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A new Sensor Design
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Goal: Design planar silicon sensors able to work in the fluence range 1016 – 1017 neq/cm2

Difficult to operate silicon sensors above 1016 neq/cm2 due to:
–  defects in the silicon lattice structure   →  increase of the dark current
–  trapping of the charge carriers               →  decrease of the charge collection efficiency
–  change in the bulk effective doping      →  impossible to fully deplete the sensors

The ingredients to overcome the present limits above 1016 neq/cm2 are:
1.  saturation of the radiation damage effects above 5·1015 neq/cm2

2.  the use of thin active substrates (15 – 45 µm) with internal gain
3.  extension of the charge carrier multiplication up to 1017 neq/cm2 →  Compensated LGADs
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Project Flow
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Deliverables:
 1. simula'on and design of the p–n compensated gain implant (M6) – DONE 
 2. produc'on of p–n compensated sensors (M12) – DONE and n-doped sensors (M24) – 
 3. iden'fica'ons of the best parameters to manufacture compensated LGADs (M36) – pending
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Gain Removal Mechanism in LGADs
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The acceptor removal mechanism deacIvates the
p+-doping of the gain implant with irradiaIon as

p+(F) = p+(0)⋅e-cAF

where cA is the acceptor removal coefficient

cA depends on the iniIal acceptor density, p+(0), and
on the defect engineering of the gain layer atoms

F0 = 1/cA ~ the fluence at which mulIplicaIon power
of the gain implant reaches unity
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⇒ Is it possible to
reduce cA further?

▲  thin sensors from the EXFLU1 batch
[R.S. White, 43rd RD50 Workshop (2023) CERN]
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Towards a Radia@on Resistant Design
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Higher the acceptor density,
lower the removal

The acceptor removal mechanism deacIvates the
p+-doping of the gain implant with irradiaIon as

p+(F) = p+(0)⋅e-cAF

where cA is the acceptor removal coefficient
To substanIally reduce cA, it is necessary to
increase p+(0), the iniIal acceptor density
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Compensa@on at a Glance

Use the interplay between acceptor and 
donor removal to keep a constant gain 

layer active doping density

Many unknowns:
▻ donor removal coefficient, 
     from n+(F) = n+(0)⋅e-cDF

▻ interplay between donor and acceptor
     removal (cD vs cA)
▻ effects of substrate impurities on the 
     removal coefficients
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Doping Profile – Standard LGAD
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Doping Profile – Compensated LGAD

Boron x 5 – F=0
Phosp x 4 – F=0
Comp – F=0

D
op

in
g 

D
en

si
ty

 [a
.u

.]

Depth [a.u.]

Doping Profile – Compensated LGAD
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First Compensated LGADs – EXFLU1
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First compensated LGAD sensors have been released by FBK
in the framework of the EXFLU1 batch

Other R&D paths pursued by the EXFLU1 batch to extend the radiaPon tolerance of the LGAD sensors:
   ▻  new guard ring design 
   ▻  decrease of the acceptor removal – carbon shield
   ▻  thin substrates (15–45 µm)

Design and preparatory studies have been performed in collaboraIon with the Perugia group

→ The EXFLU1 wafers exited the FBK clean room at the end of 2022
[V. Sola, TREDI 2024, Torino]



Compensated Gain Layer Design – Split Table
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3 different combinations of p+ – n+ doping: 2 – 1, 3 – 2, 5 – 4 

  Wafer #  Thickness   p+ dose  n+ dose C dose
6 30 2 a 1
7 30 2 b 1
8 30 2 b 1
9 30 2 c 1

10 30 3 a 2
11 30 3 b 2
12 30 3 b 2
13 30 3 b 2 1.0
14 30 3 c 2
15 30 5 a 4

[ a < b < c ]
Active

thickness
30 µm



Compensated LGAD – I-V on wafer
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EXFLU1 – Compensated LGAD 3–2 – I-V 
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EXFLU1 – Compensated LGAD 5–4 – I-V 
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IR Laser S@mulus on Compensated LGAD
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TCT Setup from Particulars 
Pico-second IR laser at 1064 nm
Laser spot diameter ~ 10 µm
Cividec Broadband Amplifier (40dB)
Oscilloscope LeCroy 640Zi
 F = 0

x

y

z
Laser sImulus on

LGAD-PiN structures
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Compensated LGAD – Gain from TCT
 STD  -10ºC  ~4MIPs
 W6     RT     ~10MIPs
 W12  -20ºC  ~4MIPs
 W13  -20ºC  ~4MIPs
 W15   RT     ~80MIPs

