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DMAPS Projects

Submission Process Availability Target Comments Contact 
Institute

Task Contact

TJ-MALTA 2
/3

TowerJazz 
180 nm

Beginning 2021
MPW Q1 2022

High-gran./ Rad. hard
Task 5.2/5.3

LHC CERN Carlos Solans 
Sanchez

TJ-Monopix 2
/3 (OBELIX)

TowerJazz 
180 nm

Spring 2021
Initiating design

High-granularity
Task 5.2

Belle II Bonn Jochen Dingfelder

TJ 65 TowerJazz 
65 nm

September 2021 High-granularity
Task 5.2

Generic R&D / ALICE IPHC Jerome Baudot

ARCADIA LFoundry 
110 nm

Summer 2021 High-granularity
Task 5.2

Demonstrator chip INFN Manuel Rolo

LF-Monopix 2 LFoundry 
150 nm

Beginning 2021 Radiation hard
Task 5.3

High granularity foreseen Bonn/CPPM Marlon Barbero

RD50-MPW 3
/4

LFoundry 
150 nm

Spring 2022/ late
2023

High-granularity/
Radiation hard
Task 5.3

R&D Liverpool Eva Vilella

MiniCactus 1 / 2 LFoundry 
150 nm

Beginning 2021 / 
2024

Radiation hard
Task 5.3

Timing R&D IRFU Philippe 
Schwemling

q 7 projects are (partially, not exclusively) supported by the AIDAinnova framework using 4 
different processes provided by 2 foundries: LFoundry (Wuxi Xichanweixin 
Semiconductor) and TowerJazz à Tower Semiconductor (Intel as of 2022)

q All developments have samples, characterisation in full swing

large 
electrode
(radhard)

small 
electrode
(high 
granularity)
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WP5 Deliverables

19 March 2024

April 2021

CNRS-IPHC

INFN

Bonn

CERN

WP5 Deliverables consist of reports, which are the responsibility of the institutes in 
the last column.
• Next deliverable is D5.3 in April: sufficient material from TJ-Malta and LF-

Monopix projects are available, see later slides

See also: https://aidainnova.web.cern.ch/wp5

March 2023✓

April 2024



MS18

MS19

MS20

MS21
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WP5 Milestones

19 March 2024

April 2021

Milestones have short associated reports and are within the responsibility of the 
institutes in the last column.
• Next Milestone is MS19 in April: structures from Arcadia project are available.

CNRS-IPHC

INFN

Bonn

CERN

See also: https://aidainnova.web.cern.ch/wp5

April 2022✓ Feb 2023 ✓

April 2024



Publications & Meetings

519 March 2024

TJ-MALTA

l JINST 2021 https://doi.org/10.5281/zenodo.6951327
l TWEPP 2021 https://doi.org/10.1088/1748-0221/17/04/C04034

l IEEE TNS 2022 https://doi.org/10.1109/TNS.2022.3170729 

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167390 

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167226 
l NIM A 2023 https://doi.org/10.1016/j.nima.2022.167809

l EPJ-C 2023: https://doi.org/10.1140/epjc/s10052-023-11760-z

l JINST 2023: https://doi.org/10.1088/1748-0221/18/03/C03011

l JINST 2023: https://doi.org/10.1088/1748-0221/18/03/C03013

l EPJ-C 2023:  https://arxiv.org/abs/2308.13231

l HSTD23 proceedings in preparation

TJ-Monopix

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167189

l arXiv 2023 https://doi.org/10.48550/arXiv.2301.13638

l IEEE proceedings PACET2024 submitted

LF-Monopix

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167224

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.166747

l Vertex 2022 proceedings accepted, to be published
l Vertex 2023 https://doi.org/10.22323/1.448.0043

