000 [— | §
- - 20
800
‘ |22
€00 [I I I I | 24
i e SNSRI SN U R T R N\ I I I I I B
e I I, I, I, i | 26
LUE =R S R R TR T T T T Y R l o i — 28
-;::\\\\\\\\ A\ N\ N \ W \\ \\ n" u" [32
2001’":— 4.0
= ' Y . . . L X N X g L . . . \ 1 . . \ L . . N .
0 o 500 1000 1500 2000 2500 n
Z[mm]

Source

https://cms.desy.de/activities/detector_upgrade/phase_2_outer_tracker/
https://cms.desy.de/activities/detector_upgrade/phase_2_outer_tracker/

CMS: Line Segment Tracking (LST)

* CMS has designed a new algorithm specifically designed to run on GPUs and

exploit this tracker design

2 LST in a Nutshell: Mini-Doublets

Get two hits in each layer in Phase 2 Outer Tracker:

@_—>

[}
X (]
- °
° .. A
° | 'y °
([]
%]
Inner ‘ @ B me yritd ol Kigh e
Tracker ‘)
0o Outer Tracker . UC San Diego
LST in a Nutshell: Triplets
Keep good pairs of LSs that share a MD:
i.e.
¢ good = pt consistency + other constraints
>
P One thread per T3
=
b 4 s //55;»5/
4 Host

Source

UCSan Diego

-
Inner 2
Tracker -‘ % De vice
0 Outer Tracker "

Finally ...

£ LST in a Nutshell: Line Segments

Build all valid connections of two MDs:
i.e. Line Segments (LSs)

Derived a “module map” that
Not allowed to ’

skip layers .-/ pre-determines valid LSs
Py One thread per LS
” Ay
Al ‘."‘ Unnatural LS
- ,_’f. a' also not allowed
= > _f /:“ =4
> 2 %
Inner
Tracker Z ‘(eeeee
o Outer Tracker UCSan Diego

= LST in a Nutshell: Quintuplets

Keep good pairs of T3s that share a MD:
i.e. Quintuplets (T5s)

¢ good = pr consistency + circle fit quality

One thread per T5

£ S

>

/e & -

UC San Diego

match quintuplets to pixel seeds

https://indico.cern.ch/event/1252748/contributions/5521522/attachments/2728286/4742027/ctd2023_jguiang_v2.pdf
https://indico.cern.ch/event/1252748/contributions/5521522/attachments/2728286/4742027/ctd2023_jguiang_v2.pdf

LSST Performance

* Algorithm is still under

development and optimization

* Similar efficiency and lower

fake rate to current CMS

algorithm (except at very low pr)

* Approximately 10 ms per event

Tracking efficiency

B T T IIIIII| T T IIIIII| T T IIIIII|
1.6 CMS Simulation Preliminary
;4 5=14TeVPU200
" il <4.5, Izvenexl <30cm,r <25cm
1.2« LST(2iter) - Baseline (2 iter.)
- —— Baseline (all iter.)]
1_ -v- - -
0.8F- H]
o6F . H]
0.4
0.2
O’_"" Lot 1 gl I I
107" 1 10 10°

Simulated track p_ [GeV]

Average time / Event [ms]

Fake rate

20
CMS Simulation Preliminary
15
10
)
0
1 2 4 6 8
of concurrent events in flight
B T T IIIII.I| T I.IIIIII| .I .I IIIIII| T T I_
1.6.-CMS Simulation Preliminary .
14:_\/§=14Tev PU200 tt B
" ml<45
12—« LST(2iter) -~ Baseline 2iter) -
- —— Baseline (all iter.)]
1 .
0.8 NE
0.6 #‘l’ i
i + | 1
04 :%4—7 *;‘{ + 1
0.2 e T]
b, ™ :
O I SN |'f‘r?'|"-:o-F 7'77V7*J"'| 1 L1 Ll L]
107" 1 10 102

Track P, [GeV]

Excludes transfer time between host and device

Source

95

https://cds.cern.ch/record/2857438/files/DP2023_019.pdf
https://cds.cern.ch/record/2857438/files/DP2023_019.pdf

