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► Simulation is an important component in high-energy physics. 

► The amount of computation is growing faster than the speed of the processors.

► This problem will get worse with increasing luminosity

► Several approaches are available: parametric, pre-simulated library, … 

► Generative machine learning models combine the two approaches and allow one to build a 

parametric model from an existing pre-simulated library.

Fast simulation problem
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Estimated CPU usage for LHCb



How can a neural network generate data?
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► The task of the generative model is to construct events that correspond to 

some probability distribution. 

► Generating a sample is fast as well-developed and effective industrial ML 

methods are used. 



► There are different approaches to 

generative models in ML

► Generative adversarial networks (GANs)

offer the fastest sampling

► GANs consist of two neural networks:

generator is trained to creates samples,

discriminator is trained to distinguishes 

true samples from those created by 

generator

► As a result, generator and discriminator 

dynamically improve each other

Generative adversarial networks (GANs)
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► GANs sampling is much faster than direct Geant4 

– Geant4 is accurate and reliable.

– Geant4 is still considered as a reference

► GANs are flexible comparing to rigid parametric models. 

► GANs produce nice smooth distributions comparing to discrete 

distributions produced by library 

► However, making GANs to really work, requires care of some typical 

problems, which we are going discuss in a moment.

Comparison GANs with traditional methods
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► Fast Sampling

– much faster than detailed Geant4

– models can get complicated

► Very Fast training

– retrain can be done very fast

– train process still should be periodically controlled

► Good Precision

– complicated models can be quite precise

– precision is controlled by train sample statistics

Generative models characteristics
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► GANs can be used to sample:

– Raw signal images from the detector 

– High-level reconstruction results 

► GANs can be trained using:

– Real data

– Simulated data

► GANs can be used to simulate

– Whole detector

– Individual sub-detectors

Possible approaches
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›

GAN for NICA 
Multi-Purpose Detector



Time projection chamber
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3968 pads * 12 sectors * 2 endcaps = 95232 total pads



Main goal is fast generation of the signal for

Multi-Purpose Detector in Time projection chamber

Train sample: 

► Simulated data for pions

Input:

► 2 angles (𝜃, 𝜙)

► 3 coordinates per track 

segment

Output:

► 95 232 ⋅ 310 elements (pads x time buckets)

► Conditioned on the track parameters for the whole 

event

Problem statement
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We can hardly build generative model for 

the full detector

► many channels - high dimensional 

objects. 

Response of the impact particle is usually 

local 

► can limit generated object to the local 

area of the response

Dimensionality reduction
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Global -> local ML

local ML -> global



► Factorizing the pad rows

– dividing tracks to segments, each

contributing to a particular pad row

– can model such contributions independently!

► Signal localization (both position & time)

– model only a small area instead of the full row

– model only a few time buckets

► Target dimensionality:

8 pads x 16 time buckets

(instead of original 95 232 * 310) 

Assumptions for fast simulation
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Model architecture
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► Model: WGAN-GP (arXiv:1704.00028 [cs.LG])

► Generator:

– Fully connected

– ELU activations, custom output layer activation

– 5 layers

► Discriminator:

– Deep convolutional NN

– ELU activations

– Dropout layers

► Optimization: RMSprop, learning rate

exponential decay



Raw pad responses
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► Start with a simple preliminary metric: we 

compare the 1st & 2nd order moments of 

the signal images, i.e.:

– the location of the signal in pads and time bins

– the widths of the signal in pads and time bins

► Also looking at the integrated amplitudes

► All this as a functions of track segment 

parameters (2 angles + 3 coordinates)

Low-level metrics
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Low-level metrics - profiles
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Low-level metrics - profiles
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Low-level metrics - profiles
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At reconstruction level we can consider reconstruction efficiencies

Agreement looks pretty good. Our assumptions make sense

Physics-level model quality metric
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► Generative adversarial networks may boost simulations of elementary 

particle detectors by orders of magnitude compared to regular Geant3(4).

► Dimension of problem may be significantly reduced by considering 

specific structure of detector.

► Our model accelerates the detailed simulation by at least an order of 

magnitude and

► It is capable of producing detector responses that look authentic in both 

low- and high-level validation procedures. 

► We are currently working on accounting for correlations between rows of 

pads. 

Conclusion
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›

Backup



Reference dataset is necessary to train generative model

Reference dataset may be used to sample objects directly

► approach accommodated by CMS, ATLAS, LHCb

► PRO library approach comparing to generative models

aggregated distributions are guaranteed by construction

► PRO generative models comparing to library approach

discreetness of events

– partly compensated by energy scaling

speed

– massive matrix operations vs massive object search

size

– both transient and persistent

From technical perspective, library-based and ML-based modules have very similar interfaces for both gathering train data 

and inferencing objects

Library vs Generative Approach
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To speed up Geant4 we need to intercept G4Track in front of the detector, 

generate detector response, fill DetHits structures

Operation Scheme
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Evaluation metric
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► We measure the efficiency of RichDLLx 

cuts at various quantiles of the RichDLLx 

distribution:

𝜀 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘𝑠 𝑎𝑏𝑜𝑣𝑒 𝑥% 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑐𝑘𝑠

► Do this as a function of the input variables: 

𝜀(𝑃, 𝜂, 𝑛𝑆𝑃𝐷𝐻𝑖𝑡𝑠)

► Calculate the efficiency ratio between 

GAN predictions and simulated events

(in bins of a variable): 

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑟𝑎𝑡𝑖𝑜 =
𝜀𝐺𝐴𝑁

𝜀𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

Evaluation metric


