
Functor classes

 Use a Functor class to wrap any C++ callable object which
has a right signature

 Can work with:
 free C functions
 C++ classes (or structs) implementing operator()
 member function of a class

 The requirement is that they must have the right
signature
 Ex: a function of type :

 double f (double)

1

Examples of Using Functors

 free functions:

 classes implementing operator()

 member functions

2

Advantages of Functor classes

 They are very convenient for users
 easier to defining a functor than implementing a class following an

abstract interface
 Have value semantics (like shared pointers)

 Very flexible
 users can customize the callable objects using its state
 this is not possible when using a free function

 Example of usage in C++:
 STL algorithm are based on similar concept

 very powerful and flexible
 boost::function (will be in next C++ standard)
 Functor class from Alexandrescu (Loki)

3

Proposed usage in ROOT

 Use a Functor class in TF1 instead of using the free
function pointer

double (*) (double *, double *)

 Define a Functor class which provides this signature

4

Modifications to TF1

 Use this class as a data member of TF1 to replace the
current fFunction pointer

 Have template constructors for callable objects and for
member functions

5

Example of Usage (1)

 Working example of how it works:

6

Example of Usage (2)

 this would be possible with the current
TF1 only by using global objects

7

Further Remarks

 Different signatures can be easily matched using some
Functor adapters
 using something similar to std::bind2nd functions taking two

parameters can be adapted to function with one parameter
 one could project a multidimensional function in a 1D function

 Can also make it work from interpreter:
 could use a virtual class implementing a virtual operator()
 user defines the interpreted function object as a derived class of

a base Functor

8

Further Remarks (2)

 Would also like to have in TF1 defined the operator()
 make it work easier with template methods requiring this

signature
 no need of an additional adapter

 Numerical Algorithm (Integration, Root Finder classes,
etc..) will work also accepting a Functor
 easier integration without need to have a common interface
 better decoupling between the Function class (TF1) and the

algorithm
 can use a template method relying on the defined functor

signature

9

Conclusions

 Propose to use a Functor class (a function wrapper) in TF1
to describe a callable object instead of a simple function
pointer

 A prototype already exists working with a TF1 in compiled
mode

 Investigate in more details all the consequences of these
proposed changes
 negligible changes in performances

 ~ 10% for the simplest function like y = x1 + x2;
 Need to prototype also the solution for interpreted

function and I/O
 ideally is generation of the dictionary on the fly for the functor

object passed by the user

10

