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What is a digital twin?

According to the very first definition back in 2003 by Michael Grieves 2131 a Digital Twin is a virtual
representation of a physical entity, collecting all the information related to his lifecycle management

p
« Digital representation of the

Digital model

physical entity

A
/

Digital « Digital representation and physical-
shadow to-virtual information flow

« Digital shadow with virtual-to-

physical information flow

Digital twin requires three
elements!!iel;
A physical entity
A digital representation
of the physical entity

A bi-directional
information flow
between the two

[1] David Jones, Chris Snider, Aydin Nassehi, Jason Yon, Ben Hicks, Characterising the Digital Twin: A systematic literature review, CIRP Journal of

Manufacturing Science and Technology, Volume 29, Part A, 2020, Pages 36-52, ISSN 1755-5817

(2]
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Digital Twin in Stark’s Product Life Cycle

G\TAL THREAD Customer Insights
o

o)}

“Digital Thread is a data-driven architecture
that links together information generated
from across the product lifecycle”

Spare parts opti
loT & Predicti

[1] Stark, J. Product Lifecycle Management (Volume 1), 21st Century Paradigm for Product Realisation,

Springer International Publishing, 2022

©Microsoft Corporation [2] Singh V., Willcox K. E., Engineering Design with Digital Thread, AIAA Journal 2018 56:11, 4515-4528
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Next Gen CAE: Physics-based Digital Twin
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Next Gen CAE: Physics-based Digital Twin

_____________________________________________________

____________________________________________________

+ Virtual environment

Physical environment

____________________________________________________

DIGITAL TWIN

COMPUTER AIDED ENGINEERING

Material .
— EM : Deep learning
E.Q Science
S c . .
a  Structural CFD Machine learning

Omniverse Physics-based surrogate Al




Azure HPC/AI

The universe of computational resources

Compute ®  visualization E Machine Learning NSS4 Deep Learning  *22%: ARM-based
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.. mpere a
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Azure HPC File Systems

Bandwidth

1 TBs

200 GBs

25 GBs

5 GBs

Azure Managed Lustre - the largest

Azure Managed Lustre
5PB, 375GB/s*
Azure HPC Cache

Azure NetApp Files Azure NFS Blobs*

Azure ClusterStor

100GB 1TB 100TB 1PB
Capacity

Microsoft Confidential

5PB

45PB

*As of 11/2022



Speedup

Faster & Cheaper: Transtormation with Cloud

127x performance, 50% the VM cost

1VM = 200% Scaling Efficiency

Fluent 2021 R1, F1 racecar 140m, 64 VMs, Relative Performance & VM Cost
140 - 120.00%
127
0 - 100.00%
100
80.00%
80
- 60.00%
60 64
50.35% - 40.00%
40
20 - 20.00%
0 0.00%
0 10 20 30 40 50 60 70
VMs
- Compute Cost e HBV3 (Milan-X) - Measured = HBv3 (Milan-X) - Linear ldeal

©Microsoft Corporation
Azure

An Example: 127x performance, 50% the VM cost

Fluid Flow (CFD) simulation study of an F1 race car

* 140 Million Cell model of the car, using ANSYS Fluent

* 64 Virtual Machines VS 1 Virtual Machine
* Using HBv3 (120 cores of AMD Milan-X)

* Strong scaling of the simulation progressively allows a large
percentage of active data to fit in memory

* The 64 VMs can be turned off, half as long as it takes 1 VM to
complete the simulation

* Result: 127x less time to complete the simulation, for half the cost

* Example illustrated:

* 1VM, taking 100 hrs = $468
* 64 VMs, taking 47 mins = $234
» With Al: 1 GPU: taking 10 seconds = $0.56
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E ©® NEURAL CONCEPT

Neural Concept: Pioneer in Al for Engineering
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° Al is redefining Engineering Design software

2. KEY BENEFITS

Simulate 10 to 10°000 Deep Generative models output

innovative and plausible

times faster geometries at 100/min rate

© NEURAL CONCEPT
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*  Supports BYOL: Allows optimization of licenses cost and employee value by leveraging configuration and scalability of the compute nodes.
. » Cloud Native Data: Optimizing data transfer costs and GPU acceleration for compute, post-processing and remote high-def visualization.
Reference Architecture + Cost effective Remote working: With Azure Virtual desktop interface users can work independently with AVD sessions on pre and post Processing. By this VM

HPC & Al integration for CAE

resources can be shared effectively between the users.

»  Domain Agnostic: Designed for Al-infused CAE/CFD/DEM Workload of Manufacturing Engineering, could be leveraged for Manufacturing, Aerospace.

» Economic and User Experience: High productivity with lower simulation costs, No installation, no maintenance, no overhead, Effective collaboration features to
share, edit and work together on complex and large scale CFD projects.

| *  HPC Admin [1] connects with Cycle-Cloud server [5] via Web [2] or CLI [3] and
Siemens deploys the HPC execute Nodes [7] with required number and type of VMs . HPC
. . ploy q yp
TeamCenter Container Registry Admin [1] Deploys the Visualization Nodes [6] in AVD Infrastructure and creates the
8 S .==‘ f\ SIE‘M ENS tn?m o web link [12] with Role based access to Remote set of Users [11].
LT uw

PTC ! Yux
W|ndch|l| ﬂta” - N *ﬁ » Active Directory authentication [4] is responsible for the secure access to services
HyperWorks \I‘ISYS ! ! and data.

AVD: PLM & CAD ! n \

Remote
Users

_________________

Global P H *  The HPC Admin [1] connects with visualization Nodes [6] and installs the
oba | :

respective apps for Pre-processing & Post-processing, also connects to the
Scheduler Node [8] and installs the required solver application.

.r GPU node pool

¢ The Remote Users [11] connects to Visualization Nodes [6] via web link [12] and

@ e iz Ugeis [ .
-.- 69 \ \ starts working individually on Pre and Post processing.
| > Nnsys
:\EEE » .- Pod container  Kybelet Kube-
o * Users can store their permanent data in the long-term data storage [14], Data can be
Web A P 9 ge 14l
@ PP @ slurm A ALTAIR archived from Azure Net App Files [10] to the long-term storage [14].
*  The user[1] will now connect to the HPC execute Nodes [7] or Neural Concept Shape
@ https &——p g and launch the training job using Al or retrain the model with CAE/CFD Simulation
/ Storage Scheduler Node HPC Execute jobs. We can make use of Azure HPC Cache [9] for Agility & Caching the large files
HPC  HPC Cycle Cloud A Nodes to improve efficiency.
Admin User Active Directory
El Authentication | __________ \ Hx, Nx InflnlBand/ «  After the simulation is completed the output file is saved to Azure NetApp Files [10]

h — [ “Long Term Storage : for Post-processing.

