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What is a digital twin?

According to the very first definition back in 2003 by Michael Grieves [1][2][3], a Digital Twin is a virtual 

representation of a physical entity, collecting all the information related to his lifecycle management

[1] David Jones, Chris Snider, Aydin Nassehi, Jason Yon, Ben Hicks, Characterising the Digital Twin: A systematic literature review, CIRP Journal of 

Manufacturing Science and Technology, Volume 29, Part A,  2020, Pages 36-52, ISSN 1755-5817

[2] Grieves, Michael. Digital twin: manufacturing excellence through virtual factory replication. 2014. White Paper (2017).

[3] Mohsen Attaran, Bilge Gokhan Celik, Digital Twin: Benefits, use cases, challenges, and opportunities, Decision Analytics Journal, Volume 6, 2023, 

100165, ISSN 2772-6622

• Digital representation of the 

physical entityDigital model

• Digital representation and physical-

to-virtual information flow 

Digital 

shadow

• Digital shadow with virtual-to-

physical information flowDigital twin

Digital twin requires three 

elements[1][2]: 

• A physical entity

• A digital representation 

of the physical entity 

• A bi-directional 

information flow 

between the two
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Digital Twin in Stark’s Product Life Cycle

SLA Based Contracts

Customer Insights

Spare parts optimization with 

IoT & Predictive Insights

Imagine

Design

Realize 
Support & Use

Retire/Dispose

DIGITAL THREAD

“Digital Thread is a data-driven architecture 
that links together information generated 

from across the product lifecycle” 

[1] Stark, J. Product Lifecycle Management (Volume 1), 21st Century Paradigm for Product Realisation, 

Springer International Publishing, 2022

[2] Singh V., Willcox K. E., Engineering Design with Digital Thread, AIAA Journal 2018 56:11, 4515-4528

Availability of a Digital Thread 
architecture is a key enabler to 
enrich Digital Twin capabilities
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Azure HPC/AI
The universe of computational resources

Compute Visualization Machine Learning Deep Learning

SKU CPU

HC

Intel Xeon 

Platinum 

“Skylake”

HB
AMD Epyc

“Naples”

HBv2
AMD Epyc 

“Rome”

HBv3
AMD Epyc 

“Milan”

HBv4
AMD Epyc

“Genoa”

SKU GPU

NV Tesla M60

NVv3 Tesla M60

NVv4

Radeon 

Instinct 

MI25

NVads 

A10 v5

A10 Tensor 

Core

SKU GPU

NC Tesla K80

NCv2 Tesla P100

NCv3 Tesla V100

NCasT4

_v3
Tesla T4

NC 

A100 v4

A100 

Tensor Core

SKU GPU

ND P40

NDv2 Tesla V100

ND A100 

v4
A100

NDm 

A100 v4
A100

InfiniBand enabled VMs

• EDR: 100 GB/s (HC/ HB)

• HDR: 200 GB/s (HBv2/3)

• NDR: 400 GB/s (HBv4)

• NVIDIA GPU coming 

with NVIDIA Grid 

license

• Partial GPU available on 

A10

• Multiple GPUs available per 

node

• NVLink enabled on 

NCasT4_v3 and NC A100v4

• Multiple GPUs available per 

node

• NVLink enabled and 

InfiniBand starting from 

NDv2

SKU FPGA

NP Xilinx U250

FPGA

SKU CPU

DP / EP
Ampere® 

Altra®

ARM-based

• ARM based SKUs based on 

Ampere Altra

• FPGAs based on Xilinix U250



Azure HPC File Systems

100GB 1TB 100TB 1PB 5PB 45PB

5 GBs

25 GBs

200 GBs

1 TBs

Azure NFS Blobs*Azure NetApp Files

Azure ClusterStorB
a
n

d
w

id
th

Capacity

Azure HPC Cache

Azure Managed 

Lustre*

*As of 11/2022

Microsoft Confidential

Azure Managed Lustre

5PB, 375GB/s*

Azure Managed Lustre - the largest 

throughput per capacity unit
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An Example:  127x performance, 50% the VM cost

• Fluid Flow (CFD) simulation study of an F1 race car

• 140 Million Cell model of the car, using ANSYS Fluent

• 64 Virtual Machines VS 1 Virtual Machine

• Using HBv3 (120 cores of AMD Milan-X)

• Strong scaling of the simulation progressively allows a large 
percentage of active data to fit in memory

• The 64 VMs can be turned off, half as long as it takes 1 VM to 
complete the simulation

• Result: 127x less time to complete the simulation, for half the cost

• Example illustrated:  

• 1 VM, taking 100 hrs = $468

• 64 VMs, taking 47 mins = $234

• With AI: 1 GPU: taking 10 seconds = $0.56

Faster & Cheaper:  Transformation with Cloud
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1

Reference Architecture 

HPC & AI integration for CAE

• Supports BYOL: Allows optimization of licenses cost and employee value by leveraging configuration and scalability of the compute nodes.

• Cloud Native Data: Optimizing data transfer costs and GPU acceleration for compute, post-processing and remote  high-def visualization.

• Cost effective Remote working: With Azure Virtual desktop interface users can work independently with AVD sessions on pre and post Processing. By this VM 

resources can be shared effectively between the users.

• Domain Agnostic: Designed for AI-infused CAE/CFD/DEM Workload of Manufacturing Engineering, could be leveraged for Manufacturing, Aerospace.

• Economic and User Experience: High productivity with lower simulation costs, No installation, no maintenance, no overhead, Effective collaboration features to

share, edit and work together on complex and large scale CFD projects.

