
Cost of Running HEP 
Software

Akshat Gupta



Progress Introduction

● All computations for 100 - 10000 were completed, 100000 events were not 
explored due to the lack of time

● New Graphs exploring the distributions of the different number of events in 
the different Centre of Mass (COM) Energies were made

● Scaphandre was explored on the same machine using Ubuntu installed on 
drive instead of WSL2 (reason for it is given later)

● 1000 Events were explored using the antikt-python package and antikt-julia 
package for both CodeCarbon and Scaphandre on the same environment



Dataset Distribution Visualisation

● Distributions are as expected
● The phi graph ranges from 0 to 2π 

instead of -π to π
● The number of jets per event is as 

expected
● The pT graph shows much similarity 

between the two but is abruptly cut 
after 200 GeV

● These are generated using Pythia 8 
with HardQCD on and Jet Min pT set 
to 20 GeV



CodeCarbon - WSL2
● CodeCarbon is a package that monitors the energy usage of a 

process or the machine while that specific process is running
● It has no way of calculating carbon impact other than the amount 

of CO2 emitted during processing
● As such it relies on a linear factor that relates the energy used, 

the time the computation ran for which finally outputs the 
carbon emitted in kg.

● This is confirmed by the graphs 
on the right

● It uses a carbon equivalent factor 
to calculate its footprint [1]

● This is dependent on the 
different countries which are 
obtained from the International 
Energy Agency (IEA) [2]

[1] https://mlco2.github.io/codecarbon/methodology.html
[2] https://www.iea.org/reports/global-energy-co2-status-report-2019/emissions

https://mlco2.github.io/codecarbon/methodology.html


CodeCarbon - WSL2
● The difference between ‘Machine’ and 

‘Process’ Monitoring Types was also 
explored.

● The only major difference was found 
to be the RAM energy usage that 
impacted the baseline (‘Process’) by a 
25% increase

● This can be seen in the graph above
● A minor plot of the different antikt 

scripts was also made to confirm that 
the script is working as expected

● This can be seen in the graph below



Scaphandre
● Does not work with the initial environment (WSL2 + Windows 11)
● The compilation on windows is a bit complicated and has a few missing features. The list is 

incomplete.
● Required an installation of linux (dual booting) which in turn changed the environment 

and as such one set of events was rerun using CodeCarbon for Python and Scaphandre for 
Python and Julia

● Since CodeCarbon (CC) relies only on a constant factor to calculate our CO2 Footprint, the 
numbers obtained from Scaphandre would be a direct drop-in in order to obtain our 
values

● Since Scaphandre (SC) uses accurate information reported by the CPU, it is much more 
accurate

● In this case, the GPU was turned off (due to missing drivers) and was not included in either 
CC or SC. 

● However, since CC uses Nvidia Drivers to obtain the actual usage, it can be used in case we 
want to explore the involvement of the GPU (which is negligible).



Scaphandre - Procedure
● Install Prometheus, Grafana and Scaphandre
● Set up scaphandre in Prometheus Exporter Mode

○ It is a mode that allows scaphandre to start a http server on localhost:8080 (can be changed) 
which Prometheus (localhost:9090) can access and understand (compatible)

● Using grafana and connecting it to Prometheus we can explore the different 
energy consumed in microwatts by the process (python3)

● This allows us to get an accurate result for the process
● This process was followed for 1000 Events Data for the different COM 

Energies
● In grafana, average of the energy consumption was noted as it fluctuates
● There is some uncertainty in the power consumption of 13/14 TeV datasets as 

they are processed faster than the reporting time



Scaphandre - Results
● Using just scaphandre to compare Julia vs Python, Julia is a clear 

winner in terms of energy usage
● We also notice that CodeCarbon has an approx 40-50% more 

energy usage for the same item due to using a constant for the 
CPU power instead of an accurate power usage

● In Julia, the tiled 
algorithm is the best 
algorithm which is to be 
expected

● Overall these results are 
acceptable and hence 
promote the use of 
Scaphandre over 
CodeCarbon



Conclusions
● Q1: Is Julia a better language than Python for AntiKt? 

○ Yes
● Q2: How is the Carbon Footprint generally measured? 

○ It uses a simple scaling that can be found online as mentioned previously
● Q3: Is the difference between different algorithms significant?

○ Yes, The basic algorithm is a lot slower than the tiled algorithm, and julia-tiled is better than 
all the different combinations

● Q4: Which Monitoring Software Package yields a better result?
○ Scaphandre is the better package compared to Code Carbon as it has bare metal host level 

energy monitoring that uses the computer’s own drivers to determine - to a very good 
accuracy - the energy consumption

● Q5: Can we use this data to quantify the cost of running such an algorithm?
○ On its own this data is not enough to quantity such a metric as it does not take into account 

the amount of time need to write the code and compile it. It also does not take into account 
any other CO2 emitting sources except the running of the code.

○ However, in a more holistic study, this would be represent a very important component.



Final Notes

● Main limiting factor in this experiment was the processing times.
● Scaphandre was quite difficult to install on WSL2, would want to find a good 

alternative for WSL2
● Uncertainties can be reduced by running the software multiple times and 

then getting an average
● These can also be reduced by using shorter time intervals for Scaphandre
● Next Step: finalise the repository with proper readme and notes to github 

repo


