

Recent developments for MiniCactus

CEA/Irfu/DphP and CEA/Irfu/Dedip

cea irfu

Yavuz DEGERLI, Fabrice GUILLOUX,

Jean-Pierre MEYER, Philippe SCHWEMLING (also Université Paris Cité)

Tomasz HEMPEREK (U. Bonn, now at DECTRIS)

Pixel Flavors :

MiniCACTUS chip

(not to scale)

Pixels 3 & 7 : 1 mm x 1 mm baseline pixels
Pixels 2, 4, 6 & 8 : 0.5 mm x 1 mm pixels
Pixel 8 : 0.5 mm x 1 mm pixel with in-pixel AC coupling capacitor (20pF)
Pixels 1 : 50 μm x 50 μm test pixel
Pixels 5 : 50 μm x 150 μm test pixel

- MiniCACTUS is a detector prototype designed in order to address the *low S/N issue* observed on previous CACTUS large size demonstrator
- Main change in MiniCACTUS: FE integrated at column level, pixels mostly passive
- On-chip Slow Control, DACs, bias circuitry
- 2 discriminated digital (LVDS) and 2 analog monitoring (*slower than CSA output*) outputs for 2 columns
- 2 small pixels implemented as test structures to study charge collection (*FEs* not power optimized)
- Some detectors thinned to 100, 200, 300µm and than post-processed for backside polarization after fabrication

ON-CHIP FRONT-END

Chip#5_200μm Δ Chip#6_200μm

Breakdown voltage from 300 V to 500 V Variations likely due to post-processing

IN-LAB TESTS (injection pulse, Gamma-ray sources)

⁵⁵Fe — MiniCactus 5 , Pixel 18

TESTBENCH OF MINICACTUS IN TESTBEAM

TESTBENCH OF MINICACTUS IN TESTBEAM (RD-51 H4 beamline)

Time reference RD-51 MCPs (resolution < 10 ps)

TYPICAL WAVEFORMS OBSERVED DURING TESTBEAM

 \rightarrow Ringing on **Digital Output** due to coupling from the digital buffers (known problem from in-lab tests, negative impact on TW corrections from digital ToT)

DATA ANALYSIS PROCEDURE

Chip#5, pixel 8, 0.5 x 1 mm², 200 µm, -280V (Back-side pol.)

- Measured timing resolution (-280 V) : **74.4 ps** (MCP resolution negligible)
- Worse timing resolution measured with 100 µm sensor (*lower S/N* and *ringing from digital*)
- Small pixels have worse performance, probably due to charge sharing effects (*pixel 5 , 50* μ ×150 μ tested in testbeam)

IN-LAB TIMING MEASUREMENTS WITH PMT AND ⁹⁰Sr SOURCE

Chip#6, pixel 8, 0.5 x 1 mm², 200 μm

Bias Voltage (V)

 → In-lab measurements with 90Sr betas
 allowed to predict actual performance with MIPs

Have to select MIP-like betas by cutting out low energy deposits in PMT

Pixel 8;200 µm; Resolution versus HV

MiniCACTUS_V2 Sensor Chip

Irfu : Yavuz Degerli, Fabrice Guilloux, Jean-Pierre Meyer, Philippe Schwemling IFAE : Raimon Casanova, Yujin Gan, Sebastian Grinstein

- ~ 2 times larger than MiniCACTUS
- 0.5 mm x 1 mm (baseline), 1 mm x 1 mm and
 0.5 mm x 0.5 mm diodes
- 50 µm x 150 µm and 2 50 µm x 50 µm small test diodes
- 3 different preamps
- New multistage discriminator with programmable hysteresis
- Improved layout for better mixed-signal coupling rejection
- CEA-IRFU & IFAE-Barcelona coll.
- Submitted in May 2023, waiting for samples to
- come back from post-processing

MiniCACTUS_V2 Sensor Chip

- 3 different preamps implemented in MiniCACTUS_V2
- 2 new preamps (CSA_new and VPA) designed by IFAE-Barcelona for better jitter and reduced ToT