• HPC  Admin [1] connects with Cycle-Cloud server [5] via Web [2] or CLI [3] and 

deploys the  HPC  execute Nodes [7]   with required number and type of VMs . HPC 

Admin [1]  Deploys  the Visualization Nodes [6] in AVD Infrastructure and creates the 

web link [12] with Role based access to Remote set of Users [11].

• Active Directory authentication [4] is responsible for the secure access to services 

and data.

• The HPC Admin [1] connects with  visualization  Nodes [6]   and installs the 

respective  apps for Pre-processing & Post-processing, also connects to the 

Scheduler Node [8]  and installs the required solver application.

• The Remote Users [11] connects to Visualization Nodes [6] via web link [12] and 

starts working individually on Pre and Post processing.

• Users can store their permanent data in the long-term data storage [14], Data can be 

archived from Azure Net App Files [10] to the long-term storage [14].

• The user[1] will now connect to the HPC execute Nodes [7] or Neural Concept Shape 

and launch the training job using AI or retrain the model with CAE/CFD Simulation 

jobs. We can make use of Azure HPC Cache [9] for Agility & Caching the large files 

to improve efficiency.

• After the simulation is completed the output file is saved to Azure NetApp Files [10] 

for Post-processing.

• The Solver output file from Azure NetApp Files [10] can be accessed from the 

Visualization Nodes[6] and Post-Processing team who are Remote Users [11] can 

perform Post-processing using different AVD sessions as required.

• Containerized applications are pulled by Visualization nodes [6] and HPC Nodes[7] 

from the user’s container registry [13].

• The HPC user/Admin [1] stops Visualization Nodes [6] and Cycle-Cloud [5] which 

deallocates nodes to optimize the cost and spin up again when required.

HPC 
Admin

https

HPC 
User

5

6

9

CFD Analysis, ~7.6 Million Cells, hexa-mesh, Aerospace Domain 

Configuration = 512 cores/8nodes, Compute time: ~0.6 Hrs per job

Cost per job: ~150 USD [Assumed 512 cores / 8 n  ]

HPC  Storage (NFS)

Azure NetApp Files

Siemens 
TeamCenter

Web App

CLI

Cycle Cloud

Container Registry Requests 

Container Registry

Docker

Redundant
Storage

AVD: PLM & CAD 

Services Type Quantity Size Services Type Quantity Size Services Type Quantity Size

Azure Cycle Cloud VM 1 D4sv3 Azure NetApp files Storage 1 1TB IP Address Networking

Scheduler node VM 1 D4sv4 Azure HPC Cache Storage 1 3TB Virtual Network Networking 1

HPC Nodes VM 8 HBv3 Data transfer cost Bandwidth 1 100GB

AVD Nodes VM 2 NVv5 Container registry Containers 1

Azure Files Storage 1 2TB

Hx, Nx InfiniBand

HPC Execute 
Nodes

Scheduler Node

Active Directory
Authentication

2

3

4

Azure HPC Region

Azure HPC Cache

13

10

Global 
License Servers

Data Flow

Remote
Users

Remote Users

RDP / 
Web Link

LicensingHPC Admin/User

11

12

8

PTC 
Windchill

Long Term Storage

Azure 
Files

14

7

GPU node pool

Pod Kubelet Kube-
proxy

container



Demo – Brackets analysis
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17 IGBT Cooling for automotive supplier
E F F I C I E N T  C O L D  P L A T E S  F O R  H I G H  P O W E R  E L E C T R O N I C S

Context

▪ Peak temperature needs to be mitigated as it can reach 
200°C

▪ Using intuition for designing in these Reynolds regime is difficult. 
Experience in this domain is not widespread.

▪ Every new design needs to adapt to specific packaging and 
boundary condition constraints.

Achievement

x4 faster
T I M E  T O  

R E A C H  F I N A L  

D E S I G N

I N  T H E R M A L  

E F F I C I E N C Y  V S  

P R E V I O U S  D E S I G N  

W O R K F L O W

P E A K  

T E M P E R A T U R E  

A C R O S S  T H E  

F L U I D

+2-3% Reduced

▪ A workflow that allows to optimize designs in <2h for new 
constraints has been deployed.

▪ Design produced by the company are typically 2 to 3% more 
efficient than using the old process.

▪ Optimized designs wr.t. multiple objectives (pressure drop and 
thermal efficiency)

98% correlation between Ansys 
simulations (3h) and NCS 

prediction (1s)

1000 designs explored in <1h

One of the geometries on the 
Pareto-front

Constraints specified via CAD import
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18 Thermal Management of EV Batteries 
E F F I C I E N T  C O L D  P L A T E S  F O R  N E X T  G E N E R A T I O N  O F  E V  B A T T E R I E S

▪ The challenge for automotive suppliers is to quickly adapt a 
base design concept to varying requirements – while 
maintaining optimality.

▪ EV battery cooling requires to cover a wide surface with a 
minimal pressure drop (energy saving).

▪ Very accurate predictions on aggregated values and fields 
(see Figures).

▪ For their “channel” product-lines, the engineers are now able 
to optimize designs while getting a real time feedback on 
performance.

