

WP8

Innovative calorimeters with optical readout Task 8.3.1:

R&D on Crystal and nanomaterial scintillators

E. Auffray, CERN EP_CMX on behalf of Sub task 8.3.1 team

Task 8.3.1: Partner Institutes

- Main Benificiaries:
 - CERN: E. Auffray, N. Kratochwil with all CERN CCC team
 - FZU Prague: M. Nikl, V. Babin, J. Vitezslav,
 - INFN Frascati: M. Moulson, L. Bandiera,
 - INFN Perugia: C. Cecchi, G. De Nardo, E. Manoni, M. Merola
 - INFN Torino: N. Pastrone, I. Sarra
 - Vilnius: G. Tamulaitis, S. Nargelas, A. Vaitkevicius
- Associated partners:
 - CERN
 - Minsk: M. Korzhik
 - INFN
 - GlassToPower, Italy (company): S. Brovelli,
- Other partner:
 - Crytur, Czech republic (company): J. Houzvicka, S. Sykorova

- Optimisation of crystal materials and processes for fast timing applications in radiation environments
- Industrialisation of the production process of fast and radiation-hard crystals

Task activities

- Material investigation
 - Optimisation of "standard" scintillating Materials to improve ti
 - Garnet, PWO, BGO
 - Study of crossluminescence materials
 - Study of scintillating nanomaterials
- Development of instrumentation for timing char
 - Transient absorption
 - Time resolved spectroscopy
 - Time resolution
 - => Milestone achieved in Marr ∠ ((see <u>link</u>)
- Test beam study:
- Not too much news, 5 • Timing performanc mip and electron
 - Test of various proverses for future calorimeter
 - Test Nanocal prototype (bluesky project)

Milestone:

MS32 (due to M12) : Test benches for testing detecting materials in picosecond and subpicosecond domains. Achieved in March 2022 (see <u>link</u>)

Deliverable

D8.2 (due to M35 end of February 2024): Report on prototypes construction, performance and assessment of industrialization

New materials enabling high precision timing will be selected by means of test bench measurement and assembled into a prototype that will allow also the assessment of industrialisation for realistic detector systems => Report submitted 28 Feb2024

Deliverable 8.2

TABLE OF CONTENTS

1. → INTRODUCTION	4¶
2. → MATERIALS DEVELOPMENT	5¶
2.1. → IMPROVEMENT OF RESPONSE TIME OF SELF-ACTIVATED SCINTILLATOR PWO	5¶
2.1.1. → Understanding the fast decay process	5¶
2.1.2. → Towards production of Ultra-FAST PWO	6¶
2.2. → ACCELERATION OF LUMINESCENCE DECAY IN CE-ACTIVATED AND MG-CODOPED MULTIC	OMPONENT
GARNETS	6¶
2.2.1. → Acceleration of luminescence decay by aliovalent codoping in Gd-containing garnet type sci	ntillators:6¶
2.2.2. → Acceleration of luminescence decay in (Lu,Gd) ₃ (Ga,Al) ₅ O ₁₂ :Ce,Mg	7¶
2.2.3. → Acceleration of luminescence decay in Gd ₃ Ga _x Al _{5-x} O ₁₂ :Ce,Mg	
2.2.4. \rightarrow Towards mass production of highly codoped Gd ₃ Ga _x Al _{5-x} O ₁₂ : Ce,Mg	9¶
2.3. → NANOCOMPOSITE SCINTILLATORS BASED ON LEAD HALIDE PEROVSKITE NANOCRYSTALS	10
$2.3.1. \rightarrow CsPbBr_3 NCs in PMMA/PLMA $	11
2.3.2. → CsPbBr3 NCs in PMMA/PS	11
$2.3.3. \rightarrow CsPbCl_3NCs$	
Some of these developed nanocomposite scintillators were used to build innovative shashlik c	alorimeter,
preliminary tests are presented in Section 3.3.	
2.3.4. \rightarrow Toward large production of nanocomposite based on CsPbBr ₃ /CsPbCl ₃ \rightarrow	12
3. → MAIN RESULTS ON PROTOTYPES	13¶
3.1. \rightarrow TIMING PERFORMANCE OF SCINTILLATORS PIXELS WITH MINIMUM IONISING PARTICLES	14¶
3.2. → ELECTROMAGNETIC CALORIMETER PROTOTYPES	15¶
3.2.1. \rightarrow Timing resolution with single PbF ₂ and PWO-UF crystals	16¶
$3.2.2. \rightarrow Radiation resistance of PbF_2 and PWO crystals$	18¶
3.2.3. \rightarrow Development of a prototype for a fast, high-granularity crystal calorimeter with b	ongitudinal
segmentation	18
3.2.4. → Development of prototypes for a calorimeter with oriented crystals	
3.3. → NANOCAL: AN INNOVATIVE SHASHLIK CALORIMETER WITH NANOCOMPOSITE SCINTILLATORS	
3.3.1. → Development of nanocomposite scintillators for NanoCal project	
3.3.2. → Construction of shashlik calorimeter prototypes with innovative scintillators	23
4. → CONCLUSION	27¶
5. → REFERENCES	28¶