• VPA : new voltage preamp

Development of cold box setup

InitialAfter onestatusmonth of continuous operation at -15°C

- Mostly intended to test irradiated samples
 - We have 100 μ and 300 μ irradiated at 10^{14}, 10^{15}, 10^{16} 1 MeV neq/cm²

irfu

cea

- MiniCactus testbench (DUT board, GPAC, Raspio) in insulating foam box (plus feedthroughs for power and cooling)
 - Copper plate with a cooling pipe welded to it plus copper fingers bring cold surface as close as possible to DUT
- Monitoring of temperature and moisture level at various places in cold box
- No moisture control, we just try to minimise water input
- LAUDA chiller, min temp -30°C at chiller output
- Kapton windows allow use of 90Sr beta source (has to stay outside of cold box for safety/regulatory reasons)

IV curves vs temperature (Unirradiated DUT, 300 µ thick)

■ 31 7° ● 23 7 ● 7 4° ● -0 6° ● -7 5° ● -15 Moisture present ! on DUT 0,1 0.01 0.00 600 (V) 100 200 300 400 500

(µA)

Main conclusion :

Need to run avoiding temperature range between 7.5°C and -1°C measure

Below -1°C all water is frozen \rightarrow OK Above 7.5°C all water is vapour \rightarrow OK

IV measurement done routinely and automatically through remote control and monitoring of HV PS (Keithley sourcemeter)

LF15A radiation hardness

0 Mrad @Room Temp 149 Mrad @Room Temp 149 Mrad @Low Temp -15°C

[[]I. Mandic et al. NIM A 903, 2018]

- → Radiation tests at CERN-SPS with proton beam on LF-CPIX chip (CPPM)
- ightarrow 14% increase of noise after irradiation with cooling

IV curves of irradiated MiniCactus v1

irfu

cea

Cooling is essential to bring leakage current to manageable

PMT and MiniCactus data 10¹⁴ 1 MeV neq irradiated DUT, 300 µ thick, 200V

PMT and MiniCactus data 10¹⁴ 1 MeV neq irradiated DUT, 300 µ thick, 200 V

DT PMT1-MIN1 (ps)

Comparison of time resolution of unirradiated and 10¹⁴ 1 MeV neq chips

Sensor	HV bias (V)	Conditions	Temp. (°C)	Time res. (ps)	MPV (mV)
Unirradiated 300 u	400	testbeam, MCPMT time reference	room	78.97 ± 1.36	201.9 ± 0.5
Unirradiated 300 u	400	90Sr, PMT time reference*	room	104.5 ± 2.30	195.7 ± 2.3
Unirradiated 300 u	280	testbeam, MCPMT time reference	room	89.11 ± 1.56	200.9 ± 0.5
Irradiated 300 u	280	90 Sr, PMT time reference	20	108.2 ± 3.2 (PMT subt.)	108.2 ± 3.2
Irradiated 300 u	320	90 Sr, PMT time reference	20	132.9 ± 5.0 (PMT subt.)	113.5 ± 0.8
Irradiated 300 u	320	90 Sr, PMT time reference	-15	87.9 ± 4.7 (PMT subt.)	132.7 ± 0.6

Irradiation at 10¹⁴ n_{eq} worsens time resolution by 18 % w.r.t. unirradiated at 20 °C

Cooling at -15°C brings time resolution more or less back to unirradiated performance (less dark current fluctuations)

*PMT resolution for 90 Sr betas estimated to be 71.3 ps ± 1.7 ps

Conclusions and perspectives

- Short term : evaluation of 10¹⁵ 1 MeV neq/cm² MiniCactus v1, first results are promising
 - In-lab and test-beam tests of MiniCactus v2. Hope to correct analog/digital coupling and have improved timing performance !
 - Medium term : investigate monolithic pixels with integrated gain layer.
 - Possible with standard LF15A process

- MiniCACTUS: A 65 ps Time Resolution Depleted Monolithic CMOS Sensor (arXiv:2309.08439, NSS 2022 conference)
- MiniCACTUS: Sub-100 ps timing with depleted MAPS, Nucl.Instrum.Meth.A 1039 (2022) 167022, VCI 2022 conference)
- CACTUS: A depleted monolithic active timing sensor using a CMOS radiation hard technology (arXiv:2003.04102, JINST 15 (2020) 06, P06011)

Backup

GUARD-RINGS OF LF-MONOPIX1

[M. Barbero et al. JINST 15, 2020]

ELECTRIC FIELDS

Backside versus top biasing \rightarrow Need backside polarization to ensure best charge collection and signal shape uniformity!

241Am Amplitude Spectrum (pixel 5, 50 µm x 150 µm)