1

Az 1

: [ A @ » The Solver output file from Azure NetApp Files [10] can be accessed from the

Cu ' g N cTTTTTT T \ Visualization Nodes[6] and Post-Processing team who are Remote Users [11] can
/ I HPC Storage (NFS)! ; . . ) )
1 perform Post-processing using different AVD sessions as required.

L » Containerized applications are pulled by Visualization nodes [6] and HPC Nodes[7]
iles ! Azure HPC Cache from the user’s container registry [13].
Azure NetApp Files ,  Soeooooooo gistry
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*  The HPC user/Admin [1] stops Visualization Nodes [6] and Cycle-Cloud [5] which

Azure HPC Region deallocates nodes to optimize the cost and spin up again when required.

HPC Admin/User ——» Licensing — «---p Remote Users ———» Data Flow «— Container Registry Requests
Services Type  Quantity Size Services Type Quantity Size  Services Type Quantity Size . - .
Azure Cycle Cloud VM 1 D4sv3  Azure NetApp files Storage 1 1TB IP Address Networking CFD Ana|y3|s, ~7.6 Million Cells, hexa-mesh, Aerospace BlelyyFlly
Scheduler node VM 1 D4sv4  Azure HPC Cache Storage 1 3TB  Virtual Network Networking 1 . SR TR ;
JPC Nodes UM &  HBv3  Data transfer cost Bandwidth 1 00cE Configuration = 512 cores/8nodes, Compute time: ~0.6 Hrs per job
AVD Nodes VM 2 NVv5  Container registry Containers 1 Cost per job: ~150 USD [Assumed 512 cores /8 n ]
Azure Files Storage 1__2TB
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Make better products

oo DIMENSIONAL LARGE-SCALE OPTIMIZATION, BETTER PRODUCT PERFORMANCES

AN EXAMPLE WITH A MAJOR ACTOR OF HYDRO-ELECTRIC ENERGY

Deep learning models allow design teams to evaluate tens of thousands as
many potential designs.

Traditional vs deep learning—based design workflow, turbine design

Traditional workflow (overall time required: months)

® -® -® -@ -@

Engineers select Geometries generated ~ Computational fluid Engineers filter top & Real-life experience
relevant parameters by varying parameters  dynamics runs, each geometries based on determines the best
based on experience; taking hours experience; several geometry, with one
10-20% selected geometries to proto- selected, based on
manually

25-50% faster

design process

Deep learning—based workflow (overall time required: ~26% le:

10,000
Y

o o — o ACTUALLY

Deep learning Geometries generated  Predictions mad

iteratively selects the by varying parameters;  through deep le: M E AS U R E D B Y
most relevant set of up to 1milliontimes as  model; all geom

parameters; up to many geometries generated and v T H E C o M PA N Y
100% of parameters generated set of constraint

selected automatically tested; seconds

model run

McKinsey & Company
Confidential - Do not copy or reproduce

> 2M usD

ANNUAL SAVINGS
IN PRODUCTION +
HUNDREDS
MWATTS OF
ENERGY SAVINGS
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IGBT Cooling for automotive supplier

EFFICIENT COLD PLATES FOR HIGH POWER ELECTRONICS

Context

= Peak temperature needs to be mitigated as it can reach
200°C

= Using intuition for designing in these Reynolds regime is difficult.

Experience in this domain is not widespread.

= Every new design needs to adapt to specific packaging and
boundary condition constraints.

Achievement

= A workflow that allows to optimize designs in <2h for new
constraints has been deployed.

= Design produced by the company are typically 2 to 3% more
efficient than using the old process.

* Optimized designs wr.t. multiple objectives (pressure drop and
thermal efficiency)

x4 faster +2-3% Reduced

TIME TO IN THERMAL PEAK

REACH FINAL EFFICIENCY VS TEMPERATURE

DESIGN PREVIOUS DESIGN ACROSS THE
WORKFLOW FLUID

3000

2000

prediction

1000

0 1000 2000 3000
simutation

98% correlation between Ansys 1000 designs explored in <1h
simulations (3h) and NCS
prediction (1s)

Constraints specified via CAD import One of the geometries on the
Pareto-front
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Thermal Management of EV Batteries

EFFICIENT COLD PLATES FOR NEXT GENERATION OF EV BATTERIES

Context

= The challenge for automotive suppliers is to quickly adapt a
base design concept to varying requirements - while
maintaining optimality.

= EV battery cooling requires to cover a wide surface with a
minimal pressure drop (energy saving).

Achievement

= Very accurate predictions on aggregated values and fields
(see Figures).

= For their “channel” product-lines, the engineers are now able
to optimize designs while getting a real time feedback on
performance.

« WE ARE USING NEURAL CONCEPT SHAPE (NCS) TO
ACHIEVE OPTIMAL DESIGN OF KNOWN PRODUCTS WAY
FASTER. »

NIKLAS KLINKE, TEAM LEAD, TOOLS & METHODS

Simulation Prediction Absolute Prediction Error
Temperature in K Temperature in K
296297 298 299 300 [ 0066 0133 0199 0.266

Fig. 6. Prediction of temperature field on the top of the plate T, of Sample B20

Simulation Prediction Absolute Prediction Error
Temperature in K Temperature in K
g 9337 o674 101133

Fig. 7. Prediction of temperature field on the top of the plate T',,,, of sample C14

Image (illustrative): https://www.mubea.com/en/new-body-products

Publication: Dr. Niklas Klinke, Dr. Stefan Buchkremer, Dr. Lutz-Eike Elend, Maksym Kalaidov, Thomas von
Tschammer, Al-based performance prediction and its application on the design and simulation of cooling
plates for battery electric vehicles, Future Automotive Production Conference Wolfsburg, Germany 17-18th
May 2022
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Crash simulation of battery housings

Context

Crashworthiness is a key factor for vehicle safety but is very
challenging to characterize efficiently and accurately.

As it is a highly non-linear problem with many different possible
scenarios, simulation alone cannot provide the full picture of
crashworthiness, let alone optimize it.

Identifying the most relevant parameters is difficult, which makes it
hard to manually improve the designs.

Achievement

NCS surrogate model is able to predict very accurately the
structural behavior of the housing, by also predicting the contact
force amplitude and location with the batteries.

Engineers can now explore hundreds of design options, to ensure
the structural integrity of the battery

The uncertainty index is used to guide the engineers and improve
the accuracy of the model

<1 second 0.98
TIME TO GENERATE A R2 CORRELATION
NEW DESIGN AND BETWEEN PREDICTED AND
EVALUATE ITS LS DYNA SIMULATION

PERFORMANCE IN NCS

£ 90,0
- 80.0
£ 700
£ 60.0
£ 50.0
£ 400

30.0
20.0
10.0

0.0

U

o

EVALUATION AND OPTIMIZATION OF CRASH PERFORMANCE FOR BATTERY HOUSING Ubea

120.0
110.0
100.0

Comparison between the FEA simulation (top) and the NCS prediction
(bottom) for the displacement magnitude, on a test geometry. The

Cumulative R2

100 1

0.95 1

0.90 1

0.85 4

0.80 4

0.75 1

0.70 1

prediction was done on multiple time steps.