→ Not trivial to operate compensated LGAD sensors



Secondary Ion Mass Spectroscopy – W15

R.S. White for eXFlu-innova eXFlu-innova @ AIDAinnova 3rd Annual Meeting 12

▻ Boron peak is shallower than phosphorus
▻ Boron peak is lower than predicted from simulation
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SIMS Profile & I-V – 5–4
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→ The simulated I-V reproduces the trend of the measured I-V from W15

Simulated I-V from SIMS Profiles

T = 293 K
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I-V from Compensated LGAD – Irradiated
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[F] = neq/cm2

TF=0 = + 20ºC
TIRR = - 20ºC

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

-500-400-300-200-1000

Cu
rr

en
t [

A]

Reverse Bias [V]

EXFLU1 – W6 – I-V
 F = 0

 4E14

 8E14

 12E14

 15E14

 25E14

 35E14

 50E14

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

-500-400-300-200-1000

Cu
rr

en
t [

A]

Reverse Bias [V]

EXFLU1 – W13 – I-V
 F = 0

 4E14

 8E14

 12E14

 15E14

 25E14

 35E14

 50E14

W6
2 – 1

W13
3 – 2 + C

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

-500-400-300-200-1000

Cu
rr

en
t [

A]

Reverse Bias [V]

EXFLU1 – W12 – I-V
 F = 0

 4E14

 8E14

 12E14

 15E14

 25E14

 35E14

 50E14

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

-500-400-300-200-1000

Cu
rr

en
t [

A]

Reverse Bias [V]

EXFLU1 – W15 – I-V
 F = 0

 4E14

 8E14

 12E14

 15E14

 25E14

 35E14

 50E14

W12
3 – 2

W15
5 – 4

Irradiated 
from 1E14 to
5E15 neq/cm2



IR Laser S@mulus on Compensated LGAD
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TCT Setup from Particulars 
Pico-second IR laser at 1064 nm
Laser spot diameter ~ 10 µm
Cividec Broadband Amplifier (40dB)
Oscilloscope LeCroy 640Zi
Laser intensity ~ 4 MIPs 
T = -20ºC

Laser sPmulus on a 
LGAD-PiN structures 

before and aWer 
irradiaPon
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→ Good gain behaviour of the compensated LGAD sensors aWer irradiaPon
→ Even in compensated LGADs, the usage of carbon miBgates the acceptor removal
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b Par@cles on Compensated LGAD
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b Setup
Oscilloscope: LeCroy 9254M (2.5GHz - 40Gs/s)
HV Power supply: CAEN DT1471ET
UCSC Board + Cividec Broadband Amplifier (20dB)
Time reference: Photonis MCP-PMT – st ~ 15 ps
b source: Sr90 – activity ~ 37 kBq
T = -25ºC
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3–2 compensated LGAD from W12 irradiated to
2.5E15 neq/cm2 has been tested with beta parPcles

→ Good Bming performances of compensated LGAD 
sensors irradiated to 2.5E15 neq/cm2 
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Compensated LGAD – State-of-the-Art
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Lesson from the first batch of compensated LGAD sensors:
▻ Difficult to control the shape and the peak concentration of two different elements
    → Necessary to carefully tune all the process parameters

▻ After irradiation, possible to successfully operate compensated LGAD sensors
    → Good gain and timing performances after irradiation

▻ Co-implantation of Carbon in the same volume of Boron and Phosphorus
    → Same effect as in standard LGAD, a reduction of a factor of ~ 3 of the Acceptor removal

▻ Simulation effort in progress to replicate I-V, C-V, and gain behaviour after irradiation 
    → Possible to extract Acceptor and Donor removal by comparing data and simulations

17



n-doped LGAD Production
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A produc@on batch is needed to study the donor removal coefficient, cD

Donor removal has been studied for doping densiIes of 1012 – 1014 atoms/cm3 
We need to study donor removal in a range 1016 – 1018 atoms/cm3

NB: Oxygen has for donor removal a very similar effect of Carbon to acceptor removal

→ The main goal of the p-in-n LGAD produc?on is to study the cD evolu?on
 and its interplay with Oxygen co-implanta?on

First and second p-in-n LGAD (NLGAD) batches produced by CNM [link1,link2]

p-in-n LGAD

p++

n+

n

n++
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Process simulation is used to design the p++ electrode and the n+ gain implant (TCAD Silvaco)

p-in-n LGAD – Simula@on & Design
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Several short loop runs to invesIgate
 – the Boron diffusion 
 – the Boron peak dose
 – the Phosphorus depth
 – the Phosphorus dose

Two different depth of the n+ gain 
implant will be explored in the batch



The results from the short loop runs are used as input of the device simulation with Sentaurus