« W E  A R E  U S I N G  N E U R A L  C O N C E P T  S H A P E  ( N C S )  T O  

A C H I E V E  O P T I M A L  D E S I G N  O F  K N O W N  P R O D U C T S  W A Y  

F A S T E R . »  

N I K L A S K L I N K E ,  T E A M  L E A D ,  T O O L S  &  M E T H O D S

Image (illustrative): https://www.mubea.com/en/new-body-products
Publication: Dr. Niklas Klinke, Dr. Stefan Buchkremer, Dr. Lutz-Eike Elend, Maksym Kalaidov, Thomas von 
Tschammer, AI-based performance prediction and its application on the design and simulation of cooling 
plates for battery electric vehicles, Future Automotive Production Conference Wolfsburg, Germany 17–18th 
May 2022

Context

Achievement
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19 Crash simulation of battery housings
E V A L U A T I O N  A N D  O P T I M I Z A T I O N  O F  C R A S H  P E R F O R M A N C E  F O R  B A T T E R Y  H O U S I N G

▪ Crashworthiness is a key factor for vehicle safety but is very 

challenging to characterize efficiently and accurately.

▪ As it is a highly non-linear problem with many different possible 

scenarios, simulation alone cannot provide the full picture of 

crashworthiness, let alone optimize it.

▪ Identifying the most relevant parameters is difficult, which makes it 

hard to manually improve the designs.

▪ NCS surrogate model is able to predict very accurately the 

structural behavior of the housing, by also predicting the contact 

force amplitude and location with the batteries. 

▪ Engineers can now explore hundreds of design options, to ensure 

the structural integrity of the battery

▪ The uncertainty index is used to guide the engineers and improve 

the accuracy of the model 

Context

Achievement

<1 second
T I M E  T O  G E N E R A T E  A  

N E W  D E S I G N  A N D  

E V A L U A T E  I T S  

P E R F O R M A N C E  I N  N C S

R 2  C O R R E L A T I O N  

B E T W E E N  P R E D I C T E D  A N D  

L S  D Y N A  S I M U L A T I O N

0.98

Comparison between the FEA simulation (top) and the NCS prediction 
(bottom) for the displacement magnitude, on a test geometry. The 

prediction was done on multiple time steps.  

Using the uncertainty feature from Neural Concept Shape, the test samples 
are sorted by the uncertainty metric given by the model, from lowest to 

highest. 
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20 Aerospace Heat Exchanger Optimization
O P T I M I Z E D  H E A T  E X C H A N G E R S  F O R  A E R O S P A C E  A P P L I C A T I O N S

▪ In aerospace applications, the final product performance is 
the focus. Efficiency and optimality is key.

▪ Engineers want to evaluate many design concepts over 
several months/years and leverage on the experience and 
data from previous iterations.

▪ Very accurate predictions on aggregated values and fields: 
The engineers can evaluate thousands of designs per day.

▪ Optimized geometries using morphing of different concepts 
(pins and fins)

Figure 1: Examples of heat-exchanger geometries with 
different topologies

Figure 2: Predictions vs GT on the outer surface of the heat-
exchanger

Figure 3: Optimized geometry using morphing techniques

>99%
ACCURACY FOR 

MAXIMUM TEMPERATURE  

AND PRESSURE DROP 

PREDICTIONS

INCREASE IN THERMAL 

EFFICIENCY COMPARED 

TO PREVIOUS DESIGN 

WORKFLOW

PRESSURE DROP DID 

NOT DETERIORATE 

COMPARED TO 

PREVIOUS DESIGNS

+1.5% Constant

Context

Achievement
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Prediction of flow 
for random sub-
structures.

Prediction of flow 
for ordered sub-
structures.

Before optimization 
ordered sub-
structures perform 
better than random 
ones. Optimization 
was not performed 
in this study.

21 Latent Thermal Energy Storage
S C I E N T I S T S  A R E  A L S O  U S I N G  D E E P - L E A R N I N G  T O  S O L V E  T H E I R  R E S E A R C H  P R O B L E M S

▪ Latent heat thermal energy storage with metallic alloy phase change 
is a new promising technology.

▪ Macro-porous latent heat storage can enhance the convective heat 
transfer.

▪ Researchers at EPFL's Renewable Energy Science and 
Engineering's Lab are looking for solutions to exploit the 
potentially very wide design space.

▪ A surrogate model allowed to precisely assess the performance of 
designs within an infinite dimensional design space.

▪ A paper demonstrating the use Neural Concept's approach in the 
domain was published: GCNN Characterization of Macro-Porous Latent 
energy storage – ASME Journal of Heat and Mass Transfer - 2022

99.1%
R 2  C O R R E L A T I O N  

B T W .  P R E D I C T E D

A N D  T R U E  M E L T I N G  

T E M P E R A T U R E  

F I E L D S

R 2  C O R R E L A T I O N  

B T W .  P R E D I C T E D A N D  

T R U E  N O R M A L I Z E D  

T E M P E R A T U R E  

F I E L D S

R 2  C O R R E L A T I O N  

B T W .  P R E D I C T E D A N D  

T R U E  D I F F E R E N T I A L  

P R E S S U R E  F I E L D S

75.6% 90.4%

Context

Achievement

https://asmedigitalcollection.asme.org/heattransfer/article-abstract/145/5/052902/1156062/Geodesic-Convolutional-Neural-Network?redirectedFrom=fulltext
https://asmedigitalcollection.asme.org/heattransfer/article-abstract/145/5/052902/1156062/Geodesic-Convolutional-Neural-Network?redirectedFrom=fulltext
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22 External Aerodynamics (1/2)
U S E  E N G I N E E R I N G  I N T E L L I G E N C E  T O  E X P L O R E  D I F F E R E N T  D E S I G N  C O N C E P T S

▪ Aerodynamic performance is critical due to vehicle energy 
efficiency. OEMs must pay enormous fine if they don’t meet 
regulation targets

▪ As an example, in EU, OEMs must pay €95 per car sold for every 
gCO2/km above the regulation.