ATLAS: traccc

* The traccc project aims to develop an end-to-end or full chain track
reconstruction chain on GPU

* Avoids time lost in copying between device and host memory

 CUDA and SYCL implementations (+ CPU)

* Separate package for detector geometry (detray) and memory management
(vecmem)

* Code has been designed in an experiment-independent way

Connected Component

Labeling algorithm Extend triplets to full tracks

A Hit % Combinatorial o

| | 0]

csv or binary input from Search for triplets Refine the CKF results

ACTS simulation
/ Detray Geometry

ACTS Geometry Connected ¢

Category Algorithms

Source

https://indico.cern.ch/event/1252748/contributions/5561968/attachments/2731962/4749842/Connecting%20The%20Dots.pdf
https://indico.cern.ch/event/1252748/contributions/5561968/attachments/2731962/4749842/Connecting%20The%20Dots.pdf

Spacepoint binning

e Seeding is done bin-by-bin by grouping & axis
spacepoints w.r.t z and azimuthal angle \ \ \ \ \

neighbor
bins

e There are two cuda kernels:
o Count the number of spacepoints per bin to
allocate the memory to the container
o Fill out bins with spacepoints

e Each thread for each spacepoint Z aXi3
> Before binning > After binning
. . N . . N
spacepomt container spacepomt container
Module 1 Module2 | ® ® e | ModuleN bin1 bin 2 LA bin N
- J - J

Slide Credit: C. Leggett

Doublet Finding

Doublets are found by collecting hit pairs that
satisfy certain criteria:

o Distance to the beam spot

o Enough large pitch angle

Like spacepoint binning, there are two kernels:
o Doublet counting for memory allocation
o Doublet finding

For all spacepoints, iterates over other
spacepoints in current and neighbor bins to find
doublets

o Form bottom-middle or middle-top doublet

Each thread is assigned for each spacepoint

’
r
e
C
0‘\5":a //.
P .
=" mid (21,)
/1 BB
///.— ——————
/// bOt (ZBITB)
//
// [
//

// _
Collision 4
region

.[\/) h
S / iteration o er other
o
spacep0| (blue dot
Q

ET)

/
=7

Z axis

Slide Credit: C. Leggett

98

Triplet Finding

e Triplets are found by combining doublets that share the
same spacepoint and satisfy certain criteria:
o MinpT
o Distance to the beam spot
o 0O B-06 T<tolerance

e Like spacepoint binning, there are two kernels:
o Triplet counting for memory allocation

o Triplet finding

e For all middle-bottom doublet, iterates over middle-top
doublets that share the same middle spacepoint

e Each thread is assigned for each middle-bottom doublet

r
A top
7
//
o0 _
7 .
//,/ mid
._/__93___
bot
| |
[—
Collision region
y top
///——0\\\(XTIYT)
s \\\\
,/ mid \
/ N
/ (Xm0, Ym) \
\
. \
T bot Radius |
] (X, YB) / R
\ / i
pagt /
\g\a\r?ﬂ*“f‘eV)/ X
\ /

Slide Credit: C. Leggett

99

Seeding Performance

tio between ACTS CPU and traccc CPU is around 98% due to

different sorting criteria but it’s trivial

The seed matching ratio between traccc CPU and traccc CUDA is 99 — 100 %

For ttbar<200> events, CUDA speedup is about 13 compared to single core CPU

Throughput (events/s)

800

700

600

500

400

300

200

100

B _._=o=* .
> _oe*E
- -9
P
| e

GPU: NVIDIA RTX A5000 jagged

GPU: NVIDIA RTX A5000 flat

10

15

20 25
CPU Threads

30

35

40

45

100

101
traccc vs Patatrack

e The general flow of tracking chain is similar with ATLAS’s one
o hit clusterization / track finding / track fitting

e However, the detailed algorithms are different:
o In ACTS, the triplets from seeding are extended to n-tuplets with
Combinatorial Kalman filtering
o In Patatrack, the n-tuplets are found in seeding and they are fitted
directly with Broken Line Fit

