
Functor classes

 Use a Functor class to wrap any C++ callable object which
has a right signature

 Can work with:
 free C functions
 C++ classes (or structs) implementing operator()
 member function of a class

 The requirement is that they must have the right
signature
 Ex: a function of type :

 double f (double)

1

Examples of Using Functors

 free functions:

 classes implementing operator()

 member functions

2

Advantages of Functor classes

 They are very convenient for users
 easier to defining a functor than implementing a class following an

abstract interface
 Have value semantics (like shared pointers)

 Very flexible
 users can customize the callable objects using its state
 this is not possible when using a free function

 Example of usage in C++:
 STL algorithm are based on similar concept

 very powerful and flexible
 boost::function (will be in next C++ standard)
 Functor class from Alexandrescu (Loki)

3

Proposed usage in ROOT

 Use a Functor class in TF1 instead of using the free
function pointer

double (*) (double *, double *)

 Define a Functor class which provides this signature

4

Modifications to TF1

 Use this class as a data member of TF1 to replace the
current fFunction pointer

 Have template constructors for callable objects and for
member functions

5

Example of Usage (1)

 Working example of how it works:

6

Example of Usage (2)

 this would be possible with the current
TF1 only by using global objects

7

Further Remarks

 Different signatures can be easily matched using some
Functor adapters
 using something similar to std::bind2nd functions taking two

parameters can be adapted to function with one parameter
 one could project a multidimensional function in a 1D function

 Can also make it work from interpreter:
 could use a virtual class implementing a virtual operator()
 user defines the interpreted function object as a derived class of

a base Functor

8

Further Remarks (2)

 Would also like to have in TF1 defined the operator()
 make it work easier with template methods requiring this

signature
 no need of an additional adapter

 Numerical Algorithm (Integration, Root Finder classes,
etc..) will work also accepting a Functor
 easier integration without need to have a common interface
 better decoupling between the Function class (TF1) and the

algorithm
 can use a template method relying on the defined functor

signature

9

Conclusions

 Propose to use a Functor class (a function wrapper) in TF1
to describe a callable object instead of a simple function
pointer

 A prototype already exists working with a TF1 in compiled
mode

 Investigate in more details all the consequences of these
proposed changes
 negligible changes in performances

 ~ 10% for the simplest function like y = x1 + x2;
 Need to prototype also the solution for interpreted

function and I/O
 ideally is generation of the dictionary on the fly for the functor

object passed by the user

10