0 20 40 60 80 100
Fraction of the test data [%)]

Using the uncertainty feature from Neural Concept Shape, the test samples
are sorted by the uncertainty metric given by the model, from lowest to

highest.
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Aerospace Heat Exchanger Optimization Wy sicsx
q

OPTIMIZED HEAT EXCHANGERS FOR AEROSPACE APPLICATIONS

Context

= In aerospace applications, the final product performance is
the focus. Efficiency and optimality is key.

= Engineers want to evaluate many design concepts over
several months/years and leverage on the experience and
data from previous iterations.

Achievement

= Very accurate predictions on aggregated values and fields:

The engineers can evaluate thousands of designs per day.

= Optimized geometries using morphing of different concepts
(pins and fins)

Figure 1: Examples of heat-exchanger geometries with
different topologies

////////M/ i

HotOutlet flelds T_pred (MAE 1.829)

HotOutlet.fields.U_pred (MAE: 0.071)

[Top]: Prediction (top) and CFD (bottom) of the Temperature at the hot (oil) outlet.
[Bottom]: Prediction (top) and CFD (Bottom) of the Velocity magnitude at the hot (oil)
outlet.

Figure 2: Predictions vs GT on the outer surface of the heat-

exchanger
>99% +1.5% Constant
ACCURACY FOR INCREASE IN THERMAL PRESSURE DROP DID
MAXIMUM TEMPERATURE EFFICIENCY COMPARED NOT DETERIORATE
AND PRESSURE DROP TO PREVIOUS DESIGN COMPARED TO
PREDICTIONS WORKFLOW PREVIOUS DESIGNS

Figure 3: Optimized geometry using morphing techniques



g Latent Thermal Energy Storage “P-L

SCIENTISTS ARE ALSO USING DEEP-LEARNING TO SOLVE THEIR RESEARCH PROBLEMS

Context

= Latent heat thermal energy storage with metallic alloy phase change
is a new promising technology.

= Macro-porous latent heat storage can enhance the convective heat
transfer.

*= Researchers at EPFL's Renewable Energy Science and
Engineering's Lab are looking for solutions to exploit the
potentially very wide design space.

Prediction of flow
for random sub-
structures.

Achievement

= A surrogate model allowed to precisely assess the performance of
designs within an infinite dimensional design space.

= A paper demonstrating the use Neural Concept's approach in the
domain was published: GCNN Characterization of Macro-Porous Latent
energy storage - ASME Journal of Heat and Mass Transfer - 2022

Prediction of flow
for ordered sub-
structures.

foms @ Random sub-structure
fo® 9 Ordered sub-structure
| &

Before optimization
ordered sub-
structures perform
better than random
ones. Optimization
was not performed
in this study.

99.1% 75.6% 90.4%

R2 CORRELATION R2 CORRELATION R2 CORRELATION
BTW. PREDICTED BTW. PREDICTED AND BTW. PREDICTED AND
AND TRUE MELTING TRUE NORMALIZED TRUE DIFFERENTIAL
TEMPERATURE TEMPERATURE PRESSURE FIELDS .
FIELDS FIELDS

E © NEURAL CONCEPT
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https://asmedigitalcollection.asme.org/heattransfer/article-abstract/145/5/052902/1156062/Geodesic-Convolutional-Neural-Network?redirectedFrom=fulltext
https://asmedigitalcollection.asme.org/heattransfer/article-abstract/145/5/052902/1156062/Geodesic-Convolutional-Neural-Network?redirectedFrom=fulltext

2 External Aerodynamics (1/2)

USE ENGINEERING INTELLIGENCE TO EXPLORE DIFFERENT DESIGN CONCEPTS

Context

= Aerodynamic performance is critical due to vehicle energy
efficiency. OEMs must pay enormous fine if they don’t meet

regulation targets s

= As an example, in EU, OEMs must pay €95 per car sold for every '_..?_‘"
gCO2/km above the regulation. s

= External Aero simulations are heavy and expensive, which mean -
designers only get very limited feedback on their designs

ACh levement Dataset consists of 400 variants Predicted vs Simulated drag

= A model was trained to predict the pressure field and drag of baseline A (no spoiler) coefficient on 50 test samples
coefficient of different car designs.

= The model was challenged with different design concepts (no S (LA D O —

spoiler vs spoiler), and it was shown that a very limited number of
new new simulations was needed to generalize the model to both i i
these concepts.

L L

e 0 = ]
. > = @ }‘
$ 0 2!);‘ - -1000 P i “JQ‘ ~1000
g ’ ”L‘ ‘\{;%;w -2000 ? 2 j.s\}f w ~2000
o x100 >96% 3D output TN N

Q 13 o © L4

2 INCREASE IN THE CORRELATION IN ADDITIOIN TO DRAG G- j —
o« NUMBER OF BETWEEN COEFFICIENT, THE MODEL . . , ,
o DESIGNS THAT PREDICTED AND  CAN PREDICT 3D FIELDS Simulated pressure field around the Predicted pressure field around the
= CAN BE EXPLORED SIMULATED DRAG SUCH AS PRESSURE car car
© COEFFICIENTS AROUND THE CAR
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E-motor optimization

INCREASING THE PERFORMANCE AND DURABILITY OF ELECTRIC POWERTRAIN

Context

Figure 1: Prediction of internal stress

= Vehicle electrification comes with many new engineering
challenges

= E-motor design is a complex process with strict structural and
electromagnetics requirements.

= Flux barrier shape has a significant influence on E-
motor performances.

Achievement

= NCS was used to predict accurately the structural (safety factor)
and electromagnetic performances (torque & ripple).

= NCS design module was used to explore innovative flux barrier

designs.
* Final design clearly outperforming standard, parametric
geometries. Figure 2: Torque prediction vs angle
100 4
Q7S 4
§ 050 -+
2 025
000 '
PARTNERSHIP WITH MOTORCAD TO ENSURE SMOOTH Eﬁ,: |
OPTIMIZATION AND RETRAINING LOOPS % o754 : :
-100 — - ~ —
S . R S S R S R T IR R I ==,
o L) 120 180 20 300 360 420 480 0 «0 (120] 720
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HVAC Design for automotive OEM

ENHANCING THERMAL SYSTEMS USING FAST AND ACCURATE DEEP LEARNING SURROGATES

Context

= Thermal systems in vehicles are responsible for >3% of the total
fuel consumptions

= CFD computation is a major bottleneck in the development of
HVACs = 100 to 1000s CFD results for one development.

=  Automotive suppliers are competing already in RFQ phases, doing P

most of product development pre-order.

