

Integration aspects of highly granular calorimeters WP8 T2.1

Katja Krüger (DESY), with slides prepared by Vincent Boudry

LLR, Institut Polytechnique de Paris

for

CERN, CNRS-IJCLab, CNRS-LLR, CNRS-LPNHE, DESY-HH, FZU, JGU, TAU

materials from Y. Benhammou, A. Irles, K. Kruger, J. Maalmi E. Sicking and others

AIDAinnova 3rd annual meeting 19/03/2024, Catania

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004761.

WP8 Task 8.2/1

Task 8.2.1 Towards next generation highly granular calorimeters

Task 8.2.1

- Development of a common electromagnetic and hadronic calorimeter data concentration interface for minimised space and power consumption
- Demonstrator with functional active detector elements and full read-out chain (D8.1)

Integration aspects of highly granular calorimeters

Highly granular electromagnetic and hadronic calorimeters at future colliders will have up to 10⁸ readout cells, calling for common solutions for services such as data concentrators interfacing the embedded front-end electronics and the data acquisition outside the detector.

The technical solutions will be embedded in a demonstrator that will be applicable to particle physics detectors at future e+e- colliders such as ILC, CLIC, CEPC, FCC-ee.

For this demonstrator, mechanical structures and silicon and scintillator based active elements will also be provided Vincent.Boudry@in2p3.fr

FCAL for ILD, LUXE

A Map to High-Granularity Calorimeter Prototypes Si 5×5 mm² AHCAL for ILD, LUXE AHCAL for ILD

SiW-ECAL Technological Prototype beam test at DESY & CERN

FEV10, 11, 12

- BGA packaging
- Incremental modifications
- From v10 -> v12
- Main "Working horses" since 2014

FEV-COB

- Chip-On-Board : ASICs wirebonded in cavities
- Thinner than FEV with BGA Based on FEV11
- External connectivity compatible

FEV13

- BGA packaging
 - Improved routing
- Local power storage
- Different external connectivity

Pedestal widths, 1st memory cells, per asic

Building of a uniform SiW-ECAL prototype

Rationale:

- Current prototype
 - 4(5) types of PCBs №3 sensor thicknesses (320, 500, 625 µm)
 - (un)gluing issues
- Material for 15 ASUs available \rightarrow full single tower
 - FEV2.1 boards, wafers, components
- Application cases : LUXE@XFEL, EBES@KEK, Lohengrin@ELSA
 - Extreme QED & Dark y searches
 - low energy, rates, ...
 - LUXE: FCAL prototypes \rightarrow common DAQ Application.
 - Could be built from *same cards* in 2×12
 - Needs: sensors (€), (Mech. structure), W

\rightarrow Homogenous prototype

Goal:

- 15 layers of FEV2.1 with 500 μm wafers

- Uniform and more performant electronics
- Could be used for LUXE and Dark Photons exp's.
- All material available

Main issue: contact PCB-Sensor

- Conductive glue dots of A2-3mm
- Aging, mechanical stress, manipulations. ... Hitmap, Worst case

Revisiting gluing (IFIC, IJClab, LPNHE)

- PCB metrology
 - Bef. & After curing & soldering
- Glue formula & preparation
- Gluing methods
 - Robot
 - Stencil
- Reenforcement
 - Filling glue
 - Adhesive films

New hardware for the SiW-ECAL

30 PCB of new type (FEV2.1) have been produced

- 1st batch of 4 cabled for tests
- 1 equipped with 4 baby-wafers for HV test
 - Test on-going
- Mechanical test made at IFIC Valencia
 - Not all satisfactory (flatness ±200µm in the corners after the cabling involving heating at 300°C); further investigation on the cabling process foreseen

Testing of Skiroc2 ASICs:

- ~ 1/3 of ASICs tested thoughroughly on dedicated bench at Ω mega lab prior to soldering on PCB's
 - Statistical analysis completed; testing of the rest will resume soon.
- 64 (4×16) mounted on the FEV2.1
 - Performances (noises, thresholds, ...) will be compared with bench results.

RMS of Fast Shaper for 2 type of packaging

Improvements:

- Power distributions
 - Local power regulation: LDO's
 - Local High Voltage filtering & Supply
- Signal distribution (buffering), data paths
- Monitoring (single ID, temp, probe analogue line)
- ASIC shielding/routing

Status:

- pre-version 2.0 tested, minor corrections needed
 - Noise uniformity dramatically improved (ex: outliers in thr. / 20 !)
- version 2.1 produced
 - before cabling, 2nd metrology, gluing, ...
 - All material available : ASICs being tested

New FE boards

Pedestal measurements vs. Ch# + Mem#×100)

the fault on the ASIC/packaging

AHCAL Plans: Hardware Developments

Common Readout

- Harmonize readout between CALICE SiW ECAL and AHCAL
- Reduce size of AHCAL interface boards
 - Current design is from 2007
 - Focus was on modularity
 - New SiW ECAL interface board (SL board)
 optimized for compactness
 - Plan to follow SiW design as much as possible
 - Some differences in powering concept
 - Additional LED calibration system in AHCAL
- Status: just started

Delay in D8.1

D8.1:

- "Demonstrator of a combined read-out system of highly granular electromagnetic and hadronic calorimeters" is due M36 (March, 2024)
 - The development of common DAQ interfaces imply a knowledge/technological transfer from the SiW ECAL to the AHCAL
 - The process is started, but the board design, testing and operation are delayed

- External events prevents delivery in due time:

- The SiW-ECAL wafer-PCB delamination problem needs to be solved before any further test can be made; it was raised as the highest priority on the path to the production of new ASUs.
- The DESY AHCAL team is responsible for the production of the board for the CMS HGCAL HCAL part;

the unexpected observation of the freezing of radiation damage annealing at -35°C in scintillators forced an urgent change of design, especially of the electronics boards, which has the priority.

 A delay of the deliverable by six months to M42 (September, 2024) would allow to produce a few boards for a proof-of-principle test of the SiW-ECAL, which would then form the basis of the transfer to the AHCAL. A combined test of a couple of layers at DESY SiW-ECAL+AHCAL is foreseen for June 2024.

Wafers testing with CERN test bench

- Probe board adapted to CALICE wafers (90×90 mm², 256 pads) has been designed and produced
 - 2 for LUXE @ TAU (Tel Aviv),
 - 1 for CALICE/LUXE @ IFIC Valencia
- A test bench is being mounted at IFIC

System needed for electrical sensor characterisation in prototyping phase and for quality control in mass production (IV, CV, VBD, VFD, CFD)

90 CALICE sensors received mid November

A probe card was designed and received in November from CERN (paid by TAU and IFIC).

December :

 modification of the probe station mechanics and installation of the probe card

January :

- we checked the LUT of the pins (pins number ^m DAQ channel)
- Started to test first sensors.
- Taking time to define the test procedure

System needed for electrical sensor characterisation in prototyping phase and for quality control in mass production (IV, CV, VBD, VFD, CFD)