ACTS Patatrack
doublet finding doublet finding
Track Finding
triplet finding N-tuplet (N<=4) finding

Track Fitting (Combinatorial) KF Broken Line Fit

ML Tracking

Exa.TrkX + ITk

on GPUs

102

e GNN based tracking for ITk offering competitive track efficiency and high quality track

parameter resolution

e Available as a Service - no need to have a local GPU

@A,

Hits

Graph N |
Metric ek

Network
Learning
. "“ s i Q. O
/ ',
o o u
Module 7 ®

Map
Graph
Graph Edge
Construction Labeling

o) »
Components ‘/f‘{
s 1 092
R S © ,. «;‘ 5 \ 41_’,;?‘{%‘)
«// R
Connected //{% o N <
Components W

Edge Scores

Connected

+ Walkthrough

Graph
Segmentation

Track Candidates

Slide Credit: C. Leggett

103

Clustering for the CMS HGCalorimeter

PR
MR
5 =
“— O
')

c 2
Q

ma
wm
e 9
N <
o 3
c O
wn O
-V
N
—_ wn
< o
O g
0 5
L c
5
i
mW/
£ c
.80

imeter end-cap based on h

CMS High-Granularity Calor
illators

* The
calor

t

SCIn

ilicon channels and ~240k scintillator channels

ion s

e ~6m

ile up expected

* Large number of channels and the high p

Full Si layers and Si/Scint mixed layers

ficant computational challenge

igni

e Clusterization will be a s

\

c
ic
3%g

Limit betwe

200u and 1.
sensors

|
|
Inner Radius.

'_" Outer Radius
7 uII Si layers

1 \\\R\\s\\o\\\\\s % \\s\t\S\\w\\ Dires. \5\\5\\\!\\\

S \\ \\\\\\ \\\\ v\\ i \\\\\\ 2
V/////«V///////////«Z/ @/////////////// DTN
4\\\\\\\\\\\\\\\\\\\\\\\\\\“ \\\\\\\\\\\\\\ 2002 \\,
N NS ////./ DN

\\\\\\\\\

s

‘.\I[IIIH‘\

Image Credit

https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf

Clustering for the CMS Calorimeter

* A new parallelized algorithm, CLUE, has been developed

* Based on Clustering by Fast Search and Find Density Peak (CESFDP)

* Calculate local density, p, and separation, 0: distance to nearest point with

highest density (nearest higher)

* Identify cluster seeds based on p and O

104

* Build follower list by registering each point as a follower to nearest higher

* Expand cluster by passing cluster indices from seeds to followers iteratively

* Four parameters

* Parallelization: Each cluster is expanded independently

nearest higher/

local density

separation

seed/outlier

propagate to follower

a

Q@
<

&

C

+

d

&

+

Source

https://arxiv.org/abs/2001.09761
https://arxiv.org/abs/https://science.sciencemag.org/content/344/6191/1492.full.pdf
https://arxiv.org/abs/2001.09761
https://arxiv.org/abs/https://science.sciencemag.org/content/344/6191/1492.full.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf
https://arxiv.org/pdf/2001.09761.pdf
https://arxiv.org/pdf/2001.09761.pdf

105

Clustering for the CMS Calorimeter

 CLUE is 30x faster than the previous algorithm on a single-threaded CPU

* GPU implementation obtains an additional speed up of 6x

Average Execution Time of 2D Clustering of PU200 Events

CMSSW_10_6_X Intel i7-4770K (1 Thread) 6110 ms
\ Use grid-based Spatial Index instead of KD-Tree.
CLUE on CPU 203 - ms-----i--nteli7-4770K-(1-Fhread) - Remove-0O(n?)-loop and-density-sorting -
Intel i7-4770K (1 Thread) + Nvidia GTX 1080
CLUE on GPU V1 159 ms 17 ms for kernel execution; 142 ms for GPU memory operation;