Achievement

= Physics performance feedback directly into the designer’s
interface velocity magnitude ;NC Shape)

0.0e+00 1 2 4 5.0e+00

= HVAC designers are able minimize pressure loss and ensure
uniformity on outlets.

100x 2X 1.5x
INCREASE IN THE FASTER IN EXPECTED oy oy
NUMBER OF REQUEST FOR PROJECT WIN- —_— k
DESIGNS THAT QUOTATION PHASE RATE

CAN BE EXPLORED
FEA simulation (bottom) and the NCS prediction (top) for the
velocity field on a test geometry.
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Hull hydrodynamics

BETTER HYDRODYNAMICS WITH FAST PERFORMANCE PREDICTION

Context

= Several design concepts and many different topologies can
be created for the hull, each with very different behaviors

= By nature, hard to parametrize due to non-conventional
designs and large design space

Achievement

= Very accurate predictions on aggregated values and fields

= The engineers are now able to interact in real time with the
designs

= Slight improvement in the performance is a game changer

= Optimization on the 3D geometry directly is now used to reach
better performing designs

50ms 90.6% 99.4%
TIME TO GENERATE AVG L1 ERROR ON AVG L1 ERROR ON
NCS PRESSURE THE PRESSURE THE SHEAR FORCE
PREDICTION (2H FORCE COEFFICIENT COEEFICIENT
BEFORE) ACROSS THE HULL ACROSS THE HULL

Comparison of the pressure distribution between StarCCM+ simulation and
NCS prediction (example 1)

Simulation ~2h 'NCS prediction ~50ms

Pressure (Pa)
-40.000 -2.2.000 -4.0000 14,000 32.000 50,000
HE |

Comparison of the pressure distribution between StarCCM+ simulation and
NCS prediction (example 2)

d

Simulation ~2h iNCS prediction ~50ms

Pressure (Pa)
-B0.000 -28.000 24,000 T6. 000 128,00 180,00

lEE 0 |



27

E © NEURAL CONCEPT

Injection molding: warpage predictions

PREDICTING THE MANUFACTURABILITY EARLY IN THE DESIGN PROCESS

Context

The process of warpage deformation is complicated.

Fluid shrinkage (varying pressure during process) and coefficient of
thermal expansion from eject temperature to room temperature
must be considered.

Simulations with PlanetsX (plugged in Ansys Workbench) are long

and are therefore only performed at the end of the design process.

Achievement

A surrogate model was trained in NCS to predict the warp
deformation of different parts, along with the maximum injection
pressure.

The accurate surrogate model can be frontloaded to the designer
and used early in the design process to ensure manufacturability
criteria

99.8% 99.2% x10
ACCURACY OF ACCURACY OF NUMBER OF
MAX INJECTION MAX MANUFACTURABILITY
PRESSURE DEFORMATION VERIFICATIONS
PREDICTIONS PREDICTION DURING THE DESIGN
PROCESS

0.2

0.1

Groundtruth (FEA
simulation) of deformation
field (only contour)

NCS prediction of the
deformation.
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Rubber switch large deformation analysis CYBERNET

PREDICTING HIGHLY NON-LINEAR DEFORMATIONS ACCURATELY USING NCS

Context Displacement field inside the stitch: simulation vs prediction

= Rubber switches are the essential element in most keyboards. Local signals (ground truth) Local signals (prediction)

= Made of rubber, they sustain large deformation with non-linear iid
contacts and frictions. s
= Accurately predicting their deformation, internal stress and feeling »
curve (displacement vs reaction force) is crucial for the keyboard’s :
durability and usage comfort.
-0.1
Achievement I

= A surrogate model was trained in NCS to predict the large

deformation, internal stress and feeling curve of different rubber
switch designs. Von Mises stress field inside the stitch: simulation vs prediction

= Fast and accurate analysis of non-linear phenomena such as Local signals (ground truth) Local signals (prediction)
buckling and contact behaviors can now be performed.

0.5 0.5
0.4 0.4
0.3 0.3
“BY LEARNING A LARGE AMOUNT OF DATA, WE WERE ABLE TO 0.2 0.2
CONSTRUCT A PREDICTIVE MODEL FOR HIGHLY NON-LINEAR
PHENOMENA SUCH AS BUCKLING AND CONTACT ANALYSIS OF 0.1 0.1
RUBBER " :
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Crashworthiness optimization

EVALUATION AND OPTIMIZATION OF CRASH PERFORMANCE FOR NOVEL VEHICLE CONCEPTS DLR

CO nteXt Typical crash-box design NC design module to create non-
= Crashworthiness is a key factor for vehicle safety but is very parametric innovative designs

challenging to characterize efficiently and accurately.
= Asitis a highly non-linear problem with many different possible '
scenarios, simulation alone cannot provide the full picture of
crashworthiness, let alone optimize it.
= |dentifying the most relevant parameters is difficult, which makes it
hard to manually improve the designs.
Achievement fs.

= A surrogate model was trained in NCS to predict in real time the
main KPlIs: specific energy absorption (SEA), intrusion (crushing Optimization: Pairwise Pareto fronts at each iteration
length) and crushing force efficiency.

—e— [teration 0
—e— [teration 2
—e— Iteration 4
—e— [teration 6
—e— [teration 8
—e— Iteration 10
—e— Iteration 12
—e— Iteration 14
—e— Iteration 16
—e— Iteration 18
—e— Iteration 20
—e— Iteration 22

= NC Design module used to create instantly new trigger designs.

—10k

= Fast and effective optimization campaigns resulting in substantial
performance improvement (5000 designs evaluated in 6 hours).

—15k

Specific Energy Absorption [J/kg]

—20k
<1 second 98.9% 10% i
TIME TO GENERATE R2 PERFORMANCE :;:::::2:53
A NEW DESIGN AND CORRELATION IMPROVEMENT K o teration 32
EVALUATE ITS BETWEEN OBTAINED —— teraton 36
PERFORMANCE IN PREDICTED AND  WITH THE . B i
NCS SIMULATED SEA OPTIMIZATION 60 80 100 120 140 160 180 T erston 4z

intrusion [mm]
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PLM & CAD on Azure



B¢ Microsoft

PLM and CAE Architecture in Large Organisations

Architecture today can be complex

PLM
Product Lifecycle .
o Management a] CO-Location/Branches
x ®
; : o % Co] O oy CO-Location/Branches
8 Relationale DB €3 E__ :
g with Metalinks to = (o=l E :
© CAD content File o Simulation Cluster o o oy
! P —— N

server
Simulation Cluster

CO-Location/Branches CO-Location/Branches CO-Location/Branches '\:
s e o - s e ——
P —
L e — T ) o e — I 2 e e — T ) -
Content, Cache, Converting Content, Cache, Converting Content, Cache, Data, Solver ~
Server U