l HSTD23 Submitted, under revision

CACTUS

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167022

l NSS 2022: IEEE Trans.Nucl.Sci. 70 (2023) 11, 2471-2478

TJ 65nm

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167213

RD50-MPW 

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.166826

l NIM A 2022 https://doi.org/10.1016/j.nima.2022.167020

l JINST 2023 https://doi.org/10.1088/1748-0221/17/12/C12017

WP5 meetings at:
https://indico.cern.ch/category/13503/

• 27 publications
• 9 new since Sept. 2023 

published or in work
• Update of web-site and database 

in progress

https://doi.org/10.5281/zenodo.6951327
https://doi.org/10.1109/TNS.2022.3170729
https://doi.org/10.1016/j.nima.2022.167390
https://doi.org/10.1016/j.nima.2022.167226
https://doi.org/10.1016/j.nima.2022.167809
https://doi.org/10.1140/epjc/s10052-023-11760-z
https://doi.org/10.1088/1748-0221/18/03/C03011
https://doi.org/10.1088/1748-0221/18/03/C03013
https://doi.org/10.1016/j.nima.2022.167189
https://doi.org/10.48550/arXiv.2301.13638
https://doi.org/10.1016/j.nima.2022.167224
https://doi.org/10.1016/j.nima.2022.166747
https://doi.org/10.22323/1.448.0043
https://doi.org/10.1016/j.nima.2022.167022
https://doi.org/10.1016/j.nima.2022.167213
https://doi.org/10.1016/j.nima.2022.166826
https://doi.org/10.1016/j.nima.2022.167020
https://doi.org/10.1088/1748-0221/17/12/C12017
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Summary of Activities

19 March 2024

l Next slides are a brief 
summary of recent 
achievements as 
presented during our 
session yesterday

l See more details on the 
WP5 session agenda on 
indico:

l https://indico.cern.ch/
event/1307202/



Tower 180 nm        
TJ-MALTA-2&3  
TJ-Monopix-2 



10

TJ-MALTA
High granularity, small electrode

19 March 2024

M. Vazques et al.

Goal: large (1x2 cm2 (Malta2) -> 3x2 cm2 (Malta3)) radhard sensor/chip w/ small 
electrode and high granularity, HL-LHC-layer-5 compatible with low power
asynchonous readout architecture. Sensor&FE same as TJ-Monopix. 

CERN and others (Bonn, CPPM, Oxford ...)
- 180 nm technology - 

• main objective of TJ-MALTA2: 
• make design radhard (> 1e15 neq/cm2):

i. shape charge collection geometry
ii. optimize FE against RTS noise
iii. use high resistive Cz-Si substrate (100 µm) rather than epi-Si (25 µm).

• improve asynchronous readout

• objective TJ-MALTA3: 
• exploit full reticle size: 3x2 cm2

• improve on remaining MALTA2 issues 
• add 1.28 GHz local clock 
• target: mini-MALTA MPW in Q2 2023



10 20 30 40 50 60
 [V]subV

75

80

85

90

95

100

Ef
fic

ie
nc

y 
[%

]

2/cmeq 1 MeV n151x10

2/cmeq 1 MeV n152x10

2/cmeq 1 MeV n153x10

MALTA2
m, H-dopµCz, 100 

back-metal, XDPW
2/cmeq 1 MeV n151x10

2/cmeq 1 MeV n152x10

2/cmeq 1 MeV n153x10

MALTA2
m, H-dopµCz, 100 

back-metal, XDPW
2/cmeq 1 MeV n151x10

2/cmeq 1 MeV n152x10

2/cmeq 1 MeV n153x10

MALTA2
m, H-dopµCz, 100 

back-metal, XDPW

• This plot shows 1,2,3x1015 1 MeV n/cm2 of a sample with high doping of the n- layer.
• Almost full efficiency after 1x1015 1 MeV n/cm2 for back-metallized samples (>99%)
• At higher fluence levels,  a higher substrate voltage is required to obtain high 

efficiency

AIDAinnova WP5 8

Efficiency after irradiation in CZ 

CERN SPS 2023

Average efficiency of irradiated MALTA2 on Czochralski substrate versus SUB voltage

19 March 2024
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TJ-MALTA
High granularity, small electrode

20 March 2024

Goals of MALTA2 achieved:
 
