Neutron reconstruction in the highly granular time-of-flight neutron detector at the BM@N experiment

Vladimir Bocharnikov

HSE University

ML4NICA, St. Petersburg 29.08.2023

BM@N experiment

Studies of **B**aryonic **M**atter **at** the **N**uclotron (NICA, JINR Dubna)

- Heavy-Ion beam with energies up to 6A GeV interacts with fixed target
- ➡investigate the equation-of-state (EOS) of dense nuclear matter which plays a central role for the dynamics of core collapse supernovae and for the stability of neutron stars.
- Azimuthal properties of produced particles important tool for EOS studies
 - •we focus on **neutron** flows

Highly granular time-of-flight neutron detector (HGN)

Longitudinal structure

- Cu Scint Veto
- •16 layers: 3cm Cu (absorber) + 2.5cm Scintillator + 0.5cm PCB; 1st layer — 'veto' before →Total length: ~1m, ~3 λ_{in}
 - ➡ neutron absorption ~100%
 - Transverse size: 44x44 cm²
- 11x11 scintillator cell grid

Active layer

- scintillator cells:
- size: 4x4x2.5 cm³,
- total number of cells: 1936
- light readout by silicon photomultiplier
- expected time resolution per cell: ~150 ps

Experimental setup and simulations

- Neutron detector is located at **27° to the beam** axis at ~5m from the target
- Monte-Carlo event simulations:
- DCM-SMM model + Geant4 (QGSP_BERT)
- ~500K events with fully simulated reactions Bi+Bi @ 3 AGeV (BM@N data rate ~10kHz)

Particles passing the HGN front wall

- •Logical volume before the HGN front wall to capture particles in the detector acceptance
- No access to hit-level labelling within event
- wall
- Primary neutrons produced in reaction, $E_{kin} > 0.4$ GeV to minimise presence of background neutrons
- Neutron multiplicity ≈1 => event classification approach

• ~14% of events with energy deposition in HGN has no particle ($E_{kin} > 50 MeV$) passing the front

Imaging capabilities of the HGN

Event type signatures:

- tracks of charged particles
- compact electromagnetic showers
- sparse and irregular hadronic showers
 - no upstream track for neutral hadrons (including neutrons)

we use HGN event image to identify neutron and ToF to reconstruct it's energy

Charged particle track background event 7.0 6.5 40 6.0 م 5.5W 5.0 ^{jap} -40 20 4.5 4.0 -10107' x, cm10 3.5 2**∩**-20

Ē

Time-of-flight (ToF) energy for *n* hypothesis:

$$E_{ToF} = m_n \left(\frac{1}{\sqrt{1-\beta^2}} - 1\right)$$

• hits with $E_{ToF} > 10 \text{GeV}$ are rejected

Fastest hit

- naive reconstruction
- bias from fast hits (bg + time uncertainty)

Neutron ToF energy

Median of all hits

- naive reconstruction
- more balanced uncertainty
 - fast hits
 - shower tails

"Best" hit

- "Cheated" hit selection from simulation
- suitable for event labelling
- additional estimation model required: fast, median, ML, etc

7

Dataset

Observables per hit:

- (X, Y, Z)hit
- E_{dep} (>3 MeV)
- T_{hit} + $N(0,\sigma = 150ps) < 40ns$

272844 events with deposition >3 MeV

Signal event labeling:

- Single neutron,
- • $E_{kin} > 100 \text{ MeV},$
- •Angle to detector axis $< 10^{\circ}$
- • $\delta(E_{ToF}) < 40\%$
 - fastest 21917 signals
 - median 34670 signals
 - "best" 58949 signals

Chalenges:

- Small fraction of signal neutrons
- Event contamination by background energy deposition
- •Neutron energy range is not typical for sampling calorimeters
 - •0-5 GeV vs. 10-250+ GeV
 - → low number of hits corresponding to a neutron, high fluctuations in energy deposition

Why Graph Neural Networks:

- Natural event representation
- Easily applied to sparse data with variable input size
 - typically we have signal only in small fraction of sensors
- Increasing number of successful implementations in HEP
- Performance improvement in comparison with commonly used Gradient Boosting (GB) models (or Boosted Decision Tree (BDT) in HEP language)

J. Gilmer et al., "Neural message passing for quantum chemistry," 2017.

GNN in High Energy Physics

Example on calorimeter energy resolution

 > 10% photon energy resolution improvement of GNN-based model compared to GB

Classification models

Event structure model

Graph neural network (GNN)

- (x,y,z), E_{dep}, T_{hit} (after first hit), E_{ToF} (optional)
- Fully connected hit graphs
 - 100 in batch
- 2x GraphSage layers with 32 hidden channels
 + batchnorm + dropout -> <u>Self-attention pooling</u>
 layer (1 node output) -> MLP readout layer 32 >16->1 + sigmoid
- BCE loss function

<u>GraphSAGE</u> (SAmple and aggreGatE) architecture GNN:

Sample neighbourhood of graph nodes

Aggregate feature information from neighbours

Get graph context embeddings for node using aggregated information

First principle model

Gradient Boosting (GB) model with '*firstprinciple'* feature set based on global event properties and parameters of most informative hits.