▪ External Aero simulations are heavy and expensive, which mean 
designers only get very limited feedback on their designs

x100
I N C R E A S E  I N  T H E  

N U M B E R  O F  

D E S I G N S  T H A T  

C A N  B E  E X P L O R E D

C O R R E L A T I O N  

B E T W E E N  

P R E D I C T E D  A N D  

S I M U L A T E D  D R A G  

C O E F F I C I E N T S

I N  A D D I T I O I N  T O  D R A G  

C O E F F I C I E N T ,  T H E  M O D E L  

C A N  P R E D I C T  3 D  F I E L D S  

S U C H  A S  P R E S S U R E  

A R O U N D  T H E  C A R

>96% 3D output

▪ A model was trained to predict the pressure field and drag 
coefficient of different car designs.

▪ The model was challenged with different design concepts (no 
spoiler vs spoiler), and it was shown that a very limited number of 
new new simulations was needed to generalize the model to both 
these concepts.

Dataset consists of 400 variants 
of baseline A (no spoiler)

Predicted vs Simulated drag 
coefficient on 50 test samples

Predicted pressure field around the 
car

Simulated pressure field around the 
car

Context

Achievement
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Figure 1: Prediction of internal stress

Figure 2: Torque prediction vs angle

24 E-motor optimization
I N C R E A S I N G  T H E  P E R F O R M A N C E  A N D  D U R A B I L I T Y  O F  E L E C T R I C  P O W E R T R A I N

▪ Vehicle electrification comes with many new engineering 
challenges

▪ E-motor design is a complex process with strict structural and 
electromagnetics requirements.

▪ Flux barrier shape has a significant influence on E-
motor performances.

▪ NCS was used to predict accurately the structural (safety factor) 
and electromagnetic performances (torque & ripple).

▪ NCS design module was used to explore innovative flux barrier 
designs.

▪ Final design clearly outperforming standard, parametric 
geometries.

P A R T N E R S H I P  W I T H M O T O R C A D T O  E N S U R E  S M O O T H  

O P T I M I Z A T I O N  A N D R E T R A I N I N G  L O O P S

Context

Achievement
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25 HVAC Design for automotive OEM
E N H A N C I N G  T H E R M A L  S Y S T E M S  U S I N G  F A S T  A N D  A C C U R A T E  D E E P  L E A R N I N G  S U R R O G A T E S

▪ Thermal systems in vehicles are responsible for >3% of the total 

fuel consumptions

▪ CFD computation is a major bottleneck in the development of 

HVACs → 100 to 1000s CFD results for one development.

▪ Automotive suppliers are competing already in RFQ phases, doing 

most of product development pre-order.

▪ Physics performance feedback directly into the designer’s 

interface.

▪ HVAC designers are able minimize pressure loss and ensure 

uniformity on outlets.

FEA simulation (bottom) and the NCS prediction (top) for the 
velocity field on a test geometry. 

100x
I N C R E A S E  I N  T H E  

N U M B E R  O F  

D E S I G N S  T H A T  

C A N  B E  E X P L O R E D

F A S T E R  I N  

R E Q U E S T  F O R  

Q U O T A T I O N  P H A S E

E X P E C T E D  

P R O J E C T  W I N -

R A T E  

2x 1.5x

Context

Achievement
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Comparison of the pressure distribution between StarCCM+ simulation and 
NCS prediction (example 1)

26 Hull hydrodynamics  
B E T T E R  H Y D R O D Y N A M I C S  W I T H  F A S T  P E R F O R M A N C E  P R E D I C T I O N

▪ Several design concepts and many different topologies can 
be created for the hull, each with very different behaviors

▪ By nature, hard to parametrize due to non-conventional 
designs and large design space

▪ Very accurate predictions on aggregated values and fields

▪ The engineers are now able to interact in real time with the 
designs

▪ Slight improvement in the performance is a game changer

▪ Optimization on the 3D geometry directly is now used to reach 
better performing designs

50ms 99.4%90.6%

Comparison of the pressure distribution between StarCCM+ simulation and 
NCS prediction (example 2)

Context

Achievement

T I M E  T O  G E N E R A T E  

N C S  P R E S S U R E  

P R E D I C T I O N  ( 2 H  

B E F O R E )

A V G  L 1  E R R O R  O N  

T H E  S H E A R  F O R C E  

C O E F F I C I E N T  

A C R O S S  T H E  H U L L

A V G  L 1  E R R O R  O N  

T H E  P R E S S U R E  

F O R C E  C O E F F I C I E N T  

A C R O S S  T H E  H U L L
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27 Injection molding: warpage predictions
P R E D I C T I N G  T H E  M A N U F A C T U R A B I L I T Y  E A R L Y  I N  T H E  D E S I G N  P R O C E S S

▪ The process of warpage deformation is complicated. 

▪ Fluid shrinkage (varying pressure during process) and coefficient of 

thermal expansion from eject temperature to room temperature 

must be considered.

▪ Simulations with PlanetsX (plugged in Ansys Workbench) are long 

and are therefore only performed at the end of the design process.

▪ A surrogate model was trained in NCS to predict the warp 

deformation of different parts, along with the maximum injection 

pressure.

▪ The accurate surrogate model can be frontloaded to the designer 

and used early in the design process to ensure manufacturability 

criteria

Groundtruth (FEA 
simulation) of deformation 
field (only contour)

99.8%
A C C U R A C Y  O F  

M A X  I N J E C T I O N  

P R E S S U R E  

P R E D I C T I O N S

A C C U R A C Y  O F  

M A X  

D E F O R M A T I O N  

P R E D I C T I O N

N U M B E R  O F  

M A N U F A C T U R A B I L I T Y  

V E R I F I C A T I O N S  

D U R I N G  T H E  D E S I G N  

P R O C E S S

99.2% x10

Context

Achievement

NCS prediction of the 
deformation.
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28 Rubber switch large deformation analysis
P R E D I C T I N G  H I G H L Y  N O N - L I N E A R  D E F O R M A T I O N S  A C C U R A T E L Y  U S I N G  N C S

▪ Rubber switches are the essential element in most keyboards.