• radhard up to 3E15 neq/cm2 (at 

least)
• Higher doping of n-layer helps 
• RTS noise mitigated 

• excellent matrix homogeneity

Malta1

Malta2

M. Vazques et al.
• Test samples with higher doping level of n- layer to compensate for radiation damage: 

high doping and very high doping
• Difference in doping level refers to relative difference in implantation dose
• >97 % efficient at ~30V for sample with very high doping of n- layer at fluence level of 

3x1015 1 MeV 

AIDAinnova WP5 9

Effect of doping

CERN SPS 2023

Average efficiency of irradiated MALTA2 on Czochralski substrate versus SUB voltage

19 March 2024
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TJ-MALTA
High granularity, small electrode

20 March 2024

M. Vazques et al.

• Mini-MALTA 3
• 5x4 mm2 demonstrator 

for full MALTA3
• Same FE as MALTA2

• Chip arrived in late 
2023

• Chip is alive and 
systematic testing 
including test beams 
starts now
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TJ-Monopix 2
High granularity, small electrode

20 March 2024

l Clear improvements wrt TJ-M1 
before and after irradiation

• sensor and chip working
• assembly problems (wire bonding 

sensibility) reduce yield, is now 
manageable, but still problematic

• a temporary major problem at 5 MHz 
BC-ID clock interfering now 
understood and circumvented

• characterisation finally in full swing
• baseline for Belle II VTX upgrade à 

Obelix chip:
• Uses analog part from TJ 

Monopix 2
• New digital periphery with several 

additional features

Bonn, CERN, CPPM, IRFU
- 180 nm technology - 

C. Bespin, J. Baudot, A. Kumar et al.
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TJ-Monopix 2
High granularity, small electrode

20 March 2024

Most recently added detailed timing performance and  
post irradiation measurements: 
l >99% eff. after 5E1014neq/cm2 irradiated with 24 MeV p
l ~1-2 ns time resolution limited by TDC (1.5625 ns bin 

size, 93.7 ps time resolution from FE)
l > 99% in-time efficiency for 25 ns window and for 15 

ns window for epi-Si (26 µm depl. volume)
l Delay difference of up to 3.5 ns depending on in-pixel 

track position

AIDAinnova WP5 Meeting – bespin@physik.uni-bonn.de31.01.2024

• With known amplitude, can correct for time walk 
• Subtract charge-dependent relative delay (calculated from average per charge bin) 
• Result is gaussian distribution of trigger delay – fit width to get time resolution 
• Result in order of 1 ns - 2 ns, depending on matrix and chip 
• Still contains contribution from TDC (1.5625 ns bin) and 

scintillator 
• Uncertainty is limited by available equipment 
• Started development of high-res TDC in FPGA

Time walk correction and time resolution

7
AIDAinnova WP5 Meeting – bespin@physik.uni-bonn.de31.01.2024

• Use available tracking data from measurements for in-pixel position dependence 
• Data is corrected for delay propagation, no time walk correction 
• Plotted is relative trigger delay (mean of trigger delay distribution, c.f. slide 5) 

with respect to collection electrode (white, with spacing to 
electronics) 
• Delay difference of up to 3.5 ns depending on track position

Position dependence

8
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C. Bespin, J. Baudot, A. Kumar et al.
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TJ-Monopix 2 à OBELIX for BELLE 2
High granularity, small electrode

20 March 2024

OBELIX-1 specifications & layout

A. Kumar   -    Status of OBELIX for Belle II    -     AIDAinnova, Catania, 2024-03-19 7

Pitch 33 µm

Signal ToT 7 bits

Integration 
time 50 To 100 ns

Time stamping ~5 ns 
for hit rate < 10 MHz/cm2

Hit rate max
for 100% eff. 120 MHz/cm2

Trigger 
handling

30 KHz
with 10 µs delay

Trigger output ~10 ns resolution
with low granularity

Power 
(with hit rate)

120 to 200 mW/cm2

(1 to 120 MHz/cm2)

Bandwidth 1 output 320 MHz

J. Baudot, A. Kumar et al.



TPSCo 65 nm process of Tower
(new window of opportunity)       

Tower 65nm
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TPSCo 65 nm
(Tower)