Server

Server
Simulation

; f ; ? Workstation

Global Branch Offices/ Homeoffice:
Simulation Client Local

CAD Software local + PLM Client PLM Client O

Global Branch Offices /Home Office:
CAD Workstation (e.G. HP Zbook)

0 00op

0 0o o000 i—i—& 020 9




PLM and CAE Architecture in Azure

Simpler Architecture provides Saving Potential

PLM Low latency
Product Lifecycle
o Management a 9
= 2 —
* r .
§l Relationale DB gi Azure Vlr.tl..lal !)esktop
g with Metalinks to ? GPU partitioning
° CAD content File Q )
server ' Up to 50 Users can work on asingle VM
150 Users in Follow-the-Sun-Mode: Asia > Europe > US
Headquarter
Azure Storage
cm - —
am W ———
oam e & - .
Storage, Cache, Solver Server CAE/CFD Cluster
Single Storage Layer Single Simulation Layer
Branch Offices/Homeoffice: I Partner Offices:
Thin Laptop Simulation Client Local
PLM Client P Slicht

oOo 0 00

 22a A=A

0 L0

a" Microsoft

Savings:

No backup servers
No caching servers
No expensive
workstations




Customer Example: Calculation based on 5 Year Depreciation
Total Cost Comparison

Example 3000 CAD Engineers

8.5m Euro

€. WAN/SD-WAN

€: Hardware

€: Operational

= 1m Euro (approx.)

6.6m Euro

€: 3.6m (ca.) Azure
Infra and Traffic

7.5m Euro for 3000

€ 3m for 3000

Hardware over 5
Years

Hardware over 5
Years
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Industrial Metaverse with

NVIDIA Omniverse



Metaverse as Digital Twins Virtual Environment

+ Virtual environment

Physical environment *

NVIDIA
OMNIVERSE

Al

i Ve N
( ID ( ( 3D (AR/VR\ @)‘otics
DIGITAL TWINS — >~




NVIDIA Omniverse Platform

Centralized and collaborative data management

USD as the Open-Source format.

Nucleus is the centralized server exposing
data APIs to all users/applications

NVIDIA Omniverse

NVIDIA Omniverse is meant to be
connected to the standard tools already
used in industry, with USD as interface.

It can be interfaced with more than 50
applications

NVIDIA Omniverse Connectors

NVIDIA Omniverse Apps

All NVIDIA Omniverse applications are
meant to be client side on our GPU
accelerated workstations.

They can be installed manually by users or
can be IT managed on user profile

Compute intensive tasks including
rendering / simulation / Al training can be
offloaded to a GPU cluster through
Omniverse Farm.

NVIDIA Omniverse Farm




Use cases
Collaborative design

COLLABORATIVE 3D WORKFLOWS

FULL FIDELITY CONCEPT REVIEW

Faster Review Cycles, Time to Market

TEST WITHOUT PRODUCING

REDUCES ITERATIVE WASTE

Single Soul




Use cases
Collaborative design

Desigh = = === == = = = — P»  Collaboration — === === = = — — »  Distribute & Publish
Alias - S o . IE‘E
g:l.::rhnoa?(ESK / / \ \ WORTATION
/
AUTODESK _ / External
> 7 Unified Asset \ l@l
y REALITY
8 /) - — | : :
! A -
Y | | o &
' \ I ]
| Pt Adobe Substance I
| 3D Painter - _ \\ , AURGE%EI;JTTYED
@ Unity’ \ //
Ecommerce Marketing
@ Teams Teams
~
UNREAL S~ o -
ENGINE [




Use cases

Collaborative design

2 RTX /

Live High-Fidelity RTX rendering

NVIDIA RTX technology allows to
render with high-fidelity in real
time the design scene

)

Visualization through HMD or Mobile

CloudXR allows visualization using VR

headsets or mobile devices, targeting
also AR applications

LIBRARY

S o (= L) U']l'i
- o " t—-r

)
= l 75 37,67 Frame time 2655 s
. - NVIDIA A10-24Q % 1 Gill unad, 15.5 Gid auailable ;-)-«m- New
Host Memary: 25.1 G used 8549 G5 avadable A
] -’ os Sk
g u - | PathTracing T2/512 spt 197 sec ; z* M
: a0na22 N
i - QR ek
o - 2 » o . ue
'8 b /] axh
= ] | & a X
n —— - e
\ / 3 e o1
= a A ke
> 8 A fe
- P
i S ’ 7 oA
- e
- ‘ﬁ - A
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Comtunt W
+ < - 110 v a =v

A

[ cReATE 2022
e Edt Creote Wedow Loyour Took

LIBRARY

omniverseiinucieus.omnerse testLibrary/owindusirialddpack-01-100.1

1/StagesisaacWarenouse. usd
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Azure Quantum Elements

© Microsoft Corporation



Azure Quantum Elements,
accelerating scientific discovery

GEEE
Scale Speed Accuracy
Hyperscale discovery Expand research horizons Model complex chemistry accurately

HPC

SCALE SPEED

Quantwf

ACCURACY

—— Bringing products to market faster n————

Enabling a faster innovation cycle with Copilot in Azure Quantum

Try the Copilot on guantum.microsoft.com




AZURE QUANTUM

Elements
Al(zoNobeM :"\"‘ SCGC

(w aspentech 1510 Genetics

J M Johnson Matthe

Inspiring s glf




Azure Quantum Elements Apps Files Jobs Clusters Interactive Apps  Monitoring My Interactive Sessions

AZURE QUANTUM

Elements

Pinned Apps

(Q - &

LAAMPS QuantumESPRESSO GROMACS

AUTO /paq.

S5ADA Greuron \ CAS/*Y

AutoCAS
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InstaDeep: EMEA Leader in Al

ﬁ Founded in 2014, HQ in London 6 10 Offices (EU, Africa, US) !'nO 250+ Employees

Decision-Making products: delivering Al-driven efficiencies for advanced enterprise customers

Three Pillars Differentiate InstaDeep

Solving complex challenges for top tier Access to top Talent. Partner with leading Cutting-edge Al Research Joint R&D
international customers Universities work with elite partners
AT SIS Mesanchusatis UNIVERSITY OF ¢ :
SIONT=CH GO»;JQIC III| [ cndid MICHIGAN ) DeepMind  Google Research
FauS UNIVERSITY OF :
@ TOTAL DB| BAHN 'h OXFORD m <NVIDIA. (intel
= "\ SCIENCES Xy : S,
I"”P CARIBAS saomon § S SORBONNE ‘\ ICLR wmﬁesm

* 5 InstaDeepers out of 171 Google ML Dev Experts globally

Google Cloud o Al EECBINSIGHTS|Al  BBCBINSIGHTS| Al  BBCBINSIGHTS b I :
Partner nvinia [ PARINERSN 100 19020 100 2021 100 2022 INtEI. AlBuilders P