→ Final simulation of the gain behaviour for different n+ designs are in progress

p-in-n LGAD – Simula@on & Design

R.S. White for eXFlu-innova eXFlu-innova @ AIDAinnova 3rd Annual Mee=ng 20

Reverse bias [V] Reverse bias [V]

Cu
rr

en
t [

A]

Cu
rr

en
t [

A]

∘ Type A                 
∘ Type B

Type A Type B



Different designs of the guard ring structures have been investigated

p-in-n LGAD – Simulation & Design
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→ DefiniMon of the sensor and 
periphery design in progress



Summary on the eXFlu-innova Ac@vi@es
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The eXFlu-innova activities are ongoing
▻ The p+–n+ design has been completed  – Deliverable 1  🎯
▻ The p+–n+ production batch has been completed – Part of Deliverable 2  🎯
▻ The characterisation and testing on the p+–n+ sensors is almost complete  🎯
▻ The n-doped LGAD batch is about to start  ⏳

→ Small delay in the eXFlu-innova activities
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An ERC Consolidator Grant awarded to further develop compensated LGAD sensors
Doping Compensa-on in Thin Silicon Sensors: 

the pathway to Extreme Radia-on Environments
CompleX
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Thank
You
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Project Ac@vi@es
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The activities of the proposal concentrate on the realisation of the most innovative part of our design, 
the compensated gain layer
▻ Two sensor productions will be performed, one to manufacture the first compensated LGADs and
      one to study the donor removal 
▻ The production process flows will be simulated, to optimise the procedures and sequences of 
      implantation and activation of dopants
▻ Both productions will be tested before and after irradiation to measure the initial donor removal
      and the performances of compensated LGADs
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Project Flow
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Deliverables:
 1. simula'on and design of the p–n compensated gain implant (M6)
 2. produc'on of p–n compensated sensors and n-doped sensors (M12 & M24)
 3. iden'fica'ons of the best parameters to manufacture compensated LGADs (M36)
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Project Budget
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The project has been funded with 140k EUR + 25%
Matching funds of 140k EUR is being provided by the Par@cipant Ins@tu@ons

INFN funding
– 60k EUR for personnel, to cover 24 months of experienced Post-Docs 
   → 2 Post-Doc hired, 1 Post-Doc selecIon completed
– 30k EUR of consumables, to cover the cost of dopant implantaIon at external services 
   → in progress

FBK funding
– 50k EUR for the 2 sensor producIon batches
   → 1 batch completed, 1 batch pending
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The EXFLU1 Wafers
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6” Wafer

⇒ The EXFLU1 tesJng
is in progress
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Process simulaIons of Boron (p+) and Phosphorus (n+) implantaIon and acIvaIon reveal the different 
shape of the two profiles

→ The simulaIon of the electrostaIc behaviour shows that it is possible to reach similar mulIplicaIon 
      for different iniIal concentraIons of p+ and n+ dopants
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Compensated LGAD – I-V from SimulationDoping Profiles from Process Simula\on
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Compensa@on – Doping Evolu@on with Fluence

R.S. White for eXFlu-innova eXFlu-innova @ AIDAinnova 3rd Annual Mee=ng

Three scenarios of net doping evolution with fluence are possible, according to the 
acceptor and donor removal interplay :
1. cA ~ cD 
     p+ & n+ difference will remain constant ⇒ unchanged gain with irradiation
    → This is the best possible outcome
2. cA > cD

effective doping disappearance is slower than in the standard design
    → Co-implantation of Carbon atoms mitigates the removal of p+-doping 
3. cA < cD
     n+-atoms removal is faster ⇒ increase of the gain with irradiation
    → Co-implantation of Oxygen atoms might mitigate the removal of n+-doping 
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p+ × 2, n+ × 1      
p+ × 3, n+ × 2           
p+ × 4, n+ × 3           
p+ × 5, n+ × 4           

× 4
× 5

Effective Doping

n+ p+ n                  p

1E+19

0

-1E+19

  Wafer #  Thickness   p+ dose  n+ dose C dose
6 30 2 a 1

12 30 3 b 2
13 30 3 b 2 1.0
15 30 5 a 4

→ 2 – 1 is more doped than 
standard LGAD

→ 3 – 2 & 5 – 4 exhibit a flat 
behaviour followed by an 

abrupt increase of the current



Compensated LGAD – Waveforms from TCT
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TCT Setup from Par1culars 
Pico-second IR laser at 1064 nm
Laser spot diameter ~ 10 µm
Laser intensity ~ 80 MIPs
Cividec Broadband Amplifier (40dB)
Oscilloscope LeCroy 640Zi
Room temperature

Waveforms from an LGAD and a PIN of W15 (5–4) operated at Vbias = 150 V 

W15
LGAD

Vbias = 150V

W15
PIN

Vbias = 150V



Compensated LGAD – 2D Scan with IR Laser
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Scan surface

TentaIve sketch of a 
compensated LGAD

⚠ NOT TO SCALE ⚠ 

Ongoing characterisaIon: invesIgate with IR laser the edge of the compensated gain implants

→ No issues observed at the edge of the compensated gain implants

? ?