[UPDATE] Combine layer SoA's into a single SoA
CLUE on GPU V2 50-ms -7 ms for kernel execution; 37 ms for GPU memory operation; 6 ms for SoA operation

[UPDATE] move CudaMalloc/CudaFree to constructor/destructor
CLUE on GPU V3 32-ms |6 ms for kernel execution;| 20 ms for GPU memory operation; 6 ms for SoA operation
Nvidia Profiler: https://drive.google.com/drive/folders/17Tq4oN6fNqQD_WBY1rKhdQw1P9VOfEyq?usp=sharing

0 1000 2000 3000 4000 5000 6000
Execution Time [ms]

Image Credit

https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf
https://www.epj-conferences.org/articles/epjconf/pdf/2020/21/epjconf_chep2020_05005.pdf

106

Trigger

Trigger Evolution o

* Triggers have extremely low latency requirements
* Track reconstruction can be a challenge

* HEP has a long history of tracking in the trigger (e.g. LEP, Tevatron) using
hardware track triggers historically primarily relying on FPGAs

* FPGAs meet the low latency requirements
* Algorithms are evolving in two primary directions

« More computation and more complex algorithms (close to offline
physics performance) for the hardware trigger

* Triggerless read-out: no hardware trigger and the software trigger
processes all events

* Of course, the approaches can be mixed, e.g. when using hardware
accelerators in the software trigger

Source

https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf

Belle-1l: 3D hardware tracking at LI

108

* Belle-ll, the b-physics experiment at the SuperKEKB accelerator in Tsukuba,
Japan has full 3D hardware tracking in the LI trigger

> 2D Finder — 3D Finder —
_, Track Segment T —>Glc;bal Decision
CDC Finder - L l —> Logic
|, Eventtime Neuro | | !
Finder Trigger
_‘ 350 ns >
5 us t
Slide Source

Reject beam background using the Central Drift Chamber selecting on z

|.7 Tbsp rate out of CDC and average of | | tracks/event

FPGA system with a 5 s latency

2D/3D Hough transforms and a neural network in firmware

le4 “Belle II Simulation”

track count

track count

o = N w H [6,] @)
1 1 1 1 1 1

o

RMS90
3D 0.4
[2D 0.6

I
w

-2 -1 0 1 2 3
A¢ finder-mc[°]

RMS90
3D 0.1
1 2D0.1

-02 -01 00 01 02 03
Apr/mcp? finder - mc [GeV 1] Source

https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012102
https://iopscience.iop.org/article/10.1088/1742-6596/1085/4/042026/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012102
https://iopscience.iop.org/article/10.1088/1742-6596/1085/4/042026/pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012102
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012102

CMS: 3D hardware tracking at LI

* CMS upgrade will have hardware tracking at L1

* Algorithm relies on detector design

* pt modules to produce stubs for seeding

O(Tbps)

* Stubs passed to FPGA system with 4 [us latency

 Road search and Kalman filter

> <

Tracklet seed & search
SN
fitted track N

N \\ \
AN
~ \ A \

stub pair

tracklet

Slide Source

Kalman Filter fitting SE
frc
Layer (L) 1 L2 L3 L4 L5 L6 L7 L8
coarse J\< precise
track {) e) track
parameters V parameters

increased precision of track parameters

)

Efficiency

1+4mm

» 10x reduction in data, but ~I5k stubs/BC | .

109

a Stub /
LITTTTTT

Pass Fail

[T Ty

® B

LLLTITTT

]

ANNNRNNRNREEED

<100 pm
PU =140, 14 TeV
11— CMS.Phasell. Simulation.
C [B f A
S R TS A
: : : H Tl :
0.6 __ T L1 pTg > 20 GV i
B L1M:u (Run 1 éonﬁguratzion + ME:1a ungan:ged)]
TR P~ | —e— 0 <[n<11(Q249)
i L s B 11<n<24Q29
0.2 "‘3" * L1TrkMu (Phasell: muon hits in > 2 stations)
’ Pl et —e— 0 <nj<
L oper e P -8 115 <24
OM—L]'I_MIIIIIIIIl||||!||||||ll|l|l|ll