[>InstaDeep™



InstaDeep is Europe’s Al Leader with Focus on Logistics

Bloomberg the Company & lts Products ¥ | Bloomberg Terminal Demo Request | ™™ Bloomberg Anywhere Remote Login | Bloomberg Customer Support

Bloomberg Europe Edition v  SignIn Subscribe | |§|

® Live Now  Markets Economics  Industries  Technology  Politics  Wealth  Pursuits  Opinion Businessweek  Equality Green  CityLab  Crypto More 3

Technology BioNTech to Buy Al Expert InstaDeep for
Up to £562 Million

®m German company will pay £362 million upfront in cash, shares
m Deal will help BioNTech use Al in areas like manufacturing

Highest Valuation of any pure-play Al Startup Exit in History

Boosting Commitment towards European Manufacturing and Logistics

|>InstaDeep™



History of solving complex problems with Decision Making Al

InstaDeep’s Decision
Making Technology

| + ‘ Domain Expertise = ‘ Scalable Products |

Al Warehouse
(Logistics/Supply Chain)

DeepPCB™ DeepPack™ DeepRail™

(Hardware/IOT) (Logistics/Supply Chain) (Capacity & Traffic Management)

Leading & Unloading Shipping

Optimize item picking and
placement strategies

Cut Opex by reducing the
overall number of picks and
time per pick needed

Route complex printed Pack container logistics Optimize train scheduling
circuit boards in <24 hours items more efficiently and fleet management

Accelerate electronics Cut OPEX with faster load Cut OPEX and service

product development planning, while saving load delays, reduce CAPEX for
cycles and time-to-market volume and shipment cost infrastructure development

i)lnstaDeep"'
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End-to-End Differentiated Expertise in Al

A strong link between fundamental and applied research is at the core of InstaDeep’s DNA, while
Al engineering and HPC skills support scalable and custom deliveries for end clients.

Open-Source
Software \ ( : ( l
Research Q\ﬁ @ Solutions
Business Value
j

L Engmeerlng J

Scalability Customizability

[>InstaDeep™
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Limitations of Classical Approaches to Optimisation

'\

[ Optimisation Techniques J

Common Flaw: No Learning!

v Guaranteed optimality

x ope £ .
Poor scalability for large instances « Do not Ieverage past computations.
e Unable to generalize to unseen instances
R ) Might have to be redesigned if constraints change
L R [ Search Algorithms } : g g g
«/ Fast and scalable Harvard
V NO specific heuristic or eva|uati0n function Review Strategy | Why Al That Teaches Itself to Achieve a Goal Is the Next Big Th
¥ No guarantee of short-term optimality Strategy
Why Al That Teaches Itself
to Achieve a Goal Is the
ﬁ [ Metaheuristics J Next Big Thing
0 by Kathryn Hume and Matthew E. Taylor
&

¥ No guarantees of optimality

«/ Fast and scalable

|>InstaDeep™



Al/RL Optimisations are more Scalable, Flexible & Generalisable

Sequential Decision Optimization RL approach in a nutshell

e Your goalisto find an optimal behavior . . .
« A sequence of decisions Learning from trials (successes and failures) to

« Each decision affects future decisions optimize a decision making process robust to

o Delayed conséquences variations

Benefits of RL for decision-making

o Approximate optimal solutions for complex
problems with flexible constraint management

R : : No need for (optimal) training data
® |y & Virtual Environment 1 (op ) d
Adent i oo R e Simulation . :
9 fosen ey Jj . digital-twin o Logistics ops are subject to change and

uncertainty - RL agents can adapt to
previously unknown situations

o Real-time, proactive decision-making in highly
uncertain and dynamic environments

%

|>InstaDeep™



http://www.youtube.com/watch?v=VMp6pq6_QjI

Al Warehousing:

Flexible Warehouse Ops Optimisation
using Reinforcement Learning

PDInstaDeep™



55

Problem: Where, When, and What to Pick in a Dynamic World?

Goal Phase 1

A solution that both minimizes the average picking time to fulfill
a delivery request in a simplified warehouse and it is quickly
adaptable to any additional constraints and complexities.

~

[>InstaDeep™
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Problem: Is Optimizing Picking Enough?

Secondary Goal Phase 1

A solution that also optimizes the placement of items inside the
warehouse to minimize the average picking time it takes to
fulfill a delivery request.

& J

[>InstaDeep™



Deep RL can dynamically Optimise Warehouse Operations

Real Warehouse Simulated Warehouse and Picker

items
- 0
]

- 0

Storage Movement Delivery Arrival

. J

i>lnstaDeep"‘
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Deal with unplanned Fluctuations of Loads & Operations

Carried items receiver = Carried items picker

[ o] [ ] Next Request in:
0 0 Il 0 steps
0 0
I O Entry Point
i ) Walking area: Agent can
o - not pick or drop items here
_ R Shelf: Agent can store
s =i 1 items there
O Delivery Point

Trained agents on grid environment and 3D model that incl. shelves

Problem and Solution:

Loads fluctuate throughout the week and
intra-day unplanned loads are also common.
Effective space and labor management are
key to tackle this challenge effectively:

InstaDeep’s multi-agent Al system optimises
picking and storage actions minimising
picking time. The agents learn continuously
to optimise and adapt storage & picking
actions in real-time.

Value-Add:
Opex and time savings thanks to real-time
Optimisation of storing and placing actions.
Robust against Load Fluctuations.
Scalable and generalisable.

Goal: Optimize warehouse ops with specific constraints and then generalise across other warehouses with minimal extra

effort

|>InstaDeep™




Results: Strong Improvement Demonstrable for both KPIs
Al Solution ‘ SAP Solution

T s B

Results:
35% reduction in average picking time for picking jobs.
84% improvement in on-time delivery / "Request Fullfilment Rate".

|>InstaDeep™


http://drive.google.com/file/d/1mJxPpq8RlsAIF61hODVKrsovupgwwtrK/view
http://drive.google.com/file/d/1ZWKi9siHC9wfRF0PntRNh_77ROUmLpBI/view

Al Load Planning:

DeepPack™: Pack Items more efficiently
and save on your logistics costs

i)lnstaDeep"‘



DeepPack: First Al-Powered 3D Truck Load Planning

Enhanced Efficiency

Upload Select bin 3D dynamic
1 cargo 3 4

Generate optimal load plans fast, with minimal type visualisation
manual effort and planning time. Maximise
space utilisation and enable workers with clear

packing instructions

Improved Safety

Ensure stability by minimizing risks of accidents

or cargo shifting. Comply with regulatory

requirements and safety guidelines.

Cost savings

Reduce fuel consumption by cutting weight
imbalances. Cut handling and storage costs

thanks to optimized space allocation.