- Material investigation
 - Investigation of garnet materials:
 - \Rightarrow Strong reduction of decay time observed on GAGG with highly codoping Ce, Mg
 - \Rightarrow Crytur company starts to grow ingots

⇒ CERN group has also collaboration with ILM, Lyon and ISMA, Kharkiv through a Twin project TWISMA (GA 101078960)

- \Rightarrow Investigation of other garnets in Vilnius
- Deep understanding of Ultra fast PWO: PWO-UF
 - \Rightarrow Vilnius and FZU
 - \Rightarrow Material produced by Crytur
 - ⇒ Test by INFN in the frame of R&D on CRILIN and INFN OREO (ORiEnted calOrimeter)
- Nanocomposite scintillators based on nanomaterials
 - \Rightarrow Development by GlasstoPower & UNIMIB
 - \Rightarrow Characterisation at CERN and at Frascatti

 \Rightarrow CERN, FZU , UNIMIB have a new pathfinder project UNICORN (GA 101098649) on development of nanocomposite

 \Rightarrow Test in beam through Nanocal project (see today presentation <u>M. Moulson</u> in WP13 meeting)

нср

No major loss of time resolution! Decay time decrease compensated the Light output reduction => the same photon time-density

Joint paper CERN; FZU; Vilnius, L. Martinazzoli et al, Mater. Adv., 2022,3, 6842-6852 .

Technology transfer of heavily doped GAGG:Ce,Mg From FZU to CRYTUR

Samples from the seed and end part of crystal \varnothing 10x1mm

From about 20 growth experiments of GAGG:Ce,Mg in FZU the starting composition of the melt was defined with the goal to reach 1/e decay time below 10 ns

=> technology transfer

Industrial Czochralski growth in CRYTUR was adapted => able to grow first ingot: Ø 25mm, First task was to obtain HOMOGENEOUS COMPOSITION AND CHARACTERISTICS within all the crystal body

SUCCESS!!!

RL intensity, 1/e decay time and LY (~5000 ph/MeV] values are within 10% difference at the seed and end part of the crystal.

Fibers of ~50mm length can be cut!

=> First step to large production !

Scintillation decay - END PART X-excitation(40 kV); 75 ps FWHM (stim, or or other state) (stim, or other state) (

Technology transfer of heavily doped GAGG:Ce,Mg From FZU to CRYTUR

From about 20 growth experiments of GAGG:Ce,Mg in FZU the starting composition of the melt was defined with the goal to reach 1/e decay time below 10 ns

=> technology transfer

Industrial Czochralski growth in CRYTUR was adapted => able to grow first ingot: Ø 25mm, First task was to obtain HOMOGENEOUS COMPOSITION AND CHARACTERISTICS within all the crystal body

GAGG Samples produced by CRYTUR

Self-activated scintillators. PWO

The estimated upper limit of the diffusion length is 100 nm.

- luminescence decay is nonexponential due to inequivalent surrounding of WO_4^{2-} ;
- Auger-type nonradiative recombination becomes important at high excitation intensities;
- the time constant of scintillation decay can be decreased down to, at least, of 640 ps, however, at a light yield down to 5 phe/MeV

Lines are calculated by dipol-dipol interaction taken into account.

 \Rightarrow The dipole-dipole interaction might be an important mechanism causing the fast initial decay of the population of radiative centers in PWO observed experimentally.

Time resolution obtained with single $10 \times 10 \times 40 \text{ mm}^2$ crystals of PbF₂ (left) and PWO-F (right) as a function of deposited energy, from beam tests with high energy electrons. The blue (black) curves are for data taken in "front" ("back") configurations.

Nanomaterial development: Challenge

а

0 2 3 b 4 3.0 Normalized RL Intensity 2.5 2.0 10% 1.5 1.5% 1.0 0.5% 0.5 **PVT** 0.0 12 14 0 2 6 8 10 Time (ns) PVT nanocomposites containing fluorinated CsPbBr₃ NCs (concentration 0.01-10% left to right) **GLASS** to **POWER**

Pushing the concentration of NCs in composites

Effective
embedding
in plastics

Good news is, Free radical polymerization is not the only option available... Increasing the Light Yield (especially for gamma) requires higher densities.