19 March 2024 J. Baudot, A. Kumar et al.

Goal: exploring the new technology (large collaboration effort, CERN + 24 institutions)
including stitching, .... small electrode designs
1+2 submissions so far: MLR1 (2020), ER1 (2022) each containing several structures and designs
ER2 is expected for 2025

from MLR1

promising results from MLR1
• leakage cur. ✓
• Testbeam with DPTS 

(digital 15 µm) proved 
that process modification 
works & radiation 
tolerance > 1015neq/cm2
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TPSCo 65 nm
(Tower)

20 March 2024

J. Baudot, A. Kumar et al.

Detailed position resolution studies done CE65v1/v2 chip family form MLR1 and ER1

Very good results achieved: 
• spatial resolution of ~2.7 +/- 0.3 µm for standard 25 µm pixel
• spatial resolution of ~1.3 +/- 0.3 µm for standard 15µm pixel
• to be compared with DPTS with modified process and 15 µm pixel: 4 – 4.2 µm
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TPSCo 65 nm
(Tower)

19 March 2024 J. Baudot, et al
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TPSCo 65 nm
(Tower)

20 March 2024

Stitched sensor MOSS from ER1:
• Design is functional 
• Sensor works – 26 cm long!
• Learning about yield and wafer-

to-wafer variations

J. Baudot, A. Kumar et al.



LFoundry 150 nm        

• LF-Monopix-2 
• RD50 – MPW2/3 
• CACTUS 
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LF-Monopix 2
Large electrode, radiation hardness

Lars Schall, C. Bespin, et al.

irradiated devices (1 and 2e15 neq/cm2 @ Bonn Cyclotron)
• no significant degradation at this level except for leakage current increase

• fully depleted @ ~200 V bias (15 V unirr.)

Calibrated charge MPVs

ENC distribution
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LF-Monopix 2
Large electrode, radiation hardness

Lars Schall, C. Bespin, et al.

• intensive test beam characterisations
• very high (>99%) efficiency (in-time) after 1 and 2e15 

neq/cm2

• ~no efficiency degradation wrt unirradiated devices
• New: devices irradiated to 2e15 neq tested: 

• still >99% efficiency but more pixel disabled due 
to leakage current induced ENC increase, higher 
gain of pre-amp helps for in-time eff.  

Hit-detection efficiency vs bias voltage

In-pixel, in-time efficiency
(mean 98.35% @ 2e15 neq/cm²)

In-pixel, in-time efficiency
(mean 99.60% @ 2e15 neq/cm²)
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RD50-MPW2/3

20 March 2024

Goal: series of MPWs (1 ... 4) to achieve very small pixels (60 x 60 µm2) radhard 
@ HL-LHC level 5th layer by large electrode design (all electronics inside deep well)
MPW2: small prototype 
• pixels: 60 x 60 μm2
• in-pix CSA + discriminator, analog R/O
• testbeams performed
• charge collection ok

MPW3: added digital R/O (column drain)
• Vbreakdown ~ 150V
• very high noise (> 2000 e) due to noise
coupling from digital periphery
• Poor test beam efficiency due to 
high thresholds

MPW4 (2023/24): backside processing
to improve radiation hardness, eliminate 
high noise and increase breakdown

E. Vilella, C. Zhang et al
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RD50-MPW2/3

20 March 2024 E. Vilella, C. Zhang et al

MPW4 (2023/24): 
• Initial tests indicate that noise 

elimination and breakdown 
voltage increase was 
achieved

• Tests with backside 
processed wafers proved 
improved leakage current 
behaviour

• ENC of 200e- over whole matrix and small threshold 
dispersion
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CACTUS
large electrode

20 March 2024
P. Schwemling, Y. Degerli et al

Goal: Develop CMOS pixels for timing applications (~50 ps) 

Mini CACTUS = small prototype to address limitations of CACTUS (low S/N)

• 65 ps mip time resolution achieved in test beams
• compared calibrations and resolutions using photons

of different energies (241Am and @SOLEIL)
Ø calibrations ✓
Ø 𝜎t for photons (understandably) worse (320 ps)

• characterisation after 1e14:
• Time resolution worsens at room temperature but 

with low leakage current at -15°C recovers 
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CACTUS
MiniCACTUS V2        large electrode