Scalability
Optimise for all trailer types and constraints as Smart, self-learning Handle complex Collaborative
, APl enabled
tool using Al shapes workspace

required in operations.
> InstaDeep™



m Digitale Schiene Deutschland

Al Scheduling & Routing:

DeepRail™: Al-First Capacity & Traffic
Management System (CTMS)

PInstaDeep™



Al for CTMS: Strategic Partnership with Deutsche Bahn

Digitale Schiene
#H # Deutschland

DB's Digitale Schiene Deutschland vision: Bring a "revolution into

News Digital Rail Technology Projects Partners DE

the rail system’, increase capacity and reliability using novel tech

Pain Point:
e 10,000's of daily trains in dense traffic need quick decisions
on how to adjust operations as disruptions happen
Vision:

e Modernisation and Digitalisation of the infrastructure

Sl Digitale Schiene e
BN s Deutschland 3 )

e Full ATO based on on-board perception sensors and Al

Savt o 1 dovinncn of

e Al-powered capacity and traffic management (CTMS) to

B I p———— automate planning, scheduling and dispatching

Capacity and Traffic Management in the . e Develop interoperability with other operators in EU
future railway system

In the context of the sector initiative Digital Rail for Germany (DSD), Deutsche Bahn and its
partner firm InstaDeep have developed initial prototypes of a planning and operations control
system for railway infrastructure based on Artificial Intelligence (Al). Between November 2020
and December 2021, Deutsche Bahn particularly explored the Al method known as Deep InstaDeep is DBls trusted AI partner for the CTM S en a bl | n g a

Reinforcement Learning, in a research project funded by the German Ministry for the

Environment. The title of the project “KI am Zug" is a pun noting that the time for using Al

. . . . .

has arrived, especially in the context of trains. The results from the project are a crucial step rea |_t| me, dynam IC tra I n SChed U |e at Scale to Improve CapaCIty
towards an automated Capacity & Traffic Management System (CTMS), which-combined with

other components of Digital Rail-is the basis for more capacity, punctuality, and efficiency in and red uce delays

railway traffic

[>InstaDeep™



Al for CTMS: Running on MS Azure

Use-case 1: schedule construction Use-case 2: live re-dispatching
Increased demand Major inefficiency
Global passenger rail activity expected to double and 25% of DBs high speed trains were late in 20212

global freight rail activity expected to triple by 2050".

3 ﬁ Intractable & Manual Inefficient
(@)
GCJ Optimization solvers don't scale to a Time consuming process as it requires Significant inefficiencies, especially in
¢=5 country like Germany with 10,000+ train human in the loop combined with train rescheduling upon perturbations,
6 rides/day, 33,000 kms of railway. heuristics. leading to delays and costs.
C == 3
o) @ Scalable Automated @ Efficient
=
= . : .
(70) Fast and scalable RL-based SHiolialic adjisucnt of the timelables Maximize railway network utilisation,
] decision-making engine while minimizing delays and saving
Y No heuristics: learns from first principles e

costs (multi-million euros per week) .

with limited/no bias

|>InstaDeep™




DB

Digital Twin: Realistic environment for 10,000+ rides / day

Complex navigation environment

Detailed observations

Train State Observations
Train Path Observation

« Velocity: 5 m/s
« Remaining Time until next stop: 200s

V

- Train

« Next train in 300m

Tree Observation

o Train 3 on branch 2

e Train 2 on

« Handover on (

« Distance to target on all branches

Currently active travel
path at point is indicated C

by s—

Facing points Intermediate points
controlled by train automatically switched
M
A Branch level 0—» D
o— Tranl —— 2 ® K
N e
B € Branch level 2 > N

e <0
Branch level 1 /J L

>,/

E
G H
N (0]

me

InstaDeep™
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Expanding Al Capabilities into
more Verticals



Benefits of Optimising with Decision-Making Al

Address highly Complex
Business Constraints

Many business challenges are multi-
objective, sequential decision-making
problems that can benefit from RL

No Need for Massive
Amounts of Training Data

Digital twin simulators generate required
labelled data for RL algorithms to learn
from and optimize decision-making

2=
“ (F:qport

Real-Time Decisions in
Dynamic Environments

Real-life business operations are subject
to uncertainty and change - RL agents can
adapt to previously unseen situations

Actionable Al

Shift operating model from reactive and
prognostic to being proactive by training
expert Al systems that take decisions

[>InstaDeep™



Energy: Forecasting, Planning & Dispatch _RGa

Power Consumption
Forecasts

At the level of a household or a small
insulated micro-grid. Or on a national
level. Different scales result in different
challenges.

Optimising production plans of
controllable production units

For coupled production fleets (gas, solar,
etc.) to cut costs while ensuring supply =
demand over a set interval (day ahead,
intra-day re-declarations, real-time)

Powering a world in progress

Power Production
Forecasts

E.g. of renewable energy systems like solar
panels. Accuracy would depend on data
collection available.

Power dispatch

Re-optimisation in real-time in response
to hazards and unpredictabilities.

. i}lnstaDeep"‘



Supply Chain: Increase Efficiency and Cost Structure

Demand Forecasting

Predict weekly/monthly sales for key
product categories months ahead.
Reduce prediction error by using RL

methods

Raw Material
Purchasing Variance

Accurately estimate raw material costs
and choose the right vendors. Safeguard
against purchasing variance, vendor
uncertainty risks and lower margins

Inventory Management

Optimise planning, cut costs for restocking,
holding and fulfilment, and avoid
overstocking. Include features for picking
optimisation or ABC stratification

Dynamic Pricing

Find customer specific prices for cohorts,
taking into account general
supply-demand patterns, seasonality,

costs and product life cycles
[>InstaDeep™



Reference Architecture Instadeep uses deep reinforcement learning (RL) to augment fab scheduling workflows to decrease production costs.

Scheduling and dispatching with
reinforcement learning

Cost effective: Fully compatible with spot instances and reserved instances to further reduce the Cost of RL training
Scalability: Efficiently scale up to tens of thousands of cores and back down as needed for faster time-to-market.
Scheduler + model agnostic: This architecture may be used for a wide variety of schedulers/simulators, input data, and workflows.

