What Machine Learning Can Do for Focusing Aerogel Detectors

F.Shipilov, A.Barnyakov, V.Bobrovnikov, S.Kononov, F.Ratnikov

fshipilov@hse.ru

LAMBDA • HSE University, Moscow, Russia

August 29, 2023

FARICH for SPD

Compact particle ID detector

- trade off between resolution and number of Cherenkov photons
- improve resolution with discrete focusing capability

https://nica.jinr.ru/projects/spd.php

Data: "Simple" FARICH GEANT4 Simulation

- photodetector
 - 30×30 matrix of SiPM (57600 = $30 \times 30 \cdot 8 \times 8$ total channels);
 - 3.16 × 3.16 mm² pixels;
 - 1 mm gap between matrices.
- radiator
 - 4 layers, $n_{max} = 1.05;$
 - 35 mm total depth;
 - 200 mm in front of the photo detector.
- π^- with varying angles $[0^\circ, \ldots, 45^\circ]$ and velocities [0.957; 0.999]
- 1.2M events
 - photon hit coordinates
 - hit times
 - flat random noise is dynamically applied on top of the events

Data

Data (Noise 1MHz/mm²)

Online Data Filtering

Goals

- no info about particle track
- \blacksquare noise up to $1 MHz/mm^2$
- efficiency $\geq 95\%$
- maximum possible noise suppression (orders of magnitude)

Approach 1: Classification

- create a dataset of events with / without signal (positive event ≥ 10 signal photons)
- train Convolutional Neural Network (CNN) to perform binary classification

Metrics:

- Efficiency (events) = $TPR = \frac{TP}{TP+FN}$
- Noise Events Reduction = $FPR = \frac{FP}{TN+FP}$

Procedures: Data

- irregular matrix structure due to gaps between SiPM
 - project hits (times) to a regular grid

Red — hits, green — times

Procedures: Data

- irregular matrix structure due to gaps between SiPM
 - project hits (times) to a regular grid

Input image example

Procedures: Learning

■ use ResNet-18¹ CNN architecture

 tune first and last layers to accommodate input and output data formats

Experiment: Classification

Experiment: Classification

				Cla	assific	ation	quality	/ (AUC	CROC)	by mo	oment	um ar	nd $ heta_p$ ($@10^{6}$	Hz/m	m²				
44	0.938	0.967	0.989	0.972	0.992	0.997	0.992	0.998	0.999	0.988	0.983	1	1	0.969	0.975	1	1	1	1	
42	0.934	0.969	0.978	0.976	0.993	0.996	0.975	0.984	0.999	0.991	1	0.958	0.996	1	1	1	1	0.99	1	
40	0.942	0.978	0.985	0.987	0.996	0.994	0.985	0.98	0.998	0.999	0.998	0.974	0.971	0.992	1	1	1	0.99	1	-
38	0.95	0.975	0.981	0.993	0.986	0.998	0.998	1	0.998	0.993	0.996	1	0.992	0.982	1	1	1	1	1	
36	0.947	0.981	0.988	0.994	0.998	1	1	0.997	0.999	0.995	0.945	1	1	1	1	1	1	1	1	
34	0.961	0.99	0.994	0.987	0.997	0.995	0.998	0.995	0.989	1	1	0.999	1	1	1	1	1	1	1	
32	0.927	0.98	0.989	0.997	0.994	0.998	0.999	1	0.991	1	1	1	1	0.972	1	1	1	1	1	
30	0.936	0.979	0.996	0.999	0.993	0.991	0.998	1	1	1	1	1	1	1	1	1	1	1	0.956	-
<u> </u>	0.944	0.987	0.988	1	0.998	1	0.987	0.992	1	1	0.998	0.956	1	1	1	1	1	0.969	1	
<u>9</u> 26	0.965	0.984	0.997	0.997	0.998	0.999	1	0.998	1	1	0.997	1	0.997	1	1	1	1	1	1	
24	0.942	0.984	0.999	0.996	0.997	1	1	1	1	0.999	0.976	1	1	1	1	1	1	1	1	
6 22	0.954	0.988	1	0.994	1	1	1	0.999	1	0.997	1	1	1	1	1	1	1	1	1	
20	0.966	0.987	1	0.999	1	0.999	0.999	1	1	1	1	1	1	1	1	1	1	1	1	-
18	0.95	0.991	0.996	0.998	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
16	0.954	0.99	0.998	1	1	1	0.99	0.999	0.994	1	1	1	1	1	1	1	1	1	1	
14	0.957	0.989	0.996	0.999	1	1	0.998	1	1	1	1	1	1	1	0.981	1	1	1	1	
12	0.96	0.989	0.997	0.999	1	0.988	1	1	1	1	1	1	0.979	1	1	1	1	1	1	
10	0.951	0.99	1	0.997	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	_
8	0.937	0.998	0.999	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
6	0.921	0.988	0.988	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	
								м	lomen	tum [l	MeV /	c]								

Experiment: Classification

Online Data Filtering

Approach 2: Bounding box (bbox) regression

- compute ground truth bboxes for signal ellipses
- train CNN to extract bbox coordinates

Metrics:

• Efficiency (area) = $\frac{|B \cap B^{gt}|}{|B^{gt}|}$ • Reduction (area) = $\frac{|B|}{|B_{max}|}$

Ground truth bbox example

Bbox regression objective

with simple MSE many signal hits are lost ■ use asymmetric version: expectile loss [2] quantile: argmin $\left\{\sum_{\tau}^{n} \omega_{\tau}^{q}(y_{i}-q_{i})|y_{i}-q_{i}|\right\}$, expectile: argmin $\left\{\sum_{i=1}^{n} \omega_{\tau}^{e}(y_{i}-q_{i})(y_{i}-q_{i})^{2}\right\}$, where $\omega_{\tau}^{q}(\varepsilon) = \omega_{\tau}^{e}(\varepsilon) = \begin{cases} 1 - \tau, & \varepsilon \leq 0 \\ \tau, & \varepsilon > 0 \end{cases}$

Experiment: Bbox regression

- train CNN regressor to predict $\beta = v/c$
- compare with statistical baseline (maximum likelihood)

Configs:

- ResNet: no track prior
- ResNet Centered: center image using track info
- ResNet Circular: project hits to circular conic section, drop unphysical velocities, center
- **ResNet Fourier:** same as previous with added Fourier features

RECO: Statistical Baseline

"Fit" algorithm:

- Compute Cherenkov angles θ_c
- Drop unphysical velocities $\beta = v/c \ge 1$
- Construct eCDF F_{data}
- Subtract pure noise CDF F_{noise}
- Take a numerical derivative and find its peak $\hat{\theta}_c = \arccos(1/n\hat{\beta})$

Experiment: RECO

Experiment: RECO

Conclusions

Online filtering:

- ResNet-18 CNN provides a significant level of denoising with high efficiency
- It is possible to achieve even higher noise reduction by performing bounding box regression on signal ellipses for positive events
- Real time performance is possible with optimizations

RECO:

- \blacksquare ResNet with track prior significantly outperforms stat models by β RMSE
- ResNet is more accurate on hard samples (low β, p), where statistical models struggle the most because of random peaks in θ_c

- [1] He et al. Deep Residual Learning for Image Recognition. In CVPR 2016.
- [2] Arthur Charpentier. Quantile and Expectile Regressions. Erasmus School of Economics, May 2017.