TCT scan with IR laser
Laser spot ~ 10 µm

Sensor from W12 (3–2)
Vbias = 81 V

Very close to BD
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C-V from Compensated LGAD – Irradiated
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[F] = neq/cm2

T = + 20ºC
f = 2k Hz
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1/C2-V from Compensated LGAD – Irradiated
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[F] = neq/cm2

T = + 20ºC
f = 2k Hz
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[F] = neq/cm2

T = + 20ºC
f = 2k Hz
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Doping density profiling as a function of depth 
is extracted from the 1/C2-V information

Gain implant profile appears 
more and more evident 
as the fluence increases

→ Is donor removal faster than acceptor removal?



Guard Ring Design Op@mised for Thin Sensors
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16 different guard rings have been designed, optimised for thin substrates and extreme fluences

3 different guard ring strategies:

▻ 0 GR floating, varying the edge size
    – different size of the ‘empty’ region
    – different size of the edge region: 500, 300 & 200 µm

▻ 1 GR floating, varying the GR position

▻ 3 GR floating with different designs

    [S1 is the standard design used in previous UFSD batches]

S1

 S2      S3      S4      S5

  S6      S7      S8

  S9

S10   S11    S12

S13

S14   S15

S16



Op@mised Guard Ring Design – Summary
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→ 30 µm thick sensors show a bigger variaIon in the breakdown voltage wrt 20 µm thick ones
→ All guard ring designs are working properly and ensure good operaIon of the sensors
→ An extensive irradiaIon campaign will be performed to study the radiaIon tolerance of each design

◆ 30 µm – single measurement
◆ 30 µm – average
◆ 20 µm – single measurement
◆ 20 µm – average
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Evolu@on of the Donor Removal
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A further producIon batch is needed to study the donor removal

EvoluIon of donor density: Neff(F) = ND(0)e-cD⋅F - gc⋅F

State-of-the-art [M.Moll et al., doi:10.1016/S0168-9002(99)00842-6]

We need to study donor removal in a range 1016 – 1018 atoms/cm3

NB: Oxygen has for donor removal a very similar effect of Carbon to acceptor removal
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Process simulation is used to design the p++ electrode with Boron (TCAD Silvaco)

→ The simulation of the electrostatic behaviour shows good performances of the I-V characteristics
      for different p++ designs (TCAD Synopsys)

p-in-n LGAD – Simulation & Design
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Involved Partners – INFN TO
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▻ The Torino Unit of the IsItuto Nazionale di Fisica Nucleare (INFN) will
 

    → coordinate the project and organise the acIviIes
    → follow the sensor design and producIon processes
    → characterisaIon and test of the sensors
    → organise of the irradiaIon campaign
 

    → provide the input to the simulaIon and modelling process

⇒ Well-established tradi@on in the development of Low-Gain Avalanche Diodes since the early stage

Laboratory of Innova\ve Silicon Sensors
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Involved Partners – FBK

R.S. White for eXFlu-innova eXFlu-innova @ AIDAinnova 3rd Annual Mee=ng

▻ Fondazione Bruno Kessler (FBK) will
    → define the opImal process flow for the two sensor producIon
    → take care of the sensors fabricaMon process 
    → provide the first sensor characterisaIon at the foundry

⇒ FBK will bring its strong exper@se in the design and produc@on of silicon sensors with internal gain,
now considered at the state-of-the-art by the scien@fic community.

Previous LGAD produc\ons at FBK (not-exhaus\ve list)

UFSD1
2016

UFSD2
2017

UFSD3
2018

UFSD3.1
2019

RSD1
2019

UFSD3.2 + EXFLU0
2020

TI–LGAD
2021
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Involved Partners – INFN Pg

R.S. White for eXFlu-innova eXFlu-innova @ AIDAinnova 3rd Annual Meeting

⇒ INFN Pg contribute to the project bringing its experience in the interpreta@on and modelling of 
silicon damage through the development and applica@on of Technology CAD tools

MPI TS2000 SE
Semi-automaec probe staeon

Triaxial thermal chuck -60°C ÷ +200°C

▻ The Perugia Unit of the IsItuto Nazionale di Fisica Nucleare (INFN) will
 

    → provide simulaIon of the sensor behaviour to drive the producIon processes
    → parIcipate to the sensor characterisaIon and tesIng
    → implement the observaIons into the model
 

    → extend the sensor modelling to unexplored regions of fluence
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Possible Fields of Interest

R.S. White for eXFlu-innova eXFlu-innova @ AIDAinnova 3rd Annual Meeting

▻ Silicon-based tracker detectors at future high-energy and high-intensity hadron colliders, where the
expected radia\on budget at those machines is above 1E16 cm-2 in the outermost part of the tracking region and
up to 1E18 cm-2 close to the interac\on point.