5 10 15 20 25 30 35 40 45 50

Simulated muon p_ [GeV]

https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf

CMS HLT on GPUs

* CMS have already ported several
HLT algorithms to run on GPUs
for Run 3

* Pixel track & vertex
reconstruction

* Local calorimeter
reconstruction

* Out-of-time pileup subtraction
* Increases HLT throughput by 25%

* Ongoing work for additional
algorithms

Front. Big Data 3 (2020) 601728

raw data

pixel tracks
(SoA)

pixel tracks
(legacy)

pixel vertices

(SoA)

pixel vertices

(legacy)

CPU

‘ raw data

)

‘ digis

)

‘ clusters

S B
‘ doublets
)

‘ ntuplets

)

i pixel tracks

/

} pixel vertices

GPU

110

CMS

)

¢ 40 MHz readout

|

L1 Trigger

FPGAs and Custom Electronics]

¢ 100 kHz

(event readout j DAQ

(event building)

'

|
|

event filtering

{

LT
MSSW: x86 CPU + GPJ

¢ O(kHz)

Tier-0

Slide Source

https://indico.cern.ch/event/1100351/contributions/4629207/attachments/2352201/4159025/vom_Bruch_scientific_computing_heterogeneous_architectures_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629207/attachments/2352201/4159025/vom_Bruch_scientific_computing_heterogeneous_architectures_2022-05.pdf

LHCDb: Triggerless Software Tracking

* LHCb LO hardware trigger was removed for run-3

* 30 MHz (32 Tbps) to the HLT

* Allen framework used to perform full tracking ¢ =
the GPU in HLT

AMD MI100 (GPU)

2 x AMD EPYC 7502 (CPU)-

 Offline quality track reconstruction on GPU | ey

itel Xeon E5-2630 v4 (CPU)

0 20 40 60 80 100 120 140 160 180 200 220 240
Allen throughput (kHz)

................
...............
e .
........
. -
* .
- “a

REAL-TIME
ALIGNMENT &
CALIBRATION

5TB/s H
30 MHz non-empty pp : : OFFLINE
5 y 0.5-1.5 4 PROCESSING
FULL /e [PARTIAL DETECTOR| "0 - o FULL DETECTOR
S
RECONSTRUCTION RECONSTRUCTION
iilicgﬁf » | & seLecTioNs gl BUFFER P | o seLecrions 1 o’
(GPU HLT1) 70-200 (CPU HLT2) EVENTS
GB/ GB/s
S

ANALYSIS
s o PRODUCTIONS &
2.5 USER ANALYSIS

. GB/s

68%

TURBO
EVENTS

111

. 112
Conclusion

* With Moore’s Law coming to its (long prophesied end) beating flat
computing budgets with increasing computational demands requires
Ingenuity

* Novel computing hardware presents one such possibility

* These lectures have provided a brief introduction to such hardware,
focussing on the types more commonly used in HEP

* We've also seen examples of how such hardware can be used in HEP

* But I'm sure there are many more possibilities

Acknowledgements "

* These slides are largely based on slides from C. Legget, C. Koraka, D.Yom
Bruch [1], [2] and K. Hahn

* Additional material taken from S. Lantz, A. Gheata & S. Hageboek, C. Leggett,
B.Yeo

* Further material:

* C. Koraka, Introduction to Accelerated Computing, CERN Inverted
School of Computing 2023

*]. Lebar, Bringing Clang and C++ to GPUs: An Open-Source, CUDA-
Compatible GPU C++ Compiler at CppCon 20156