 \rightarrow HOW CAN WE BOOST THE NC LOADING IN POLYMERS? \rightarrow HOW CAN WE TAKE ADVANT

Good news is, we actually have CsPbBr₃ NCs that survive T>100K

Two problems:

- 1. Conventional LHP NCs do not withstand thermal polymerization due to thermal damage
- \rightarrow incompatible with polystirene derivatives

2. Photopolymerization of acrylates is self limited in [NC] due to competitive absorption of UV light (→ cheese toast effect)
→ Impossible to go above 1% with conventional free radical routes.

Belle II upgrade: various materials readout with SiPM

See presentation C. Cecchi today

Test beam activities

- Many Test beams in 2023:
 - Timing performance with mip and electron by CERN group in June 23
 - => Test many scintillators,
 - Test of various prototypes for future calorimeter CRILIN; Klever, HIKE June, August, October 23
 - => PbF2, Ultra fast PWO, oriented PWO (INFN groups)
 - Test Nanocal prototypes (bluesky project) June 23, Nov23
 - ⇒Different types of of material tested (standard plastic scintillator and nanocomposites based on CsPbBr₃ and CsPb(Br,Cl)₃

CERN: Test beam in sps: Assesment of timing performance under MIP

August 2021:

- Readout performed with NINO ASIC electronics **September 2022:**
- Custom high frequency SiPMs readout
- 6 crystals measured in a row
- 150 GeV charged pion beam
- Pulses were recorded for offline analysis June 2023:
- Same readout chain of 2022 test beam
- Up to 5 crystals measured in a row
- 150 GeV charged pion beam
- Temperature stabilization system implemented

Crystal	Time resolution σ_t (ps)		Energy	
	Sept. 2022 1D	June 2025 1 D	deposited (Mev)	
GFAG	14.3 ± 0.6	14.1 ± 0.8	9.5	
GAGG:Ce,Mg - 1	$\textbf{16.4} \pm \textbf{0.9}$	-	9.5	
GAGG:Ce,Mg - 2	-	13.3 ± 0.9	9.5	
BGO	$\textbf{36.4} \pm \textbf{1.5}$	$\textbf{37.9} \pm \textbf{0.9}$	9.9	
BGSO	31.1 ± 0.5	$\textbf{32.9} \pm \textbf{1.7}$	9.9	
BSO	-	$\textbf{35.7} \pm \textbf{1.3}$	9.9	
BaF ₂ *	$\textbf{15.8} \pm \textbf{0.6}$	14.3 ± 0.6	6.7	
BaF2:Y *	17.0 ± 0.4	$\textbf{13.4} \pm \textbf{0.9}$	6.7	

* <u>Sept. 2022 TB</u>: $3 \times 3 \times 10 \text{ mm}^3$ samples measured with $6 \times 6 \text{ mm}^2$ VUV-SiPMs. <u>June 2023 TB</u>: $2 \times 2 \times 10 \text{ mm}^3$ samples measured with $3 \times 3 \text{ mm}^2$ VUV-SiPMs.

From R. Cala' Sienna Conference Sept23

INFN Frascatti, Torino, Napoli: Test beam activities for CRILIN & Klever

- **R&D** for future experiments to develop new concepts for crystal calorimetry KLEVER small-angle calorimeter (SAC)
 - Operates inside neutral beam, rejects γs from KL $\rightarrow \pi 0\pi 0$ escaping through beam hole
 - Low-sensitivity for > 400 MHz of beam neutrons
 - Possibilities for γ/n discrimination: multilayer structure/longitudinal segmentation

ECAL for Muon Collider (CRILIN design)

- Resolves jet substructure: fine segmentation, both transverse and longitudinal
- Rejects of beam-induced background from low-energy shower particles
- Good sensitivity for low-energy-release topologies (e.g. signal muons)
- Excellent time resolution to allow rejection of background hits at cell level

Crystals under consideration fast PbF2 or Ultra Fast (UF) PWO

INFN Frascatti, Torino, Napoli: Test beam activities for CRILIN & Klever

Collaboration with CRILIN to study:

- Materials: PbF₂ vs PWO-UF
- Radiation resistance of crystals
- Photosensors: SiPMs, front-end
- Light collection in small crystals
- Longitudinal segmentation
- Mechanics, cooling, integration

For single crystals of PWO-UF: $\sigma_t < 20 \text{ ps}$ for $E_{dep} > 5 \text{ GeV}!$

E. Auffray, CERN, Aidainnova 19/03/2024

Use of nanocomposite scintillators under investigation in collaboration with AIDAinnova project NanoCal