▪ Made of rubber, they sustain large deformation with non-linear 

contacts and frictions.

▪ Accurately predicting their deformation, internal stress and feeling 

curve (displacement vs reaction force) is crucial for the keyboard’s 

durability and usage comfort.

▪ A surrogate model was trained in NCS to predict the large 

deformation, internal stress and feeling curve of different rubber 

switch designs.

▪ Fast and accurate analysis of non-linear phenomena such as 

buckling and contact behaviors can now be performed.

Displacement field inside the stitch: simulation vs predictionContext

Achievement

Von Mises stress field inside the stitch: simulation vs prediction

" BY LEARNING A LARGE AMOUNT OF DATA ,  WE WERE ABLE TO 
CONSTRUCT A PREDICTIVE MODEL FOR HIGHLY NON-LINEAR 

PHENOMENA SUCH AS BUCKLING AND CONTACT ANALYSIS OF 
RUBBER " 
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29 Crashworthiness optimization
E V A L U A T I O N  A N D  O P T I M I Z A T I O N  O F  C R A S H  P E R F O R M A N C E  F O R  N O V E L  V E H I C L E  C O N C E P T S

▪ Crashworthiness is a key factor for vehicle safety but is very 

challenging to characterize efficiently and accurately.

▪ As it is a highly non-linear problem with many different possible 

scenarios, simulation alone cannot provide the full picture of 

crashworthiness, let alone optimize it.

▪ Identifying the most relevant parameters is difficult, which makes it 

hard to manually improve the designs.

▪ A surrogate model was trained in NCS to predict in real time the 

main KPIs: specific energy absorption (SEA), intrusion (crushing 

length) and crushing force efficiency.

▪ NC Design module used to create instantly new trigger designs.

▪ Fast and effective optimization campaigns resulting in substantial 

performance improvement (5000 designs evaluated in 6 hours).

Typical crash-box designContext

Achievement

Optimization: Pairwise Pareto fronts at each iteration

𝑆
𝑝
𝑒𝑐
𝑖𝑓
𝑖𝑐
𝐸
𝑛
𝑒𝑟
𝑔
𝑦
𝐴
𝑏
𝑠𝑜
𝑟𝑝
𝑡𝑖
𝑜
𝑛
[𝐽
/𝑘
𝑔
]

𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛 [𝑚𝑚]

~ 10% improvement

NC design module to create non-
parametric innovative designs

<1 second
T I M E  T O  G E N E R A T E  

A  N E W  D E S I G N  A N D  

E V A L U A T E  I T S  

P E R F O R M A N C E  I N  

N C S

R 2  

C O R R E L A T I O N  

B E T W E E N  

P R E D I C T E D  A N D  

S I M U L A T E D  S E A

98.9% 10%
P E R F O R M A N C E  

I M P R O V E M E N T  

O B T A I N E D  

W I T H  T H E  

O P T I M I Z A T I O N
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PLM & CAD on Azure



PLM and CAE Architecture in Large Organisations
Architecture today can be complex

CO-Location/Branches

Content, Cache, Converting
Server 

CO-Location/Branches

Content, Cache, Converting
Server 

PLM
Product Lifecycle 
Management

Relationale DB 
with Metalinks to

CAD content File 

server

C
h

e
c
k

-In
/C

h
e
c
k

-
O

u
t

Headquarter

D
R

 +
 B

a
c
k

u
p

Global Branch Offices /Home Office: 

CAD Workstation (e.G. HP Zbook)

CAD Software local + PLM Client  

Global Branch Offices/ Homeoffice: 

Simulation Client Local

PLM Client  

CO-Location/Branches

Simulation Cluster

CO-Location/Branches

Simulation Cluster

CO-Location/Branches

Content, Cache, Data, Solver 
Server 

Simulation 
Workstation



Partner Offices: 

Simulation Client Local

PLM Client  

Branch Offices/Homeoffice: 

Thin Laptop  

PLM Client  

PLM and CAE Architecture in Azure
Simpler Architecture provides Saving Potential

CAE/CFD Cluster

Azure Storage

Storage, Cache, Solver Server 

Single Storage Layer

PLM
Product Lifecycle 
Management

Relationale DB 
with Metalinks to

CAD content File 

server

C
h

e
c
k
-In

/C
h

e
c
k

-
O

u
t

Headquarter

D
R

 +
 B

a
c
k

u
p

Savings:

- No backup servers

- No caching servers

- No expensive 

workstations

Up to 50 Users can work on a single VM 
150 Users in Follow-the-Sun-Mode: Asia > Europe > US

Single Simulation Layer

Azure Virtual Desktop

GPU partitioning

Low latency



Customer Example: Calculation based on 5 Year Depreciation
Total Cost Comparison

Example 3000 CAD Engineers

current

architecture
new

architecture

€: WAN/SD-WAN

€: Hardware 

€: Operational

= 1m Euro (approx.)

