Future Noble liquid gas calo: progress on electrodes R&D

Nicolas Morange, IJCLab, on behalf of the Allegro team

AIDAInnova Annual meeting, 19/03/2024

Laboratoire de Physique des 2 Infinis

Noble liquid calorimeters

- Decades of success at particle physics experiments: from R806 to ATLAS
 - Mostly LAr, a bit of LKr
- An appealing option for FCC-ee
 - Good energy resolution
 - High(-ish) granularity achievable
 - Linearity, uniformity, long-term stability

Excellent solution for small systematics

- Lots of interesting studies / R&D to do
 - Optimization for PFlow reconstruction
 - Achieving very low noise
 - Lightweight cryostats to minimize X₀
 - Designing for improved energy resolution

Granularity of Noble Liquid Calorimeters

- Calo design:
 - granularity of the calorimeter
 ⇔ granularity of the electrodes

• ATLAS: copper/kapton electrode

- traces to read out middle cells take real estate on back layer
- cannot really increase granularity
- FCC-ee requirements
 - High jet energy resolution needed
 - Particle flow algorithms take advantage of much finer granularity

• Solution for Noble Liquid calo for FCC

• Multi-layer PCB to route signals inside

High granularity electrodes

Aiming for ~ ***10** ATLAS granularity

- High granularity required for better PFlow performance (few million cells)
- >6 compartments to compensate LAr gap widening

Implementation: multi-layer PCBs

- 7-layer PCB
 - Signal collection on **readout planes**
 - Transmission through via
 - Signal extraction on trace
 - **Ground shields** to mitigate cross-talk
- Challenges
 - Trade-off capacitance (noise) / cross-talk
 - Maximum density of signal traces ?
- Studies on simulations and prototypes

Allegro Barrel Design

Design driven by the solution used for electrodes

- 1536 straight inclined (50°) 1.8mm Pb absorber plates
- Multi-layer PCBs as readout electrodes
- 1.2 2.4mm LAr gaps (LKr seriously considered)
- 40cm deep (22 X₀)
- $\Delta \theta = 10$ (2.5) mrad for regular (strip) cells, $\Delta \phi = 8$ mrad,

12 longitudinal layers

Copper electrodes: lots of flexibility

- Number of layers and granularity of layers fully optimizable
- Projective cells
- Lots of room for optimisation !

Geometry

Transverse

Longitudinal

Simulation studies

Role of simulation studies

What is needed from the electrodes to fill the physics goals?

Understand the required granularity

- Study photon/pion ID (tau physics)
- Axion searches
- Jet energy reconstruction
- Using 4D imaging techniques, ML, PFlow

• Optimize design for EM resolution

- Electron and photon resolutions
- Pions, b-physics
- gap size, sampling fraction, active and passive material...

Simulation studies in key4hep

Lots of ground work in 2023!

- Correct cells geometry was used in simulation but not in digi/reco
 - Now proper θ/ϕ positions used consistently everywhere
 - Much more flexible fullsim geometry:
 - Can easily change cells and layers sizes
 - Can adapt the granularity per layer
- Improvements in clustering
 - Topo-clustering and fixed-size clusters adapted to new geometry
 - Super nice tool to visualize showers and clusters
 - Topo-clustering using ECal+HCal
- Technical work
 - Follow FCC software evolution (k4geo)

Simulation studies: towards simu of calo performance

Ground work done this year enables performance optimization based on physics

- Finer levels of energy calibration
 - "Rediscovery" of S-shape effects
 - Attempt corrections using log(E) weighting and MVA technique
- Towards cluster pointing reconstruction
 - Accurate position calibration per layer needed
 - Then extrapolate from barycenters

Simulation studies: Optimization of cell sizes

• Studies of photon / π^0 separation

- Computations of shower shapes
- Event displays show that position of "strip" layer is probably not correct
- Preliminary studies (simple BDT) confirm the large room for improvement
- Implementation of cross-talk effects in simu ongoing
 - Necessary for accurate shower shape variables

N. Morange (IJCLab)

Designs for the endcaps: first ideas

Endcaps designs more complex than that of the barrel: very preliminary ideas !

- "Turbine" design
 - More similar to barrel design
 - o Symmetric in φ
 - Issue: increase in the size of the Noble liquid gaps
 - Need to stack several cylinders

• XY / Pie wedge designs

- Less symmetry in φ
- Increase of LAr gaps under control
- Many types of electrodes to draw and produce

R&D on electrodes

Readout electrodes prototypes

Can we fill the physics goals, and what are the tradeoffs ?

• Design questions

- Achieving the optimal granularity as given by physics simulations
- Minimise noise (aim for photons down to 300 MeV and S/N>5 for MIP)
- Keep cross-talk at per-mille level
- (noise and cross-talk depend on assumptions on readout electronics)

Technical questions

- Connectors to readout the signals
- Design of HV layer, including resistors
- Readout everything at the back

Prototype 2022-2023 @ IJCLab

Small-scale prototype designed for precision tests

- Detailed understanding of signal propagation and cross-talk effects
 - Cross-talk has capacitive but also inductive components
- Building knowledge of Sigrity simulation tool
 - Very good agreement with measurements after tuning !
- Fruitful discussions with PCB manufacturer to understand practical limitations of our design

AIDAInnova Annual meeting, 19/03/2024

Electrode measurements @ CERN

Full scale electrode !

- Took quite some time and effort to achieve good measurements
 - Fruitful collaboration with IJCLab
 - Proper grounding, terminations, short cables...

• Extraction of cross-talks

- Impact of shielding and of shaping time
- Few per-mille easily achievable

Prototyope 2024 @ IJCLab

Learning from the previous generation

- Next prototype at IJCLab
 - All layers, 3 towers
 - Readout all cells at the back
 - Best for material budget in calo, worst for cross-talk
 - Study options for **additional shielding**
 - **Connectors** for easy readout/injection
 - Possibility to merge several PCBs
 - Received January 2024

Prototyope 2024 @ IJCLab: first measurements

Cross-talk

- Additional shields reduce cross-talk capacitance
- Confirm capacitive and inductive components of the cross-talk

Remember: capacitance means noise !

$$N\sim C_d \sqrt{rac{4kT}{g_m au_p}}$$

Towards automated measurements

Getting the full measurement matrix "by hand" is quite tedious

- Setting up automated setup
 - Fanout board to go from connector to SMAs
 - Multiplexer crate to route signals to oscilloscope
 - Can also inject calibration signal through the connector
 - Can connect 2 electrodes together

Status

- Design of fanout board well advanced
- Old multiplexer crate borrowed from ATLAS LAr

Conclusions

Even if milestone has been achieved in 2023, work on Noble liquid gas calo electrodes continue

• Simulations

- Road to as accurate simu as possible to inform the design is long !
- Great progress achieved in 2023
- Expect conclusions from granularity optimisation studies in 2024
- Other aspects of simulation progressing towards physics performance evaluation

• Electrode prototypes

- Previous generation of prototypes very successful at demonstrating the concept
- New electrode @ IJClab: validate detailed understanding on realistic scale electrode and demonstrate scaling up of measurements system
- Next steps @ CERN: new full-scale prototype