20 March 2024
P. Schwemling, Y. Degerli et al

≈4.6 mm

≈ 5 mm

• ~ 2 times larger than MiniCACTUS
• 0.5 mm x 1 mm (baseline), 1 mm x 1 

mm and  0.5 mm x 0.5 mm diodes
• 50 µm x 150 µm and 2 50 µm x 50 

µm small test diodes
• 3 different preamps 
• New multistage discriminator with 

programmable hysteresis
• Improved layout for better mixed-

signal coupling rejection 
• CEA-IRFU & IFAE-Barcelona coll.
• Submitted in May 2023, waiting for 

samples to
• come back from post-processing



LFoundry 110 nm        

ARCADIA
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ARCADIA Tests

19 March 2024 M. Mandurrino et al.

Goal: Develop DMAPS technology platform in 110 nm technology. Largely funded 
by INFN. Targeting small pixels, very low power, various thicknesses

• MD3 main-demonstrator with system-grade full chip Fully Depleted MAPS 
(FDMAPS with 512x512 pixel matrix, pitch 25 µm, low power, high event rate) 

• Scalable FDMAPS architecture with very low power of 10 mW/cm2 
• adding gain layer for LC3 (MADPIX), small prototype (4 x 16 mm2)
• Structures from both are available and first results looks reasonableThe ARCADIA run-3

M. Mandurrino, INFN Torino 3rd AIDAinnova Annual Meeting, Catania, Mar 18–21, 2024 14

MadPix: first small-scale (4 × 16 mm2) demonstrator with gain and integrated electronics

Front-end (in-pixel)
▻ Cascoded common source amplifier, followed 

by a differential buffer (1.2V)
▻ AC-coupled with sensor (in order to decouple it 

from the sensor top voltage)
▻ Power consumption: 0.18 mW/ch 

Source follower off-pixel buffers (3.3V)
▻ AC-coupled with FE
▻ Power consumption: 1.65 mW/ch 

▻ 8 matrices (64 pixel pads each) implementing 
different sensor and front-end flavours

▻ pads of 250 × 100 µm2

▻ readout: 64 × 2 analog outputs on each side
▻ rolling shutter of single matrix readout

in-pixel front end
electronics

off-pixel buffers
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ARCADIA Tests    
Main Demonstrator

20 March 2024

M. Mandurrino et al.

First ARCADIA engineering runs

M. Mandurrino, INFN Torino 3rd AIDAinnova Annual Meeting, Catania, Mar 18–21, 2024 10

Main Demonstrator - acquisition setup

FPGA board KC705

1 Gb ETH

oscilloscope

PCB through-holeMain Demonstrator

Cosmic rays acquisition (4h)

▻ Total power consumption: 10 mW/cm2 at low event rates
▻ Design specification: 20 mW/cm2 at rates up to 100 Mevents/cm2

Collimated 90Sr beta source 
Collimator diameter: 1mm

90Sr beta source (1cm2) 8 mm
from the sensor surface
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ARCADIA Tests 
MADPIX

20 March 2024 M. Mandurrino et al.

The ARCADIA run-3

M. Mandurrino, INFN Torino 3rd AIDAinnova Annual Meeting, Catania, Mar 18–21, 2024 15

MadPix: first small-scale (4 × 16 mm2) demonstrator with gain and integrated electronics

MadPix testboard

SNR ≈ 20

U. Follo

First data with beta source (90Sr)

U. Follo

Noise and slew-rate characterization 
with external test-pulse injection

U. Follo

• But gain layer turned out to be too low (~3 instead of 10 – 30) due to mismatch in 
p-gain implant energy

• Will be fixed now with new short loop engineering run



LFoundrxy 110 nm, TSI 

PSI developments
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PSI developments