7.5m Euro for 3000 

CAD Workstations

Hardware over 5 

Years

=

€: 3.6m (ca.) Azure 

Infra and Traffic

€ 3m for 3000 

CAD thin clients

Hardware over 5 

Years

8.5m Euro

6.6m Euro
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Industrial Metaverse with 
NVIDIA Omniverse



Metaverse as Digital Twins Virtual Environment

NVIDIA 

OMNIVERSE
NVIDIA 

AI

IoT AI 3D AR / VR Robotics

Virtual environment

Physical environment

Virtual Entity

Physical Entity

DIGITAL TWINS



NVIDIA Omniverse Platform

NVIDIA Omniverse 

Centralized and collaborative data management NVIDIA Omniverse Apps

USD as the Open-Source format.

Nucleus is the centralized server exposing 
data APIs to all users/applications

All NVIDIA Omniverse applications are 
meant to be client side on our GPU 

accelerated workstations.

They can be installed manually by users or 
can be IT managed on user profile

NVIDIA Omniverse Connectors NVIDIA Omniverse Farm

Compute intensive tasks including 
rendering / simulation / AI training can be 

offloaded to a GPU cluster through 
Omniverse Farm.

NVIDIA Omniverse is meant to be 
connected to the standard tools already 
used in industry, with USD as interface.

It can be interfaced with more than 50 
applications



Use cases
Collaborative design

COLLABORATIVE 3D WORKFLOWS

Less Back-and-Forth, Time Lost

FULL FIDELITY CONCEPT REVIEW

Faster Review Cycles, Time to Market

TEST WITHOUT PRODUCING

Online Consumer Testing with Physically 
Accurate Visualizations

REDUCES ITERATIVE WASTE

Single Source of Truth Files, CAD 
Accurate



Use cases
Collaborative design

Design Collaboration Distribute & Publish

Geometry

Variants

Environments

Materials

Ecommerce 
Teams

Unified Asset

3D Designers

External 
Vendors

Marketing 
Teams

Sales Teams

Adobe Substance 
3D Painter



Use cases
Collaborative design

Visualization through HMD or Mobile

CloudXR allows visualization using VR 
headsets or mobile devices, targeting 

also AR applications

Live High-Fidelity RTX rendering

NVIDIA RTX technology allows to 
render with high-fidelity in real 

time the design scene



© Microsoft Corporation

Azure Quantum Elements



Azure Quantum Elements,
accelerating scientific discovery

Scale
Hyperscale discovery

Speed
Expand research horizons

Accuracy
Model complex chemistry accurately

Bringing products to market faster
Enabling a faster innovation cycle with Copilot in Azure Quantum

Try the Copilot on quantum.microsoft.com
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Applied Reinforcement 
Learning 



© Microsoft Corporation



InstaDeep is Europe’s AI Leader with Focus on Logistics

Highest Valuation of any pure-play AI Startup Exit in History

Boosting Commitment towards European Manufacturing and Logistics



© Microsoft Corporation



A strong link between fundamental and applied research is at the core of InstaDeep’s DNA, while

AI engineering and HPC skills support scalable and custom deliveries for end clients.

Research Solutions

Open-Source
Software

Publications

Proofs of Concept
& Integration

Problem 
Formulation

Engineering

Scalability Customizability

Clients & 
Business Value

End-to-End Differentiated Expertise in AI
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Limitations of Classical Approaches to Optimisation 

Guaranteed optimality

Poor scalability for large instances

Fast and scalable

Tailor-made to a specific problem

No guarantees of optimality

Fast and scalable

No specific heuristic or evaluation function

No guarantee of short-term optimality

● Do not leverage past computations.

● Unable to generalize to unseen instances 

● Might have to be redesigned if constraints change

Common Flaw: No Learning!
Optimisation Techniques

Search Algorithms

Metaheuristics



● Your goal is to find an optimal behavior
● A sequence of decisions
● Each decision affects future decisions
● Delayed conséquences

AI/RL Optimisations are more Scalable, Flexible & Generalisable

53

Sequential Decision Optimization RL approach in a nutshell

Learning from trials (successes and failures) to 
optimize a decision making process robust to 
variations

RL in practice

Agent

Virtual Environment

● simulation

● digital-twin

Benefits of RL for decision-making
● Approximate optimal solutions for complex 

problems with flexible constraint management

● No need for (optimal) training data

● Logistics ops are subject to change and 
uncertainty - RL agents can adapt to 
previously unknown situations

● Real-time, proactive decision-making in highly 
uncertain and dynamic environments

http://www.youtube.com/watch?v=VMp6pq6_QjI




Problem: Where, When, and What to Pick in a Dynamic World?

55

Goal Phase 1

A solution that both minimizes the average picking time to fulfill
a delivery request in a simplified warehouse and it is quickly
adaptable to any additional constraints and complexities.



Problem: Is Optimizing Picking Enough?

56

Secondary Goal Phase 1

A solution that also optimizes the placement of items inside the
warehouse to minimize the average picking time it takes to
fulfill a delivery request.



Problem: Optimize both the Picking and the Placement

57

How to do such optimization?

Create a simulation environment for the warehouse.



Problem and Solution:
Loads fluctuate throughout the week and 
intra-day unplanned loads are also common. 
Effective space and labor management are 
key to tackle this challenge effectively: 

InstaDeep’s multi-agent AI system optimises 
picking and storage actions minimising 
picking time. The agents learn continuously 
to optimise and adapt storage & picking 
actions in real-time.  

Value-Add:
Opex and time savings thanks to real-time
Optimisation of storing and placing actions.
Robust against Load Fluctuations.
Scalable and generalisable.