—— === == ========x
{ f\ Azure Container Registry |
Deo| . l File Storage |_ 9 I * The whole Architecture is contained within customer’s Azure
eployment System a
Py Y | Sibnat 82 v l environment.;
I M AKS | * End users interact with InstaDeep™ [13] management system
Web GUI I Cluster Nodes Mxmem» I via a REST API that is running on the scalable Azure Kubernetes
Kubernetes SyStem Node .. 4 I Ser\”ce [4] |n a Varlety of Ways
) | 13 Instadeep mgmt pod K8 mgmt pod 1) Python API [1]
l . o  Web based User interface [2]
. | App Visualization App 11 ! o  Command line client [3]
P I 1 Core m— | . Usc.ar.sub.mlt the job in Instadeep [13], which schedules the
i NeaUiNg (3 k.aDeepSim)  Modeling e I training jobs on the cluster.
API | License -Manager Managed : * The cluster will assign pods to the relevant node pools and scales
App Management App Disk | these up if required [5,6,7 or 8].
I * The pods get initialized from the containers that are stored in
- | v l the Azure Container Registry [9].
3 v v | * Duringtraining, the results are stored in the Azure File Storage
cLi : CPU node pool GPU node pool I [10] and the metric tracking system that is part of Instadeep
I @o . . o . . I mgmt pods [13] (and backed by addition storage device [11])
. - * Through InstaDeep ™ [13] tool the user monitors the job
| Pods container Kubelet Kube-proxy Pods container Kubelet Kube-proxy | progress
| PU oot oo 1 * After the training, the agent is pushed to the deployment
| SP9" POO GPU spot poal | system [12] from where it can be queried for actions. The
I @9 . o . . I deployment server [12] has the option to report back monitoring
| bod < et Kub pod . I statistics to the platform[13] for further optimization of the
. container Kubelet Kube-proxy 0ds container Kubelet Kube-proxy : :
AMlcrOSOft . | agent via File Storage [10].
Azure e o e e o e
ZeeN  Virtval Network
Services Type Quantity Size Services Type Quantity  Size Fab scheduling and dispatching with reinforcement learning, Semiconductor
Standard Node VM * B8ms AzureFiles . Storage * 18 Configuration= " CPU: 2400 Cores, 120 cores /node, 20 Nodes, AMD Milan-x
CPU nodes VM 1 HB120-rsv3  Managed Disk Storage 1 20GB
CPU spot Nodes VM 20 HB120-rsv3  Containerregistry — Containers 1 GPU: #5 GPUs, 1GPU/node, 5 Nodes, Nvidia Tesla V100
GPU Nodes VM o NC6s v3 GPU spotNodes VM 5 NC6sv3

10 RL Agents training for a month, Compute: 360 Hrs, Cost: ~ $10,030




Al Intelligence - Model Training

Kubemetes Services

Azure Databricks

Data Sources (for training, master data, constraints) | |
| | Export / Apply Al / Import Al Users

XYs/4 HANA : | [

: : - : O M ET7'S/4 HANA

>
| Cagpitive Services |

Container Instances App Services
— o | I ——— - -
L — ,,' e L )
ETUELT DataLake o Data Lake

01 m N ’
(i1

Kubemetes Services Function Apps.

E ‘ o

Constraints / Master Data

Production Ready
Dalabase




What Microsoft HPC/AI GBB brings to the table

O

Use Case session Fast Track for Azure*

®

Hands-on experience Technical Skills for
with Hackathon Business*
Learning Path (online
Course)

*Subject to Approval after Nomination



How Startups can benefit

O

Fast Track for Azure*

®

Azure Markeplace Technical Skills for Use Case session
Fast procurement Business*
Learning Path (online
Course)

*Subject to Approval after Nomination



Concept of Digital Twin in
Manufacturing Industry



What is a digital twin?

According to the very first definition back in 2003 by Michael Grieves 2131 a Digital Twin is a virtual
representation of a physical entity, collecting all the information related to his lifecycle management

p
« Digital representation of the

Digital model

physical entity

A
/

Digital « Digital representation and physical-
shadow to-virtual information flow

« Digital shadow with virtual-to-

physical information flow

Digital twin requires three
elements!!iel;
A physical entity
A digital representation
of the physical entity

A bi-directional
information flow
between the two

[1] David Jones, Chris Snider, Aydin Nassehi, Jason Yon, Ben Hicks, Characterising the Digital Twin: A systematic literature review, CIRP Journal of

Manufacturing Science and Technology, Volume 29, Part A, 2020, Pages 36-52, ISSN 1755-5817

(2]

©Microso ft Corporation
re



Digital Twin information flow!!

Realization

Metrology . Realization

Physical process

©Microsoft Corporation  [1] David Jones, Chris Snider, Aydin Nassehi, Jason Yon, Ben Hicks, Characterising the Digital Twin: A systematic literature review, CIRP Journal of Manufacturing
haure Science and Technology, Volume 29, Part A, 2020, Pages 36-52, ISSN 1755-5817



Digital Twin in Stark’s Product Life Cycle

G\TAL THREAD Customer Insights
o

o)}

“Digital Thread is a data-driven architecture
that links together information generated
from across the product lifecycle”

Spare parts opti
loT & Predicti

[1] Stark, J. Product Lifecycle Management (Volume 1), 21st Century Paradigm for Product Realisation,

Springer International Publishing, 2022

©Microsoft Corporation [2] Singh V., Willcox K. E., Engineering Design with Digital Thread, AIAA Journal 2018 56:11, 4515-4528
re



The “Digital Thread” — Empowering Digital Engineering

§ Design 5
Engineering Feedback Loop: Key Outcomes:
ﬁ_: ' + Cost savings
| &  Safety
| * Efficiency
Supplier Production Install Base » Performance

* Quality
 Traceability
* Product-as-a-Service

Nel(oRy

Cybgr Digital : Simulation, : Digital Twin Autonomous loT & E.dge Mixgd
Security workplace Insights & Analytics Security Reality

Cloud & Edge | Data & Al | Trust & Security | Sustainability



Digital Twin ~ VRXR
Enabling technologies PLM System APl

______________________________________________________________________________________________

Realization Metrology

Metrology Rt Realization

Physical Entity Physical Entity i« |

Physical process

©Microsoft Corporation  [1] David Jones, Chris Snider, Aydin Nassehi, Jason Yon, Ben Hicks, Characterising the Digital Twin: A systematic literature review, CIRP Journal of Manufacturing
haure Science and Technology, Volume 29, Part A, 2020, Pages 36-52, ISSN 1755-5817




HPC / Al in Manufacturing Digital Thread .

| |
Product Data Market Data

Electromagnetic Chemical
Structural CFD

Physics-based




Examples of Digital Twin
applications and
collaborations



Examples of Digital Twin — Support & Use

el | —-— e e - -

©Microsoft Corporation
Azure

Digital twin model

Simulation £ \ Data

data

gital space

Virtual data of Assessment and
equipment judgement for
equipment fault state
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Examples of Digital Twin — Support & Use
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Examples of Digital Twin — Design & Optimization
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https://blog.3ds.com/brands/simulia/fast-furious-tire-design-simulia/

Examples of Digital Twin - Realize

l
1

\ \
N i y O\ A \
. n / MY |
il ! AL i
3 A f
1 ’ \ 'AT S B
3 3 S 20 \
~ s ===t VAR YN I\ I

43

NVIDIA, BMW Blend Reality, Virtual Worlds to Demonstrate
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https://blogs.nvidia.com/blog/2021/04/13/nvidia-bmw-factory-future/
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Examples of Digital Twin - Realize
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Brain storming “What can digital twin bring to you"?
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