▻ Beam monitor for parGcle therapy facility, as cancer treatment effec\veness strongly relates to the accuracy
of real-\me monitoring of the beam intensity and profile to op\mise the dose delivery to the cancer \ssue, the
pa\ent safety, and the opera\on of the accelera\ng machine. Par\cle therapy will significantly benefit from 
silicon-based monitors that can operate for about one year of pa\ent’s treatments (~ 1E17 cm-2) without being 
replaced.

▻ Monitors at the thermonuclear fusion reactors under development. In such an environment, with high
neutron and g fluxes, X-ray monitors are crucial to ensure safe opera\ons, control of the nuclear plasma, and
precise evalua\on of physics phenomena.
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Satura@on of Radia@on Damage Effects

R.S. White for eXFlu-innova eXFlu-innova @ AIDAinnova 3rd Annual Meeting

At fluences above 5·1015 cm-2 → Saturation of radiation effects observed

Silicon detectors irradiated at fluences 1016 – 1017 cm-2 do not behave as expected → They behave better

Leakage current saturaGon
I = aVF

a from linear to logarithmic

Trapping probability saturaGon
1/teff = bF

b from linear to logarithmic

Acceptor creaGon saturaGon
NA,eff = gcF

gc from linear to logarithmic

y = 4,23E+13ln(x) - 1,43E+15

0E+00

1E+14

2E+14

3E+14

0 5E+15 1E+16

N
A

,e
ff

[c
m

-3
]

Fluence [neq/cm2]

Acceptor-like defect creation

55 um n-in-p

g = 0.02/cm

g = 0.03/cm

Log.  (55 um n-in-p)

[G.Kramberger et al.] [G.Kramberger et al.] [M.Ferrero et al.]

47



Thin Substrates
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g ~ ln(fluence)

Full depletion voltage at F = 1017 neq/cm2

At high fluences, only thin substrates 
can be fully depleted

VFD = e|Neff|d2/2e

Satura?on Reduce thickness

What does it happen to a 25 µm sensor after a fluence of 5·1016 cm-2? 
▻ It can still be depleted
▻ Trapping is limited (small drift length)
▻ Dark current is low (small volume)

However: charge deposited by a MIP ~ 0.25 fC
→ This charge is lower than the minimum charge requested by the electronics 
      (~ 1 fC for tracking, ≳ 5 fC for timing)
→ Need a gain of at least ~ 5 in order to efficiently record a hit

Optimal candidate: 
LGAD sensors
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Low-Gain Avalanche Diodes – LGADs
Minimum charge requested by the electronics 
 → ~ 1 fC for tracking
 → ≳ 5 fC for Iming

Charge from a MIP crossing thin sensors
 → ~ 0.1 fC every 10 µm 
 [S. Meroli et al., doi:10.1088/1748-0221/6/06/P06013]

Low-Gain Avalanche Diodes (LGADs) provide a controlled 
internal mulIplicaIon of signal 
 → Efield above Ec for short distance well controlled by Vbias

⇒ Need a gain of at least 5 – 10
to efficiently record a hit
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Compensated LGAD produced by HPK
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Presented by K. Nakamura at TREDI2024 [link]



Participation to an RD50 Project
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Defect engineering in PAD diodes mimicking the gain layer in LGADs 
PI: Ioana Pin\lie (Bucharest, Nat. Inst. Mat. Sci.)
Pa\cipants: Michael Moll (CERN), Kevin Lauer (CiS), Gregor Kramberger (JSI), 

Eckhart Fretwurst (Hamburg University), Valen\na Sola (INFN-Torino), 
and Tomas Ceponis (Vilnius University)

‘The proposed project is focusing on the acceptor removal process (ARP) in the irradiated gain layer of LGAD
sensors, aiming to understand it and parametrize it for various content of B, C and O impuri\es and irradia\on
fluences, in order to find proper defect engineering solu\ons to maximize the radia\on hardness of the gain
layers.’

⇒ To study and characterise acceptor and donor removal mechanisms