 NVidia Cuda Guide

https://indico.cern.ch/event/1328624/contributions/5610337/attachments/2775251/4836370/Intro_to_GPU_programming_HSFIndia.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1170079/attachments/2484554/4269719/cern%20openlab%20lecture%2021-07-2022.pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf
https://indico.cern.ch/event/1254984/contributions/5272175/attachments/2701180/4689011/CSC2023_SW_Design_ManyCore.pdf
https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf
https://cds.cern.ch/record/2851949
https://www.youtube.com/watch?v=KHa-OSrZPGo
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://indico.cern.ch/event/1328624/contributions/5610337/attachments/2775251/4836370/Intro_to_GPU_programming_HSFIndia.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1100351/contributions/4629212/attachments/2352204/4159024/vom_Bruch_programming_for_GPUs_2022-05.pdf
https://indico.cern.ch/event/1170079/attachments/2484554/4269719/cern%20openlab%20lecture%2021-07-2022.pdf
https://indico.cern.ch/event/1290426/contributions/5582374/attachments/2733555/4752627/Realtime_tracking_Hahn.pdf
https://indico.cern.ch/event/1287965/contributions/5411731/attachments/2684956/4659677/WhatEveryCompPhysShouldKnowArch.pdf
https://indico.cern.ch/event/1254984/contributions/5272175/attachments/2701180/4689011/CSC2023_SW_Design_ManyCore.pdf
https://indico.cern.ch/event/1361680/contributions/5733016/attachments/2777010/4840059/2024.01.08_ATLAS_LBL.pdf
https://cds.cern.ch/record/2851949
https://www.youtube.com/watch?v=KHa-OSrZPGo
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

114

Back Up

115

ATLAS Detector

barrol New Small Whee! (INSW)
rmiuon charnbers rmuon charnbers

: \

barrel toroid magnet

endcap _
mison chamabers S jnner detectors

”

endcap toroid
magnel

endcap calcrimeters

varre! efectromagnetic colorimeter

solenoid magnel
narre!l hadronic calorimeter

ATLAS

EXPERIMENT

Source

https://cds.cern.ch/record/2837191
https://cds.cern.ch/record/2837191

The Compact Muon Solenoid (CMS)

CMS DETECTOR CLEL RETURN YOKE

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS

Overall diameter : 15.0m Phxel (1005150 pm) ~ 16m* ~66M channels

Overall length :28.7m Microstrips (80x180 pm) ~200m* ~9.6M channels
Magneticfield :387T

SUPERCONDUCTING SOLENOID
Niobium titamium coil carrying ~ 18,0004

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 468 Cathode Strip, 32 Resistive Plate Chambers

PRESHOWER
Silicon strips = 16m* — 137,000 channels

FORWARD CALORIMETER
Steel = Quartr Aibres 2,000 Channels

CRYSTAL
ELECTROMAGNETIC
CALORIMETER (ECAL)
~=76,000 scintillating PEWO, crystals

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator 7,000 channels

117

CMS Detector Slice

~Iefoe \ .
Silicon
Trackar

Electromagnetic:
Calerimeter

Hadron

Celorimeter Superconducting Y g I
Solenotd ren return yoks intersparseel 47 |1
with muen chambars I)
Muon Electron Charged hadron (e.g. pion)
- - - Neutral hadron (e.g. neutron) -===<« Photon

Source

https://cds.cern.ch/record/2120661/files/CMSslice_whiteBackground.png?version=1
https://cds.cern.ch/record/2120661/files/CMSslice_whiteBackground.png?version=1

118

ALICE Detector

ACORDE | AULL Losm ¢ Rays Detestor
AD | AlLICF Yiffractive Detector

DCal | nijet Caladmeta-

EMCal | Glectroragretic Cz orimazer

HMPID | Figh Momentor: Farlide

ldenut cation Detector

ITS-IB | Inner Trac<ing System - nnar 3a1d
ITS-OB | Inner Tracking $ystzm - Duler Barrel

MCH | Muon Trac<ing Chambers
MFT | *Mucn Forward Tracker

MID | Muce Identitier

PHOS / CPV | Photon Spectreraser
TOF | Time Cf “hght

TO+A | 1720+ A

TO+C | Tere s ©

TPC ' Time Prcjection C-amber

TRD | “rersition Radistion Detzcler

VO+ | vzero + Detecior

000 000006000 000000C

ZDC | Zere Degree Cakorin el

Source

https://cds.cern.ch/record/2263642
https://cds.cern.ch/record/2263642

LHCb Detector

SPD/PS
RICH2 M

Magnet
RICHI1
S o TT
rte =
ogato
0 E

119

Smaller Experiments

LHCf

neutral-particle production cross sections in the very
forward region of proton-proton and nucleus-nucleus
interactions