Deal with unplanned Fluctuations of Loads & Operations 

Entry Point

Delivery Point

Walking area: Agent can 

not pick or drop items here

Shelf: Agent can store 

items there

Goal: Optimize warehouse ops with specific constraints and then generalise across other warehouses with minimal extra 
effort

Trained agents on grid environment and 3D model that incl. shelves



Results: Strong Improvement Demonstrable for both KPIs

59

AI Solution SAP Solution

Results: 
• 35% reduction in average picking time for picking jobs. 
• 84% improvement in on-time delivery / "Request Fullfilment Rate".

http://drive.google.com/file/d/1mJxPpq8RlsAIF61hODVKrsovupgwwtrK/view
http://drive.google.com/file/d/1ZWKi9siHC9wfRF0PntRNh_77ROUmLpBI/view




Ensure stability by minimizing risks of accidents 

or cargo shifting. Comply with regulatory 

requirements and safety guidelines.

Generate optimal load plans fast, with minimal 

manual effort and planning time. Maximise 

space utilisation and enable workers with clear 

packing instructions

DeepPack: First AI-Powered 3D Truck Load Planning

1 Upload 
cargo 2 Specify load 

constraints 3 Select bin 
type 4 3D dynamic 

visualisation

Handle complex 
shapes API enabled Collaborative 

workspace
Smart, self-learning 

tool using AI

Enhanced Efficiency

Scalability

Improved Safety

Cost savings

Optimise for all trailer types and constraints as 

required in operations.

Reduce fuel consumption by cutting weight 

imbalances. Cut handling and storage costs

thanks to optimized space allocation.



















Reference Architecture 
Scheduling and dispatching with 
reinforcement learning

• Instadeep uses deep reinforcement learning (RL) to augment fab scheduling workflows to decrease production costs.
• Cost effective: Fully compatible with spot instances and reserved instances to further reduce the Cost of RL training
• Scalability: Efficiently scale up to tens of thousands of cores and back down as needed for faster time-to-market.
• Scheduler + model agnostic: This architecture may be used for a wide variety of schedulers/simulators, input data, and workflows.

• The whole Architecture is contained within customer’s Azure 
environment.;

• End users interact with InstaDeep™ [13] management system 
via a REST API that is running on the scalable Azure Kubernetes 
Service [4]  in a variety of ways:

○ Python API [1]
○ Web based User interface [2]
○ Command line client [3]

• User submit the job in Instadeep [13] , which schedules the 
training jobs on the cluster.

• The cluster will assign pods to the relevant node pools and scales 
these up if required [5,6,7  0r 8].

• The pods get initialized from the containers that are stored in 
the Azure Container Registry [9].

• During training, the results are stored in the Azure File Storage 
[10] and the metric tracking system that is part of Instadeep
mgmt pods [13] (and backed by addition storage device [11])

• Through InstaDeep™ [13] tool the user monitors the job 
progress

• After the training, the agent is pushed to the deployment 
system [12] from where it can be queried for actions. The 
deployment server [12] has the option to report back monitoring 
statistics to the platform[13] for further optimization of the 
agent via File Storage [10].

Fab scheduling and dispatching with reinforcement learning, Semiconductor 

Configuration = CPU: 2400 Cores , 120 cores /node, 20 Nodes, AMD Milan-x 

GPU: #5 GPUs, 1GPU/node, 5 Nodes, Nvidia Tesla V100

10 RL Agents training for a month, Compute: 360 Hrs, Cost: ~ $10,030

Virtual Network

Deployment System

12
10

File Storage

Azure Container Registry

9

2

REST 
API

API

1

3
CLI

4

AKS

11

Managed  

Disk

API Server

Scheduler

Controller
-Manager

etcd

Instadeep mgmt pod K8 mgmt pod

CPU node pool

Pod s Kubelet Kube-proxycontainer

GPU node pool

Pod s Kubelet Kube-proxycontainer

CPU spot pool

Pod s Kubelet Kube-proxycontainer

GPU spot pool

Pod s Kubelet Kube-proxycontainer

7 8

5 6

Services Type Quantity Size Services Type Quantity Size
Standard Node VM 1 B8ms Azure Files Storage 1 1TB
CPU nodes VM 1 HB120-rsv3 Managed Disk Storage 1 20GB
CPU spot Nodes VM 20 HB120-rsv3 Container registry Containers 1
GPU Nodes VM 0 NC6s v3 GPU spot Nodes VM 5 NC6sv3

Web GUI

Subnet

Cluster Nodes

Kubernetes System Node

App Visualization App

Scheduling
Core

(a.k.a DeepSim)

Tool
Modeling

App App
License

Management

13





What Microsoft HPC/AI GBB brings to the table 

Funding for Projects* 

Technical Skills for 

Business*

Learning Path (online 

Course)

Hands-on experience 

with Hackathon

Use Case session Fast Track for Azure*

Account Team

Cloud Solution Architects

*Subject to Approval after Nomination



How Startups can benefit

Funding for Projects* 

Technical Skills for 

Business*

Learning Path (online 

Course)

Azure Markeplace

Fast procurement
Use Case session

Fast Track for Azure*Joint projects wih 

enterprise cusomers

*Subject to Approval after Nomination



Concept of Digital Twin in 

Manufacturing Industry
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Azure 

What is a digital twin?

According to the very first definition back in 2003 by Michael Grieves [1][2][3], a Digital Twin is a virtual 

representation of a physical entity, collecting all the information related to his lifecycle management

[1] David Jones, Chris Snider, Aydin Nassehi, Jason Yon, Ben Hicks, Characterising the Digital Twin: A systematic literature review, CIRP Journal of 

Manufacturing Science and Technology, Volume 29, Part A,  2020, Pages 36-52, ISSN 1755-5817

[2] Grieves, Michael. Digital twin: manufacturing excellence through virtual factory replication. 2014. White Paper (2017).