13 features in total

- Fastest hit parameters (4)
- Z_{min} hit parameters (4):
- Global events parameters (6)
- Maxdepth = 6
- < 200 boosting rounds

Train/test split 50% for both models

Classification performance

median labelling

Fastest hit labelling

mostly on $Max(E_{ToF})$ distribution

29330 signal events 107092 bg events 0.9 BDT (AP = 0.57)0.8 GNN (AP = 0.57)0.7 Duecision 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Recall 0.9 0.8 True 0.2 0.1 BDT (AUC = 0.82) GNN (AUC = 0.82)0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 False Positive Rate

"Best" hit labelling

- Overall classification performance slowly decreases with loosening criteria of "good" neutron events (ROC_AUC)
- Larger signal/ background ratio gives better PR
- Similar performance for BDT and GNN for all 3 labelling approaches
- ➡ 'first-principle' features look comprehensive in this setting

$$P = \frac{TP}{TP + FP} \qquad R = \frac{TP}{TP + FN}$$

 $TPR = \frac{TP}{T}$ $FPR = \frac{FP}{P}$

Example of resulting energy spectra

Median(E_{ToF}) neutron energy estimation (naive approach):

Example of resulting energy spectra

Best(E_{ToF}) neutron energy (to be estimated, e.g. by GNN):

Concusion

- energy depositions
- hint that GNN doesn't learn more than first-principle event observables used in BDT
- neutron selection
- Wide range of precision-recall-bias is available to trade for neutron energy spectrum reconstruction

Outlook:

- GNN-based neutron energy reconstruction in presence of background hits
- Evaluation of physics performance using estimated PR-characteristics is ongoing

• Event structure-based GNN and first principle GBDT classifiers were tested on a challenging problem of reconstructing neutrons at energies lower than 3GeV in presence of background

Similar performance of GNN and GBDT classifiers in various signal labelling settings gives a • Loose requirements on a 'good' neutron events gives better precision-recall characteristic of

Backup

Detector response

Position and deposited energy in scintillator cells

MC simulations:

signal - neutrons with discrete energies

background - XeCsI @3.9AGeV (all but primary neutrons)

- Fastest hit
 - 10800 signal events
 - 125622 bg events
 - s/n = 0.086

- Median of all hits
 - 17208 signal events

 - s/n = 0.144

- 119214 bg events

0.4 0.6 0.8 1.0 GNN score

- "Best" hit lacksquare
 - 29330 signal events
 - 107092 bg events
 - s/n = 0.274

Preliminary hit classification performance example for a simplified case of single neutron mixed with a random background event

Classification models XeCsl@3.9GeV

VS.

PyG

Event structure model

Graph neural network (GNN)

- (x,y,z), E_{dep}, T_{hit} (after first hit) + E_{ToF} (optional)
- Fully connected hit graphs
 - 10 in batch
- 2x GraphSage layers with 32 hidden channels + batchnorm + dropout -> <u>Self-attention pooling</u> layer (1 node output) -> MLP readout layer 32->16->1 + sigmoid
- BCE loss function

<u>GraphSAGE</u> (SAmple and aggreGatE) architecture GNN:

Sample neighbourhood of graph nodes

Aggregate feature information from neighbours

Get graph context embeddings for node using aggregated information

First principle model

Gradient Boosting (GB) model with *first*principle feature set based on global event properties and parameters of most informative hits.

- 12(ToF)/13(no ToF) features in total
- Maxdepth = 6
- ~200 boosting rounds

2 sets of GNN and GB **classifiers**:

1.Using **E**_{ToF} feature for classification

- Biased to the parameters of simulations
- 2. No time-of-arrival information is used
 - Less dependent on simulation

Classification performance XeCsl@3.9GeV

MMU package for PR-uncertainties

Region of interest:

- ~ Precision threshold exclude flat neutron flow hypothesis
- ~ Recall threshold covers most of neutron E_{kin} spectrum
- •Similar performance using target feature E_{ToF}
- Excluding E_{ToF} variable increases significance of event topologies for events with N_{hits}>1 => slight increase of GNN performance compared to GB
- Possible limits of GNN performance:
- Large fraction of single hit events and irregular event signatures for given dataset
- ➡ GNN can be more beneficial at higher energies and higher detector granularities

- Fastest hit
 - 10800 signal events
 - 125622 bg events
 - s/n = 0.086

- Median of all hits
 - 17208 signal events
 - 119214 bg events
 - s/n = 0.144

- "Best" hit lacksquare
 - 29330 signal events
 - 107092 bg events
 - s/n = 0.274

after max selection

after med selection

v1 vs Pt distortion

- signal neutrons from sin reaction (4 π)
- noise Pt is sampled from signal, v1 flat distribution
- s/n ratios from classifier test

v2 vs Pt distortion

- signal neutrons from sin reaction (4π)
- noise Pt is sampled from signal, v2 flat distribution
- s/n ratios from classifier test

Catboost feature set

CatBoost (BDT)

first-principle feature set: Fastest hit: 'eToF_first' 'R_first', - distance to (0,z) 'Z_first', 'E_first', Zmin hit: 'dt_zmin', 'R_zmin', - distance to (0,z) 'Z_zmin', 'E_zmin', Global per event: 'eToF_med' - median ToF energy 'Esum', 'cogZ', - E-weighted average z 'cogR', - E-weighted average distance to (0,z) 'nHits', 'dt_stdev'