4 pairs of silicon microstrip layers

INCOMING NEUTRAL .
for tracking purposa

... PARTICLE BEAM

\
\

| 16 ceintilipror loyers -
(3 mm thick)

Absorber
22 tungsten layers Tmm

FASER

search for light and extremely weakly interacting particles

\r
.

FASER main detectar
[LOI: 1311.10243, 7P: 1812.02139|

ECAL

FASERv

[1908.02310] spectromeater

1.5 mlong
decay volume

emulsionitarget

~ 3 tracking stations

0.6T permanent

1m
magnets - >

<cintillators

120

TOTEM

total cross section, elastic scattering and diffraction
dissociation measurement at the LHC

MoEDAL

magnetic monopoles or massive (pseudo-)stable
charged particles

MoEDAL

row k+1

Cellular Automaton Algorithm

Fig. 7. a) Neighbors finder. b) Evolution step of the Cellular Automaton.

The tracking algorithm starts with a combinatorial search for
track candidates (tracklets), which is based on the Cellular Au-
tomaton method [3]. Local parts of trajectories are created from
geometrically nearby hits, thus eliminating unphysical hit com-
binations at the local level. The combinatorial processing com-
poses the following two steps:

* 1. Neighbor finder: For each hit at a row k the best pair
of neighboring hits from rows k + 1 and k — 1 is found,
as it is shown in Fig. 7(a). The neighbor selection criteria
requires the hit and its two best neighbors to form a straight
line. The links to the best two neighbors are stored. Once
the best pair of neighbors is found for each hit, the step is
completed.

* 2. Evolution step: Reciprocal links are determined and
saved, all the other links are removed (see Fig. 7(b)).

Every saved one-to-one link defines a part of the trajec-
tory between the two neighboring hits. Chains of consecutive
one-to-one links define the tracklets. One can see from Fig. 7(b)
that each hit can belong to only one tracklet because of the
strong evolution criteria. This uncommon approach is possible
due to the abundance of hits on every TPC track. Such a strong
selection of tracklets results in a linear dependence of the
processing time on the number of track candidates. When the
tracklets are created, the sequential part of the reconstruction
starts, implementing the following two steps:

Fig. 9. Reconstruction performance for central heavy ion collisions at 5 TeV.

e 3. Tracklet construction: The tracklets are created by fol-
lowing the hit-to-hit links as it is described above. The ge-
ometrical trajectories are fit using a Kalman Filter, with a
x? quality check. Each tracklet is extended in order to col-
lect hits being close to its trajectory.

* 4. Tracklet selection: Some of the track candidates can have
intersected parts. In this case the longest track is saved,
the shortest removed. A final quality check is applied to
the reconstructed tracks, including a cut on the minimal
number of hits and a cut for low momentum.

IV. TRACKER EFFICIENCY

The performance of the HLT track finder of 99.9% for proton-
proton events and 98.5% for central Pb-Pb collisions has been
verified on simulated events. Corresponding efficiency plots are
shown on Figs. 8 and 9. In addition to the high efficiency, the
real-time reconstruction is an order of magnitude faster than the
off-line algorithm used as reference.

The described algorithm has the advantage of a high degree of
locality and parallelism. Step one only searches for local neigh-
bors to each hit. It can be done in parallel for all the hits as the
result does not depend on the order of processing. Step three

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 22,2024 at 09:27:44 UTC from IEEE Xplore. Restrictions apply.

Source

121

https://ieeexplore.ieee.org/document/5934702
https://ieeexplore.ieee.org/document/5934702

122

i A Brief History of GPUs

BERKELEY LAB

» Original purpose: make pretty pictures on your screen, much faster and prettier than
your CPU could do

* first graphics cards appeared in 1970s in arcade games, and even earlier (1950s) in
military flight sims. Mainly used to accelerate sprite graphics

* 1981: IBM introduced Monochrome Display Adapter: 80 x 26 lines of text!

