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The use of new methods for processing data of a physical experiment.
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Fast simulation problem

> Simulation is an important component in high-energy physics.
» The amount of computation is growing faster than the speed of the processors.

> This problem will get worse with increasing luminosity
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> Several approaches are available: parametric, pre-simulated library, ...

> Generative machine learning models combine the two approaches and allow one to build a
parametric model from an existing pre-simulated library.
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How can a neural network generate data?

Random noise
e.g. multivariate normal

detector
response

[

Generated data

Neural network

> The task of the generative model is to construct events that correspond to
some probability distribution.

> Generating a sample is fast as well-developed and effective industrial ML
methods are used.
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Generative adversarial networks (GANSs)

> There are different approaches to
generative models in ML

> Generative adversarial networks (GANSs)
offer the fastest sampling

> GANSs consist of two neural networks: Training set [/ / Siceriminator
generator is trained to creates samples, / AN
. e e . . . L. . o —»
discriminator is trained to distinguishes Rrandom A / — — % Fake
noise
true samples from those created by | —
Sl E—
generator !
Generator /Fake image

> As a result, generator and discriminator
dynamically improve each other
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Comparison GANSs with traditional methods

> GANSs sampling is much faster than direct Geant4
— Geant4 is accurate and reliable.

— Geant4 is still considered as a reference
> GANSs are flexible comparing to rigid parametric models.

> GANSs produce nice smooth distributions comparing to discrete
distributions produced by library

> However, making GANs to really work, requires care of some typical
problems, which we are going discuss in a moment.
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Generative models characteristics

Sampling

> Fast Sampling
— much faster than detailed Geant4

— models can get complicated

> Very Fast training

— retrain can be done very fast Precision Train

— train process still should be periodically controlled

> Good Precision
— complicated models can be quite precise

— precision is controlled by train sample statistics
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Possible approaches

> GANSs can be used to sample:
— Raw signal images from the detector
— High-level reconstruction results
> GANSs can be trained using:
— Real data
— Simulated data
> GANSs can be used to simulate
— Whole detector

— Individual sub-detectors
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GAN for NICA
Multi-Purpose Detector
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Problem statement

Main goal is fast generation of the signal for
Multi-Purpose Detector in Time projection chamber A

Pad rows

Train sample:

> Simulated data for pion

Input:
> 2 angles (6, ¢)
> 3 coordinates per track

segment

Output: Track Sa.e;gment parameters

> 95232 - 310 elements (pads x time buckets) S R ]

> Conditioned on the track parameters for the whole s Dads
event
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Dimensionality reduction

We can hardly build generative model for Global -> local ML
the full detector

> many channels - high dimensional
objects.

Response of the impact particle is usually

local
local ML -> global

> can limit generated object to the local Of-jg L [
- H [ {24
area of the response B |-
1o 1.8
T 15H 1.5

e | N
20 E 0§12
t TR 0.9
25 Ii 0.6

0 5 10 15 20 25
cell X
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Assumptions for fast simulation

A sector of sensitive pads

> Factorizing the pad rows

>

— dividing tracks to segments, each

Pad rows

N : o
contributing to a particular pad row @o@és_
@
— can model such contributions independently! q)@ii‘%@é\
&

> Signal localization (both position & time)

— model only a small area instead of the full row

— model only a few time buckets

> Target dimensionality:

8 pads x 16 time buckets
(instead of original 95 232 * 310)

>
\ Pads
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Model architecture

» Model: WGAN-GP (arXiv:1704.00028 [cs.LG])

> Generator:
— Fully connected
— ELU activations, custom output layer activation

— 5 layers

> Discriminator:
— Deep convolutional NN
— ELU activations
— Dropout layers
> Optimization: RMSprop, learning rate
exponential decay
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Low-level metrics

> Start with a simple preliminary metric: we
compare the 1st & 2nd order moments of
the signal images, i.e..
— the location of the signal in pads and time bins

— the widths of the signal in pads and time bins

> Also looking at the integrated amplitudes

> All this as a functions of track segment
parameters (2 angles + 3 coordinates)
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Low-level metrics - profiles

Widths of the shaded lines 0.400 |
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Low-level metrics - profiles
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Low-level metrics - profiles
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Physics-level model quality metric

At reconstruction level we can consider reconstruction efficiencies
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Agreement looks pretty good. Our assumptions make sense
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Conclusion

> Generative adversarial networks may boost simulations of elementary

particle detectors by orders of magnitude compared to regular Geant3(4).

> Dimension of problem may be significantly reduced by considering
specific structure of detector.

> Our model accelerates the detailed simulation by at least an order of
magnitude and

> |t is capable of producing detector responses that look authentic in both
low- and high-level validation procedures.

> We are currently working on accounting for correlations between rows of
pads.
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Library vs Generative Approach

Reference dataset is necessary to train generative model
Reference dataset may be used to sample objects directly
> approach accommodated by CMS, ATLAS, LHCb
>  PRO library approach comparing to generative models
aggregated distributions are guaranteed by construction
>  PRO generative models comparing to library approach
discreetness of events
— partly compensated by energy scaling
speed
— massive matrix operations vs massive object search
size
— both transient and persistent

From technical perspective, library-based and ML-based modules have very similar interfaces for both gathering train data
and inferencing objects
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Operation Scheme

To speed up Geant4 we need to intercept G4Track in front of the detector,

generate detector response, fill DetHits structures

G4Track (in) GEANT4 GEANTS | .x

----- Detector 1________________Detector 2

G4Track(in) DetectoriHits, G4Tracks ——— Detector2Hits
GEANT4

GEANT4

G4Track (in)._ FastSim(1) FE=

""" Apetector 1 Detector 2

Detector2HitsegDetector2Hits

G4Track(in)
FastSim
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Evaluation metric

> We measure the efficiency of RichDLLx
cuts at various quantiles of the RichDLLx
distribution:

_ number of tracks above x% threshold

& =
total number of tracks

> Do this as a function of the input variables:
e(P,n,nSPDHits)

> Calculate the efficiency ratio between
GAN predictions and simulated events
(in bins of a variable):

EGAN

ef ficiency ratio =
€simulated
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