[3] Mohsen Attaran, Bilge Gokhan Celik, Digital Twin: Benefits, use cases, challenges, and opportunities, Decision Analytics Journal, Volume 6, 2023, 

100165, ISSN 2772-6622

• Digital representation of the 

physical entityDigital model

• Digital representation and physical-

to-virtual information flow 

Digital 

shadow

• Digital shadow with virtual-to-

physical information flowDigital twin

Digital twin requires three 

elements[1][2]: 

• A physical entity

• A digital representation 

of the physical entity 

• A bi-directional 

information flow 

between the two
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Digital Twin information flow[1]

Virtual Entity

Physical Entity

Virtual Entity

Physical Entity

Virtual process

Physical process

[1] David Jones, Chris Snider, Aydin Nassehi, Jason Yon, Ben Hicks, Characterising the Digital Twin: A systematic literature review, CIRP Journal of Manufacturing 

Science and Technology, Volume 29, Part A,  2020, Pages 36-52, ISSN 1755-5817

Virtual environment

Physical environment

Metrology

Realization

Realization

Metrology
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Digital Twin in Stark’s Product Life Cycle

SLA Based Contracts

Customer Insights

Spare parts optimization with 

IoT & Predictive Insights

Imagine

Design

Realize 
Support & Use

Retire/Dispose

DIGITAL THREAD

“Digital Thread is a data-driven architecture 
that links together information generated 

from across the product lifecycle” 

[1] Stark, J. Product Lifecycle Management (Volume 1), 21st Century Paradigm for Product Realisation, 

Springer International Publishing, 2022

[2] Singh V., Willcox K. E., Engineering Design with Digital Thread, AIAA Journal 2018 56:11, 4515-4528

Availability of a Digital Thread 
architecture is a key enabler to 
enrich Digital Twin capabilities



The “Digital Thread” – Empowering Digital Engineering

Mixed

Reality

Cyber 

Security

Manufacturer CustomerSupplier

Feedback Loop Key Outcomes:

• Cost savings
• Safety
• Efficiency
• Performance
• Quality
• Traceability
• Product-as-a-Service

Digital Thread | As-Designed |       As-Manufactured |       As-Maintained

Supply chain | Collaboration |  Planning |  Execution 

Digital 

workplace
AutonomousDigital Twin

IoT & Edge 

Security

Simulation, 

Insights & Analytics

Design 

Engineering

Manufacturing Install BaseSupplier Production

Cloud & Edge  |  Data & AI  |  Trust & Security   |   Sustainability
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Digital Twin 
Enabling technologies

[1] David Jones, Chris Snider, Aydin Nassehi, Jason Yon, Ben Hicks, Characterising the Digital Twin: A systematic literature review, CIRP Journal of Manufacturing 

Science and Technology, Volume 29, Part A,  2020, Pages 36-52, ISSN 1755-5817

Virtual Entity

Physical Entity

Virtual Entity

Physical Entity

Virtual process

Physical process

Virtual environment

Physical environment

Metrology

Realization

Realization

Metrology

HPC/AI Big Data Cloud

IoT Sensors

PLM System API
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Market data Claims
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Physics-based AI-based\

Structural Machine learning

Deep learning

CFD

Electromagnetic

M
u

lt
i-

p
h

y
si

c
s Chemical

Surrogate models

Product development Manufacturing process optimization

Product Data Market Data

High Performance Computing

HPC / AI in Manufacturing Digital Thread



Examples of Digital Twin 

applications and 

collaborations
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Examples of Digital Twin – Support & Use 

Physical 
entity

Virtual entity

Virtual 
environment

[1] Dong Zhong, Zhelei Xia, 
Yian Zhu, Junhua Duan, 
Overview of predictive 
maintenance based on 
digital twin technology,  
Heliyon, Volume 9, Issue 4, 
2023,

[1] 
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Examples of Digital Twin – Support & Use 

Physical 
entity

Virtual entity

Virtual 
environment

[1] Jiaqi Wang, Yanli Huang, 
Wenrui Zhai, Junmeng Li, 
Shenyang Ouyang, Huadong 
Gao, Yahui Liu, Guiyuan Wang, 
Research on coal mine safety 
management based on 
digital twin, Heliyon, Volume 
9, Issue 3, 2023,

[1] 
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Examples of Digital Twin – Design & Optimization

[1] Fast and Furious Tire Design: Dassault Systèmes Blog (3ds.com)

https://blog.3ds.com/brands/simulia/fast-furious-tire-design-simulia/
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Examples of Digital Twin - Realize 

NVIDIA, BMW Blend Reality, Virtual Worlds to Demonstrate 

Factory of the Future | NVIDIA Blog

https://blogs.nvidia.com/blog/2021/04/13/nvidia-bmw-factory-future/
https://blogs.nvidia.com/blog/2021/04/13/nvidia-bmw-factory-future/
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Examples of Digital Twin - Realize 

Omniverse Accelerates Turning Wind Power Into Clean Hydrogen 

Fuel | NVIDIA Blog

https://blogs.nvidia.com/blog/2022/07/11/gigastack-renewable-hydrogen-fuel/
https://blogs.nvidia.com/blog/2022/07/11/gigastack-renewable-hydrogen-fuel/
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Brain storming “What can digital twin bring to you”? 

Phase 1

Identify possible 

Digital Twins inside 

Bekaert business 

(physical entity + 

virtual entity + 

information flows)

Phase 2

Identify boundaries 

of Digital Twin virtual 

and physical 

environments 

(Suppliers, Bekaert 

internal, customers) 

Phase 3

For each Digital Twin 

identified, vote the 

one which should be 

prioritized based on 

complexity and 

impact
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