20 March 2024

Goal: Generic R&D on DMAPS with TSI and technology platform in LF 110 nm 
provided by ARCADIA
• 2 PSI TSI MAPS chips designed – TSI-RS4, large collecting electrode
• LF 110 prototypes designed and manufactured using the ARCADIA platform (MoTiC A & B), 

small collecting electrode, TDC shared by 4 pixel 

11 | Ali Ebrahimi aliakbar.ebrahimi@psi.ch | 2024-03-19 | DMAPS at PSI

TSI-R4S – Large Fill Factor in TSI 180

Page 11

deep nwell

nw pwpw

-HV

p substrate

pmos nmos

signal
LV

 P-iso-well is not standard in the process

 P-substrate, resistivity ~370Ωcm

 Simple architecture similar to ROC4SENS

 4-bit trimmable discriminators in each pixel

 Large electrodes with high capacitance

 Depletion from front-side

 Active thickness: 200µm

 Slides mostly copied from RD50 

presentation by Tilman Rohe

20 columns, 20 rows
50 x 100/150µm2

p-iso

3 | Ali Ebrahimi aliakbar.ebrahimi@psi.ch | 2024-03-19 | DMAPS at PSI

MoTiC: Monolithic Timing Chip

MoTiC A

MoTiC B

Same sensor
6 different amplifiers
80 columns, 64 rows

50 x 50µm2

Same amplifier (C)
5 different sensors

80 columns, 48 rows
50 x 50µm2

A A
CFB

B CB
CFB

C
CFB

1 2 3 4 5

 Modified LFoundry 110nm process

 Full frame readout with external trigger

 In-pixel discriminators

 1 TDC shared by 4 pixel

 Sensing elements designed by ARCADIA

 Small electrodes with small capacitance

 Back-side processing for guard rings and metal 
contacts

 Depletion from back-side

 Active thickness: 48, 100, 200µm

 Thesis by Stephan Burkhalter, ETHZ

A. Ebrahimi et al.

TSI-RS4
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PSI developments

20 March 2024 A. Ebrahimi et al.

Goal: Generic R&D on DMAPS with TSI and technology platform in LF 110 nm 
provided by ARCADIA
• Encouraging results achieved but still early stage
• TSI developments stopped due to foundry finishing this node

7 | Ali Ebrahimi aliakbar.ebrahimi@psi.ch | 2024-03-19 | DMAPS at PSI

Hit Detection Efficiency



 Offline threshold

 Hit efficiency > 99.8%

 MoTiC A

– 200 µm thick

– Max. efficiency at Vbias > ~55V

 MoTiC B

– Max. efficiency at Vbias > ~50V

– AC variant efficient at Vbias > ~40V

MoTiC A MoTiC BTSI-RS4
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Summary

19 March 2024

q Lots of activity at all fronts: high granularity, radiation hardness and timing

q Fabrication of devices completed in all lines

q All research lines are currently intensively characterizing their devices

q 2 Milestones (MS18, MS20) and 1 Deliverable (D5.1) achieved

q Next Milestone MS19 & Deliverable D5.3 due in April but sufficient 
material is already available

q Many publications 
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One contact person per institution:
Carlos Solans <carlos.solans@cern.ch> – CERN
Eva Vilella Figueras <vilella@hep.ph.liv.ac.uk> – Liverpool
Jerome Baudot <jerome.baudot@iphc.cnrs.fr> – IPHC
Thomas Bergauer <Thomas.Bergauer@cern.ch> – HEPHY
Francesco Forti <Francesco.Forti@pi.infn.it> – Pisa
Marlon Barbero <barbero@cppm.in2p3.fr> – CPPM
Daniela Bortoletto <Daniela.Bortoletto@physics.ox.ac.uk> – Oxford
SCHWEMLING Philippe <Philippe.Schwemling@cea.fr> – IRFU
"C. Marinas" <cmarinas@ific.uv.es> – IFIC
Manuel Dionisio da Rocha Rolo <darochar@to.infn.it> – Torino
Attilio Andreazza <attilio.andreazza@mi.infn.it> – Milano
Valerio Re <valerio.re@unibg.it> – Pavia
F. Hügging <huegging@physik.uni-bonn.de> – Bonn
S. Grinstein <sgrinstein@ifae.es> – Barcelona

Contact Persons and 
email list

l Let us know of changes above.
l The AIDAinnova-WP5@cern.ch mailing list is used for general 

announcements and information.
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