Semiconductor nanostructures used as sensitizers/emitters for ultrafast, robust scintillators:

- Perovskite (typically CsPbX₃ X = Br, Cl...) nanocrystals cast into polymer matrix
- Decay components << 1 ns
- Radiation hard to O(1 MGy)

Molecular and nanocomposite scintillators

Additionally exploring:

- New dyes for optimized molecular scintillators
- Fast, bright, radiation hard green scintillators
- **2022-23:** Test scintillators/fibers/SiPMs with beams and cosmic rays
- Construct full-scale prototype if promising 2024-25: candidate found

TB with nanocomposite scintillators Nanocal

Tests with mip and *e*[−] beams at CERN PS and Frascati BTF:

- Reference sample: 1.5% PTP + 0.04% POPOP in PVT ("Protvino")
- Bicocca 4, 5: CsPbBr₃:Yb perovskites in PVT have ~50% light yield of ref. sample Our first nanocomposites with good mip response!
- Bicocca 3: Coumarin-6 (green) scintillator with ~160% light yield of ref. sample

Many new samples to be tested in Feb 2024 BTF run!

E. Auffray, CERN, Aidainnova 19/03/2024

Publications/Presentations

• Publications:

- L. Martinazolli et al., Compositional engineering of multicomponent garnet scintillators: Towards an ultra-accelerated scintillation response, , Mater. Adv., 2022,3, 6842-6852
- G. Tamulaitis et al, Transient optical absorption as a powerful tool for engineering of lead tungstate scintillators towards faster response, J. Materials Chemistry C, 10, 9521 (2022), DOI: 10.1039/d2tc01450e.
- F. Pagano et al., A new method to characterize low stopping power and ultra-fast scintillators using pulsed X-rays, Front. Phys. 10:1021787.doi: 10.3389/fphy.2022.1021787
- G. Tamulaitis et al, Transient optical absorption technique to test timing properties of LYSO:Ce scintillators for the CMS Barrel Timing Layer, Radiation Physics and Chemistry 206, 110792 (2023).
- S. Nargelas et al., Influence of heavy magnesium codoping on emission decay in Ce-doped multicomponent garnet scintillators, J. Mater. Chem C, 11, 12007 (2023), 11, 12007-12015 (2023)
- Y. Talochka et al., Acceleration of emission decay in Ce-doped Gd-containing garnets by aliovalent codoping due to blocking excitation transfer via gadolinium subsystem, Radiation Physics and Chemistry, **218**, 111589 (2024).
- A. Erroi, et al. ACS Energy Lett. 8, 3883-3894, (2023)
- C. Cantone et al., Beam test, simulation, and performance evaluation of PbF2 and PWO-UF crystals with SiPM readout for a semihomogeneous calorimeter prototype with longitudinal segmentation, Front. Phys. 11:1223183, doi:10.3389/fphy.2023.1223183
- L. Bandiera et al., A highly-compact and ultra-fast homogeneous electromagnetic calorimeter based on oriented lead tungstate crystals, Front. Phys. 11:1254020, doi: 10.3389/fphy.2023.1254020
- L. Bandiera et al., Investigation of radiation emitted by sub GeV electrons in oriented scintillator crystals, NIMA Vol 1060, March 2024, 169022

Presentations:

- At SCINT2022: 16th Int. Conference on Scintillating Materials & their Applications, September 19-23, 2022, Santa Fe, USA
 - G. Tamulaitis: Transient Optical Absorption Technique as a Tool for Routine and In-depth Characterization of Fast Scintillators, (keynote)
 - N. Kratochwil: Characterization of dense Cherenkov/Scintillation/Semiconductor materials for fast timing at future colliders
 - R. Cala' : Exploring BaF₂:Y Ultra-fast Emission for Future HEP Applications
 - L. Martinazolli: Acceleration of the scintillation response in garnet type multicomponent scintillators
 - S. Nargelas: Influence of matrix composition on excitation relaxation and emission spectrum of Ce ions in (GdxY1-x)₃Al₂Ga₃O₁₂:Ce scintillators
- R. Cala', Exploration of fast materials and light production mechanisms for high energy charged particles time detectors, Fast timing workshop, May 2023
- E. Auffray, Recent developments in the field of scintillators for fast radiation detectors, Fast timing workshop, May 2023
- E. Auffray, Recent developments in the field of scintillators for radiation detectors, TIPP2023
- R. Cala', Recent developments in the field of scintillators for fast radiation detectors, IPRD23 (16th Topical Seminar on Innovative Particle and Radiation Detectors)

- Different scintillating materials have been investigated Many synergies between participants Joint activities
- Fruitful test beam activities in 2023
- Deliverable D8.2: submitted on Feb 28