* 1983: IBM ups resolution to 256x256x8 colors and monochrome at 512x512

« 1985: ATI| founded, introduces "Wonder" line of cards: start of consumer 2D acceleration
* 1991: S3 Graphics introduces "86C911", major increase in 2D acceleration

* OpenGL, and Windows APIs for graphics such as WinG and DirectDraw begin to appear
* 1994: Sony coins "GPU" (Graphical Processing Unit) name for PlayStation graphics card
* 1995: 3DFx "Voodoo": first mainstream 3D accelerated cards

* 1999: NVidia introduces GeForce 256: hardware acceleration for transforms, lighting,
triangle setup/clipping, rendering
- 2000+: manufacturers add more hardware for specific tasks, eg shading, explosions,
vertex blending, bump mapping, refraction
« 2007: NVidia releases CUDA development environment: General Purpose GPU computing
« GPUs become less specialized, with more generalized computing elements

« 2009: OpenCL (Open Compute Language) released. targets heterogeneous computing

123

SISD, MIMD & SIMD

SISD MIMD SIMD
Single Instruction Single Data Multiple Instruction Multiple Data Single Instruction Multiple Data
Uniprocessor machines Multi-core, grid-, cloud- e.g. vector processors
computing
SISD Instruction Pool MIMD Instruction Pool SIMD Instruction Pool
7 [PU | Q‘-:*—’PU* — | PU |+ S Jpul
5 3 =
(@) ® s
—_—] — «— <
A PU PU 8 Jpul—
—|PU[« —|PU|«<
> PU [«

D. vom Bruch 8

Single Instruction Multiple Threads (SIMT)

SISD

Single Instruction Single Data

Uniprocessor machines

SISD Instruction Pool

> PU [«

Data Pool

MIMD

Multiple Instruction Multiple Data

Multi-core, grid-, cloud-

computing
MIMD Instruction Pool
—|PU|—+ "—|PU|+
g|—|pul+ lpul-
3
Al—|pul+ “|Pul«
—|PU |+~ "—|PU|«+

D. vom Bruch

SIMT

Single Instruction Multiple
Threads

GPUs
SIMD Instruction Pool
» | PU |+
‘E » | PU |+
£
A +|PU |
»| PU |+

124

SIMD versus SIMT

125

SIMD

Vectorized instructions executed on modern CPU
SIMD cores are executed in lockstep

No synchronization barrier is needed, as all elements

of the vector finish processing at the same time

D. vom Bruch

SIMT

Similar to programming a vector processor
Use threads instead of vectors

No need to read data into vector register

GPUs consist of multiple processing elements, each
with multiple SIMT GPU cores

- not all threads are processed in lockstep

A synchronization instruction is required on GPUs

10

Heterogeneous solutions & sustainability: Green500

Rank

TOP500
Rank

301

291

295

280

30

System

Preferred Networks

Japan

~ 91 c

SSC-21 Scalable Module

HPE
South Korea

Tethys

United States

Wilkes-3

EM(f
United Kingdom
HiPerGator Al

R, Nvidia

United States

Cores

1,664

16,704

19,840

Nvidia

26,880

DELL

138,880

Rmax
(TFlop/s)

2,181.2

2,274.1

2,235.0

2,287.0

17,200.0

Power
(kW)

35

103

72

74

583

Power Efficiency

(GFlops/watts)
* Alltop 5 Green500 use accelerators
o * 4/5 use Nvidia GPUs combined with AMD Epyc
* MN-3 uses an accelerator optimized for matrix
arithmetic
] * Of the top 30 Green500:
o © 26 use Nvidia GPUs
* 3 use A64FX vector-processors (ARM)
e * lusesamany-core microprocessor (PEZY-
SC3)

https://www.top500.0rg/lists/green500/2021/11/
D.vom Bruch

126

